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Abstract: In this paper we study the relations between certain integrable equations and geometric motion of spacelike and timelike
curves in 3-dimensional de-Sitter spaceS

2,1. We give the associated evolution equations for curvature and torsion as a system of partial
differential equations. In addition, we study inextensible flows of both spacelike and timelike curves inS2,1, and we get necessary and
sufficient conditions for the flows of those curves to be inextensible. We give explicit examples of the motion of inextensible spacelike
curves inS2,1 and we determine the curves from their intrinsic equations (curvature and torsion), and then determine the surfaces that
are generated by the motion of these curves and draw these surfaces in de-Sitter spaceS2,1 by using the hollow ball model.
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1 Introduction

The connection between integrable equations (soliton
equations) and the geometric motions of curves in spaces
has been studied for a long time by many authors in
different geometries. Applications of the motion of curves
and surfaces in many areas, in applied sciences such as
dynamics of vortex filaments, image processing, motions
of interfaces, shape control of robot arms, propagation of
flame front, supercoiled DNAs, magnetic fluxes,
dynamics of proteins and deformation of membranes,

Schief and Rogers [1], studied the binormal motions
of curves of constant curvature or torsion. Recently,
Nassar et al [2,3,4,5], constructed new geometrical
models of motion of plane curves. Also, they constructed
Hashimoto surfaces from its fundamental coefficients via
numerical integration of Gauss-Weingarten equations and
fundamental theorem of surfaces. In addition, they
derived the equations of motion for a general helix curve
(τ = βk). Moreover, they studied the kinematics of
moving generalized curves in an-dimensional Euclidean
space in terms of intrinsic geometries.

Samah [6], studied the motions of inextensible curves
in spherical spaceS3 .

Rawya and Samah [7], studied the motion of curves in
3-dimensional Euclidean spaceR3. They gave new explicit
examples of motions of inextensible curves inR

3.

2 Preliminaries

The Minkowski space, or Lorentz spaceR3,1, is defined
as a four-dimensionalR-vector space consisting of vectors
{X = (x0,x1,x2,x3) | x0,x1,x2,x3 ∈ R}, with the metric

g= dx2
1+dx2

2+dx2
3−dx2

0.

Definition 1.Let X,Y,Z be vectors in R
3,1, where

X = (x0,x1,x2,x3), Y = (y0,y1,y2,y3) and
Z = (z0,z1,z2,z3). The inner product is defined by

〈X,Y〉= x1y1+ x2y2+ x3y3− x0y0.

The pseudo vector product of X,Y and Z is defined as

X×Y×Z = det







−e0 e1 e2 e3
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3






,

where e0 = (1,0,0,0),e1 = (0,1,0,0),e2 = (0,0,1,0) and
e3 = (0,0,0,1).

Definition 2.An arbitrary nonzero vector v∈ R
3,1 is

•Spacelike if〈v,v〉> 0.
•Timelike if〈v,v〉< 0.
•Null (lightlike) if 〈v,v〉= 0.
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The signature of a vector v is

sign(v) =











1 v is spacelike,
0 v is lightlike,
−1 v is timelike.

The norm of the vector v is‖v‖=
√

|〈v,v〉|.

Definition 3.The 3−dimensional de-Sitter spaceS2,1 is
defined by

S
2,1 = {(x0,x1,x2,x3) ∈R

3,1 |
3

∑
j=1

x2
j − x2

0 = 1}.

The set of null vectors ofR3,1 forms the light cone

L3 = {(x0,x1,x2,x3) | x2
0 = x2

1+ x2
2+ x2

3,x0 6= 0}.

Definition 4.To visualize surfaces in de-Sitter spaceS
2,1,

we use the hollow ball model ofS2,1 (it is a
3−dimensional ball inR3), as in [9]. For any point

(x0,x1,x2,x3) ∈ S
2,1−→

(

x0+ x3 x1+ ix2
x1− ix2 x0− x3

)

, define

yk = earctanx0
xk

√

1+ x2
0

, k= 1,2,3.

Then e−π < y2
1 + y2

2 + y2
3 < eπ . The identification

(x0,x1,x2,x3)←→ (y1,y2,y3) is then a bijection fromS2,1

to the hollow ball

H = {(y1,y2,y3) ∈ R
3 | e−π < y2

1+ y2
2+ y2

3 < eπ}.

SoS2,1 is identified with the hollow ballH .

Fig. 1: Hollow ball model.

3 The differential geometry of curves inS2,1

Definition 5.Consider the3−dimensional de-Sitter space
S

2,1 in R
3,1. A regular parametrized curvêγ = γ̂(u), γ̂ :

I −→ S
2,1 is called:

•Spacelike if〈 ˙̂γ, ˙̂γ〉> 0.
•Timelike if〈 ˙̂γ, ˙̂γ〉 < 0.
•Null (light-like) if 〈 ˙̂γ, ˙̂γ〉= 0.

for all û∈ I, whereû is the parameter of the curvêγ and
˙̂γ(û) is the tangent vector to the curvêγ and˙= d

dû (see
[8]).

Definition 6.Let γ̂(ŝ(û)) : I → S
2,1 be a regular spacelike

or timelike curve in de-Sitter spaceS2,1. The arc-length of
a spacelike or timelike curvêγ with arbitrary parameter
û∈ I measured from̂γ(0), 0∈ I is

ŝ(û) =
∫ û

0
‖ ˙̂γ(σ̂)‖dσ̂ .

Sinceγ̂ is regular, then we definêg> 0 by dŝ
dû = ‖ ˙̂γ‖=√ĝ.

Definition 7.If ‖ ˙̂γ‖= 1 for all û∈ I, thenγ̂ = γ̂(ŝ) is said to
be an arc-length parametrized or unit speed parametrized
curve.

Now assume that the curvêγ is parametrized by
arc-length. Assume that〈γ̂ ′′(ŝ), γ̂ ′′(ŝ)〉 6= 1, where

′
= d

dŝ.
Let {γ̂, T̂, N̂, B̂} be the Serret-Frenet frame of the curveγ̂,
whereγ̂(ŝ) is the position vector of the curvêγ andT̂, N̂
and B̂ are, respectively, the unit tangent, unit principal
normal and unit binormal vector field to the curveγ̂(ŝ).

Definition 8.The Frenet frame inS2,1 is defined by

•〈γ̂ , γ̂〉= 1, since the curve is inS2,1.
•ε1 = sign(T̂), ε2 = sign(T̂ ′+ ε1γ̂), whereγ̂ ′ = T̂ , and
the constantsε1,ε2 are called the first and second
causal characters of the curvêγ.
•B̂ is chosen so that{γ̂, T̂, N̂, B̂} is an oriented
orthonormal basis ofR3,1, soB̂= γ̂× T̂× N̂.

Definition 9.The unit normal vector to the spacelike or
timelike curveγ̂(ŝ) is defined by

N̂ =
T̂ ′+ ε1γ̂
‖T̂ ′+ ε1γ̂‖

.

Lemma 1.The inner product and the vector product are
given by:

•〈γ̂ , T̂〉=〈γ̂ , N̂〉=〈γ̂ , B̂〉=〈T̂, N̂〉= 〈T̂, B̂〉= 〈N̂, B̂〉= 0.
•B̂×T̂×N̂= ε1ε2γ̂, γ̂×B̂×N̂= ε2T̂ , γ̂×T̂×B̂= ε1N̂.

Lemma 2.The inner product for the unit principal normal
vectorN̂ and the unit binormal vector̂B can be determined
in terms ofε1 andε2 as follows:

〈N̂, N̂〉= ε2, 〈B̂, B̂〉=−ε1ε2.

Definition 10.The curvature of the spacelike or timelike
curveγ̂(ŝ) is defined by

k̂=
√

ε2〈T̂ ′+ ε1γ̂, T̂ ′+ ε1γ̂〉,
or

k̂=
√

| 〈T̂ ′+ ε1γ̂, T̂ ′+ ε1γ̂〉 |= ‖T̂ ′+ ε1γ̂‖.

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.6, No. 2, 75-83 (2018) /www.naturalspublishing.com/Journals.asp 77

Lemma 3.
k̂= ε2〈T̂ ′+ ε1γ̂, N̂〉. (1)

Definition 11.The torsionτ̂(ŝ) of the spacelike or timelike
curveγ̂(ŝ) is defined by:

τ̂ =−ε1ε2〈N̂′, B̂〉. (2)

Lemma 4.
τ̂ =

ε1ε2

k̂2
det(γ̂, γ̂ ′, γ̂ ′′, γ̂ ′′′). (3)

Lemma 5.The Frenet Frame for the curve inS2,1 satisfies
the following:

F̂ŝ = M̂ · F̂, (4)

whereF̂ =









γ̂
T̂
N̂
B̂









and M̂ =









0 1 0 0
−ε1 0 k̂ 0

0 −ε1ε2k̂ 0 τ̂
0 0 ε1τ̂ 0









.

Proof.The vectors {γ̂ ′, T̂ ′, N̂′, B̂′} can be uniquely
decomposed as follows:

γ̂ ′ = T̂,

T̂ ′ = a11γ̂ +a12T̂ +a13N̂+a14B̂,

N̂′ = a21γ̂ +a22T̂ +a23N̂+a24B̂,

B̂′ = a31γ̂ +a32T̂ +a33N̂+a34B̂.

(5)

We will compute the coefficientsai j , wherei = 1,2,3 and
j = 1,2,3,4.
Since〈T̂, T̂〉 = ε1, then〈T̂ ′, T̂〉 = 0. By the inner product
of the second equation of (5) with T̂, we have

〈T̂ ′, T̂〉= a12ε1,

thena12= 0. Similarly,a23 = a34= 0.
Using the first property of Lemma (1), then we have

a11=−ε1, a21= 0, a31= 0, a22=−ε1ε2a13,

a32 = ε2a14, a33= ε1a24.

SinceB̂′ ⊥ B̂, and alsoB̂′ ⊥ T̂, hencea14 = 0. Using (1),
then we havea13= k̂. Using (2), so we have

a24= τ̂.

Hence, the lemma holds.

Lemma 6.Consider the spacelike or timelike curve
γ̂(ŝ(û)) with arbitrary parameter û ∈ I. Then the
Serret-Frenet frame satisfies

F̂û =
√

ĝM̂ · F̂, (6)

whereM̂ andF̂ are given as in (4).

4 Motions of spacelike or timelike curves in
S

2,1

Let γ̂0 : I → S
2,1 be a regular spacelike or timelike curve

in S
2,1. Consider the family of curveŝCt : γ̂(ŝ, t), where

γ̂(ŝ, t) : I × [0,∞) −→ S
2,1, with initial curve γ̂0 = γ̂(ŝ,0).

γ̂(ŝ, t) denotes the position vector of a point on the
spacelike or timelike curve at timet andŝ is an arc-length
parameter for the curve. The time parametert is the
parameter for the deformation̂Ct of the curve.
The arc-length of a spacelike or timelike curvêCt is
defined as

ŝ(û, t) =
∫ û

0

√

ĝ(σ̂ , t)dσ̂ ,

where
√

ĝ = ‖ ˙̂γ(σ̂ , t)‖. Thus the element of arc-length is
dŝ=

√

ĝ(û, t)dû, and

∂
∂ ŝ

=
1√
ĝ

∂
∂ û

,
∂ ŝ
∂ û

=
√

ĝ.

The time evolution of the curve or the curve flow specified
by the velocity field

∂ γ̂
∂ t

= ŴT̂ +ÛN̂+ V̂B̂, (7)

where{γ̂, T̂, N̂, B̂} is the orthonormal Frenet frame to the
curveĈt , andŴ, Û andV̂ are the velocity vectors in the
direction ofT̂, N̂ andB̂ respectively. These velocities are
functions of the curvaturêk(ŝ, t), torsion τ̂(ŝ, t) of the
curve, and the derivatives ofk̂(ŝ, t), τ̂(ŝ, t).

Remark.

•The derivatives with respect to ˆu andt commute,

∂
∂ û

d
dt

=
d
dt

∂
∂ û

.

•The derivatives with respect to ˆsandt in general do not
commute,

∂
∂ ŝ

d
dt

=
d
dt

∂
∂ ŝ

+
ĝt

2ĝ
∂
∂ ŝ

. (8)

5 Main results

Theorem 1.The time evolution of the Serret-Frenet frame
can be given in matrix form as follows:

F̂t = Q̂ · F̂, (9)

where

F̂ =









γ̂
T̂
N̂
B̂









and Q̂=









0 Ŵ Û V̂
−ε1Ŵ 0 f̂1 f̂2
−ε2Û −ε1ε2 f̂1 0 ξ̂
ε1ε2V̂ ε2 f̂2 ε1ξ̂ 0









.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


78 S. Gaber: Inextensible flows of curves in...

The time evolution of the curvature and torsion of the
curveĈt can be written as follows

(

k̂
τ̂

)

t
=

(

− ĝt
2ĝ ε1 f̂2

ε1ε2 f̂2 − ĝt
2ĝ

)

(

k̂
τ̂

)

+

(

ε1Û + f̂1ŝ

ξ̂ŝ

)

, (10)

where

f̂1 = k̂Ŵ+Ûŝ+ ε1τ̂V̂,

f̂2 = V̂ŝ+ τ̂Û ,

ξ̂ =
1

k̂

(

ε1V̂ +
∂ f̂2
∂ ŝ

+ f̂1τ̂
)

.

Proof.Take the ˆu derivative of (7), then

γ̂tû =
√

ĝ

(

(−ε1Ŵ)γ̂ +(
∂Ŵ
∂ ŝ
− ε1ε2k̂Û)T̂

+ (k̂Ŵ+Ûŝ+ ε1τ̂V̂)N̂+(τ̂Û + V̂ŝ)B̂

)

.

ChoosêkŴ+Ûŝ+ ε1τ̂V̂ = f̂1 andV̂ŝ+ τ̂Û = f̂2, so

γ̂tû =
√

ĝ

(

(−ε1Ŵ)γ̂ +(
∂Ŵ
∂ ŝ
− ε1ε2k̂Û)T̂ + f̂1N̂+ f̂2B̂

)

.

(11)
Sinceγ̂û =

√
ĝγ̂ŝ =

√
ĝT̂, then

γ̂ût =
√

ĝT̂t +
ĝt

2
√

ĝ
T̂. (12)

Since the derivatives with respect to ˆu andt commute, then

γ̂ût = γ̂tû. (13)

Substituting from (11) and (12) into (13), then

∂ ĝ
∂ t

= 2ĝ(
∂Ŵ
∂ ŝ
− ε1ε2k̂Û), (14)

∂ T̂
∂ t

= −ε1Ŵγ̂ + f̂1N̂+ f̂2B̂. (15)

To compute the time evolution equations for the curvature
k̂ and the unit normal vector̂N to the curveĈt , we take the
û derivative of the second equation of (14), then

T̂tû =
√

ĝ

(

(−ε1Ŵŝ)γ̂− ε1(Ŵ+ ε2k̂ f̂1)T̂

+ (
∂ f̂1
∂ ŝ

+ ε1 f̂2τ̂)N̂+(
∂ f̂2
∂ ŝ

+ f̂1τ̂)B̂
)

. (16)

Since
T̂û =

√

ĝT̂ŝ =
√

ĝ(−ε1γ̂ + k̂N̂).

Taking thet derivative of this equation, then we have

T̂ût =
√

ĝ

(

k̂N̂t − (ε1
ĝt

2ĝ
)γ̂− (ε1Ŵ)T̂

+ (k̂t + k̂
ĝt

2ĝ
− ε1Û)N̂− (ε1V̂)B̂

)

. (17)

Since
T̂tû = T̂ût (18)

Substitute from (16) and (17) in (18) and put

ξ̂ =
1

k̂

(

ε1V̂ +
∂ f̂2
∂ ŝ

+ f̂1τ̂
)

,

then

∂ k̂
∂ t

= ε1Û +
∂ f̂1
∂ ŝ

+ ε1τ̂ f̂2−
ĝt

2ĝ
k̂, (19)

∂ N̂
∂ t

= (−ε2Û)γ̂− ε1ε2 f̂1T̂ + ξ̂ B̂. (20)

The time evolution equation for the unit binormal vectorB̂
to the curveĈt is given as follows:
SinceB̂= γ̂× T̂× N̂, so

B̂t = γ̂t × T̂× N̂+ γ̂× T̂t× N̂+ γ̂× T̂× N̂t . (21)

Substitute from (7) and the second equation of both (14)
and (19) into (21), then

∂ B̂
∂ t

= ε1ε2V̂ γ̂ + ε2 f̂2T̂ + ε1ξ̂ N̂. (22)

Take the ˆu derivative of (22), then

B̂tû =
√

ĝ

(

−(ε1ε2τ̂Û)γ̂ + ε2(ε1V̂ +
∂ f̂2
∂ ŝ
− k̂ξ̂ )T̂

+ (ε2k̂ f̂2+ ε1ξ̂ŝ)N̂+(ε1ξ̂ τ̂)B̂
)

. (23)

Since
B̂û =

√

ĝB̂ŝ =
√

ĝ(ε1τ̂N̂).

Taking thet derivative of this equation, then we have

B̂ût = ε1

√

ĝ(
ĝt

2ĝ
τ̂ + τ̂t)N̂+(ε1

√

ĝτ̂)N̂t . (24)

SinceB̂tû = B̂ût, using (23) and (24), then we have the time
evolution equation for the torsion̂τ of the curveĈt

∂ τ̂
∂ t

= ε1ε2k̂ f̂2+ ξ̂ŝ−
ĝt

2ĝ
τ̂. (25)

Theorem 2.Consider the Serret-Frenet matrix̂F that
satisfies (6) and (9), then we have the integrability
condition:

M̂t − Q̂ŝ+[M̂,Q̂] =
−ĝt

2ĝ
M̂, (26)

where[M̂,Q̂] = M̂ · Q̂− Q̂· M̂ is the Lie bracket.

Proof.Since
F̂ût = F̂tû. (27)

Differentiating (6) with respect tot, then

F̂ût =
√

ĝ

(

M̂t + M̂ · Q̂+
ĝt

2ĝ
M̂

)

· F̂ . (28)

c© 2018 NSP
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Differentiating (9) with respect to ˆu, then

F̂tû =
√

ĝ

(

Q̂ŝ+ Q̂· M̂
)

· F̂. (29)

Substitute from (28) and (29) into (27), then the theorem
holds.

Lemma 7.If the integrability condition (26) is satisfied,
then we have the PDE system (10).

Proof.Since

M̂ =









0 1 0 0
−ε1 0 k̂ 0

0 −ε1ε2k̂ 0 τ̂
0 0 ε1τ̂ 0









,

and

Q̂=









0 Ŵ Û V̂
−ε1Ŵ 0 f̂1 f̂2
−ε2Û −ε1ε2 f̂1 0 ξ̂
ε1ε2V̂ ε2 f̂2 ε1ξ̂ 0









.

Then

M̂t =









0 0 0 0
0 0 k̂t 0
0 −ε1ε2k̂t 0 τ̂t
0 0 ε1τ̂t 0









, (30)

and

Q̂ŝ =









0 Ŵŝ Ûŝ V̂ŝ

−ε1Ŵŝ 0 f̂1ŝ f̂2ŝ

−ε2Ûŝ −ε1ε2 f̂1ŝ 0 ξ̂ŝ

ε1ε2V̂ŝ ε2 f̂2ŝ ε1ξ̂ŝ 0









. (31)

The Lie bracket[M̂,Q̂] is given by:

[M̂,Q̂] =







0 â12 â13 â14
−ε1â12 0 â23 â24
−ε2â13 −ε1ε2â23 0 â34
ε1ε2â14 ε2â24 ε1â34 0






, (32)

where

â12 = ε1ε2k̂Û , â13 = f̂1− k̂ŵ− ε1τ̂V̂, â14 = f̂2− τ̂Û ,

â23 =−ε1(Û + τ̂ f̂2), â24 = k̂ξ̂ − τ̂ f̂1− ε1V̂,

â34 =−ε1ε2k̂ f̂2.

Substitute from (5), (30), (31), (32) into (26), then we get
the PDE system (10).

6 Motions of inextensible spacelike or
timelike curves in S

2,1

Definition 12.The curveγ̂(ŝ, t) and its flow∂ γ̂(ŝ,t)
∂ t in S

2,1

are said to be inextensible if∂∂ t ‖ ˙̂γ(ŝ, t)‖= 0, i.e, ĝt = 0.

Remark.If c= 1, then the curvêγ(ŝ, t) is a unit speed curve.

Lemma 8.If the curve γ̂(ŝ, t) is inextensible, then the
arclength of the curvêγ(ŝ, t) is preserved.

Proof.Since

ŝ(û, t) =
∫ û

0
‖ ˙̂γ(σ̂ , t)‖dσ̂ =

∫ û

0

√

ĝdσ̂ .

Then the variation of the arclength is

˙̂s=
∂ ŝ
∂ t

=

∫ û

0

∂
∂ t

√

ĝdσ̂ =

∫ û

0

1
2
√

ĝ
ĝtdσ̂ . (33)

Since the curve is inextensible ( ˆgt = 0), then ˙̂s= 0 and
ŝ= constant, hence ˆs is independent oft. So the curve has
the property that its arclength is preserved.

Lemma 9.If the curve γ̂(ŝ, t) is inextensible, then the
derivatives with respect tôs and t commute.

Lemma 10.The curveγ̂(ŝ, t) is inextensible if and only if

∂Ŵ
∂ ŝ

= ε1ε2k̂Û .

Proof.(⇒) Assume that the curve is inextensible.
Since

ŝ(û, t) =
∫ û

0
‖ ˙̂γ(σ̂ , t)‖dσ̂ =

∫ û

0

√

ĝdσ̂ .

The variation of the arclength is

˙̂s=
∂ ŝ
∂ t

=

∫ û

0

1
2
√

ĝ
ĝtdσ̂ . (34)

Substitute from the first equation of (14) into (34), then

˙̂s=
∫ û

0

(

∂Ŵ
∂ ŝ
− ε1ε2k̂Û

)

dŝ.

Since the curve is inextensible, so˙̂s= 0, hence

∂Ŵ
∂ ŝ

= ε1ε2k̂Û .

(⇐) Assume that

∂Ŵ
∂ ŝ

= ε1ε2k̂Û . (35)

Substitute from (35) into the first equation of (14), soĝt =
0, hence the curve is inextensible.

Lemma 11.If the curve γ̂(ŝ, t) is inextensible, then the
integrability condition (26)(or in this case it is called the
zero curvature condition) is

M̂t − Q̂ŝ+[M̂,Q̂] = 0. (36)

Lemma 12.If the curve γ̂(ŝ, t) is inextensible (the zero
curvature condition (36) is satisfied), then the evolution
equations for curvature and torsion (10) are
(

k̂
τ̂

)

t
=

(

0 ε1 f̂2
ε1ε2 f̂2 0

)(

k̂
τ̂

)

+

(

ε1Û + f̂1ŝ

ξ̂ŝ

)

. (37)
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7 Motions of inextensible spacelike curves in
S

2,1

We consider the motion of inextensible spacelike curves
in 3−dimensional de-Sitter space. We restrict our study
to inextensible spacelike curves with spacelike principal
normal vector, so in this caseε1 = 1, ε2 = 1 and∂Ŵ

∂ ŝ = k̂Û .
Then the PDE system (37) can be written explicitly in the
following form:

k̂t = (1+ k̂2+ τ̂2)Û +Ûŝŝ+ k̂ŝŴ+ τ̂ŝV̂ +2τ̂V̂ŝ,

τ̂t = k̂(V̂ŝ+ τ̂Û)+
∂
∂ ŝ

(

1

k̂
(1+ τ̂2)V̂

+
τ̂
k̂
(k̂Ŵ+2Ûŝ)+

1

k̂
V̂ŝŝ+

τ̂ŝ

k̂
Û

)

.

(38)

Now, we give some examples of motions of inextensible
spacelike curves with spacelike principal normal vector in
S

2,1:

Example 1.If

Ŵ = a, Û = 0 and V̂ = k̂/a. (39)

Then (38) takes the form:

k̂t =
a2+2τ̂

a
k̂ŝ+

1
a

k̂τ̂ŝ,

τ̂t =
1
a

k̂k̂ŝ+
∂
∂ ŝ

(

aτ̂ +
1
a
(1+ τ̂2)+

1

ak̂
k̂ŝŝ

)

.

(40)

One solution of this system is

k̂(ŝ, t) =−2c1sech(c1ŝ+ c2t + c3),

τ̂(ŝ, t) =−a(ac1− c2)

2c1
,

(41)

wherec1,c2 and c3 are constants. Substitute from (39),
(41) into (4), (9) and solve the system (4) and (9)
numerically. Then we can get the family of curves
Ĉt = γ̂(ŝ, t), so we can determine the surface that is
generated by this family of curves. To visualize this
surface in de-Sitter spaceS2,1, we use the hollow ball
model ofS2,1 (Fig.1).

Example 2.If

Ŵ = Û = 0 and V̂ = k̂. (42)

In this case, the curve moves with binormal velocityV̂
equals the curvature of the curve, then (38) takes the
form:

k̂t = k̂τ̂ŝ+2τ̂k̂ŝ,

τ̂t = k̂k̂ŝ+
∂
∂ ŝ

(

1+ τ̂2+
k̂ŝŝ

k̂

)

.

One solution of this system is

k̂(ŝ, t) = 2c1sech(c1ŝ+ c2t + c3), τ̂(ŝ, t) =
c2

2c1
. (43)

wherec1,c2 and c3 are constants. Substitute from (42),
(43) into (4), (9) and solve the system (4) and (9)
numerically. Then we can get the family of curves
Ĉt = γ̂(ŝ, t), so we can determine the surface that is
generated by this family of curves (Fig.2).

(a) (b) Close up

Fig. 2: The surface that is generated by motion of the
family of curvesĈt for ŝ ∈ [0,3], t ∈ [0,5], a = 1.02,
c1 = 0.3,c2 = 0.06 andc3 = −0.1. The bold black curves
in the surface represent the family of curvesĈt for t =
0,1.4,2,4.4.

(a) (b) Close up

Fig. 3: The surface that is generated by motion of the
family of curvesĈt for ŝ∈ [0,6], t ∈ [0,7], c1 = 0.003,c2=
0.0001 andc3 = 0.01. The bold black curves in the surface
represent the family of curveŝCt for t = 4.5,5,6,6.5.

7.1 Special motions of inextensible spacelike
curves inS2,1

For special choices for velocitieŝW,Û andV̂, it is very
difficult to solve the PDE system (38), so we will introduce
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new frameÊ1, Ê2, Ê3, Ê4, where

Ê1 = γ̂,
Ê2 = T̂,

Ê3 =
1√
2
(N̂+ B̂)e−

∫ ŝ
0 τ̂(ŝ,t)dŝ,

Ê4 =
1√
2
(N̂− B̂)e

∫ ŝ
0 τ̂(ŝ,t)dŝ.

(44)

And we put ˆr = k̂√
2
e
∫ ŝ
0 τ̂(ŝ,t)dŝ andq̂= k̂√

2
e−

∫ ŝ
0 τ̂(ŝ,t)dŝ.

The curvature and torsion under the transformation
(44) can be given by:

k̂=
√

2r̂ q̂,

τ̂ =
q̂r̂ŝ− r̂q̂ŝ

2r̂ q̂
.

(45)

Lemma 13.The frame{Ê1, Ê2, Ê3, Ê4} has the following
properties:

•〈Ê1, Ê1〉= 〈Ê2, Ê2〉= 〈Ê3, Ê4〉= 1.
•〈Ê1, Ê2〉= 〈Ê1, Ê3〉= 〈Ê1, Ê4〉= 0
•〈Ê2, Ê3〉= 〈Ê2, Ê4〉= 〈Ê3, Ê3〉= 〈Ê4, Ê4〉= 0.
•Ê1 =−Ê2× Ê3× Ê4.
•Ê2 = Ê1× Ê3× Ê4.
•Ê3 = Ê1× Ê2× Ê3.
•Ê4 =−Ê1× Ê2× Ê4.

Lemma 14.The Serret-Frenet frame (4) for spacelike
curves (ε1 = 1 andε2 = 1) under the transformation(44)
can be given by

Êŝ = Â· Ê, (46)

where E=









Ê1

Ê2

Ê3

Ê4









and Â=







0 1 0 0
−1 0 r̂ q̂
0 −q̂ 0 0
0 −r̂ 0 0






.

Now the equation of motion (7) will transform to:

Ê1t = ŴÊ2+ η̂Ê3+ δ̂ Ê4, (47)

where

η̂ =
r̂

k̂
(Û + V̂) and δ̂ =

q̂

k̂
(Û − V̂). (48)

Theorem 3.The time evolution equations for the frame
{Ê1, Ê2, Ê3, Ê4} can be written in matrix form

Êt = R̂· Ê, (49)

where R̂ =









0 Ŵ η̂ δ̂
−Ŵ 0 r̂Ŵ+ η̂ŝ q̂Ŵ+ δ̂ŝ

−δ̂ −(q̂Ŵ+ δ̂ŝ) f̂ 0
−η̂ −(r̂Ŵ+ η̂ŝ) 0 − f̂









and

f̂ = f̂ (ŝ, t)

Proof.Take the ˆu derivative of (47), then

Ê1tû =
√

ĝ

(

(−Ŵ)Ê1+(Ŵŝ−2
r̂q̂

k̂
Û)Ê2+(r̂Ŵ+ η̂ŝ)Ê3

+(q̂Ŵ+ δ̂ŝ)Ê4

)

.

(50)

SinceÊ1û =
√

ĝÊ1ŝ=
√

ĝÊ2, then by taking thet derivative
of this equation we have

Ê1ût =
√

ĝ(Ê2t +
ĝt

2ĝ
Ê2). (51)

SinceÊ1ût = Ê1tû, then we get

Ê2t = (−Ŵ)Ê1+(r̂Ŵ+ η̂ŝ)Ê3+(q̂Ŵ+ δ̂ŝ)Ê4,

ĝt = 2ĝ(Ŵŝ−2
r̂q̂

k̂
Û).

(52)

The vectorsÊ3t and Ê4t can be uniquely decomposed as
follows:

Ê3t = b11Ê1+b12Ê2+b13Ê3+b14Ê4,

Ê4t = b21Ê1+b22Ê2+b23Ê3+b24Ê4.
(53)

By using the the properties of the frame{Ê1, Ê2, Ê3, Ê4} in
lemma(13), then we can determined the factorsbi j , where
i = 1,2 and j = 1,2,3,4 as follows:
Since〈Ê1, Ê3〉 = 0, 〈Ê2, Ê3〉 = 0 and〈Ê3, Ê3〉 = 0. Then
we get respectively:

b11 =−δ̂ ,b12=−(δ̂ŝ+ q̂Ŵ),andb14 = 0.

Hence,

Ê3t =−δ̂ Ê1− (δ̂ŝ+ q̂Ŵ)Ê2+b13Ê3.

And since〈Ê1, Ê4〉 = 0, 〈Ê2, Ê4〉 = 0, 〈Ê4, Ê4〉 = 0, and
〈Ê3, Ê4〉= 1. Then we get respectively:

b21=−η̂ ,b22=−η̂ŝ− r̂Ŵ,b23 = 0,andb24=−b13.

Hence

Ê4t =−η̂Ê1+(−η̂ŝ− r̂Ŵ)Ê2−b13Ê4.

Choose
b13 = f (ŝ, t),

where f (s, t) will be determined by the integrability
conditions. Hence the theorem holds.

Theorem 4.Consider the Serret-Frenet matrix̂E that
satisfies (46) and (49), then we have the integrability
condition:

Ât − R̂ŝ+[Â, R̂] =
−ĝt

2ĝ
Â, (54)

where[Â, R̂] = Â · R̂− R̂· Â is the Lie bracket.
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Proof.Since
Êût = Êtû. (55)

Differentiating (46) with respect tot, then

Êût =
√

ĝ

(

Ât + Â· R̂+
ĝt

2ĝ
Â

)

· Ê. (56)

Differentiating (49) with respect to ˆu, then

Êtû =
√

ĝ

(

R̂ŝ+ R̂· Â
)

· Ê. (57)

Substitute from (56) and (57) into (55), then the theorem
holds.

Lemma 15.If the curve Ĉt is inextensible, then the
integrability condition (or in this case it is called the zero
curvature condition) is

Ât − R̂ŝ+[Â, R̂] = 0. (58)

Lemma 16.If the integrability condition (58) is satisfied,
then we have the following PDE system

r̂t = η̂ŝŝ+ η̂ + r̂ŝŴ+ r̂(r̂ δ̂ + q̂η̂− f ),

q̂t = δ̂ŝŝ+ δ̂ + q̂ŝŴ+ q̂(r̂ δ̂ + q̂η̂ + f ),

f̂ŝ = r̂ δ̂ŝ− q̂η̂ŝ.

(59)

By solving this system, then we can obtain the curvature
and torsion of the curve.(45).

Example 3.If

Ŵ =−1
2

k̂2, Û =−k̂ŝ and V̂ =−k̂τ̂. (60)

Using (45), so

Ŵ =−r̂ q̂, Û =− q̂r̂ŝ+ r̂ q̂ŝ√
2r̂q̂

, V̂ =
q̂r̂ŝ− r̂ q̂ŝ√

2r̂q̂
.

From (48), we haveη̂ = −r̂ŝ and δ̂ = −q̂ŝ, then the
system (59) is

r̂t + r̂ŝŝŝ+ r̂ŝ(1+2r̂q̂)+ r̂2q̂ŝ+ r̂ f = 0,

q̂t + q̂ŝŝŝ+ q̂ŝ(1+2r̂q̂)+ q̂2r̂ŝ− q̂ f = 0.
(61)

f̂ŝ+ r̂q̂ŝŝ− q̂r̂ŝŝ = 0. (62)

Integrate (62), then

f̂ = q̂r̂ŝ− r̂q̂ŝ+C(t). (63)

Substitute (63) into the (61), then

r̂t + r̂ŝŝŝ+ r̂ŝ+3r̂q̂r̂ŝ+ r̂C(t) = 0,

q̂t + q̂ŝŝŝ+ q̂ŝ+3r̂q̂q̂ŝ− q̂C(t) = 0.
(64)

To solve this system of PDE, we use the following
transformation:

r̂ =αe−
∫ t
0C(ŝ)dŝ,

q̂=βe
∫ t
0C(ŝ)dŝ.

(65)

Hence

α̂t + α̂ŝŝŝ+ α̂ŝ(1+3α̂β̂ ) = 0,

β̂t + β̂ŝŝŝ+ β̂ŝ(1+3α̂β̂ ) = 0.
(66)

One solution of this system is

α̂(ŝ, t) =
−√c1

3c4

(

−
√

6c5+6c3/2
1 tanh(c1ŝ+ c2t + c3)

)

,

β̂ (ŝ, t) =
c4

6c3/2
1

(

√

6c5+6c3/2
1 tanh(c1ŝ+ c2t + c3)

)

,

c5 = 2c3
1− c2− c1.

(67)

wherec1,c2, andc3 are constants. Using (45), (65) and
(67), hence the curvature and torsion are

k̂(ŝ, t) =

√

2
3c1

√

ρ̂(ŝ, t),

τ̂(ŝ, t) =−c5/2
1

√
6c5

ρ̂(ŝ, t)
sech2(c1ŝ+ c2t + c3),

ρ̂(ŝ, t) = c5−6c3
1 tanh2(c1ŝ+ c2t + c3).

(68)

Substitute from (60), (68) into (4), (9) and solve the system
(4) and (9) numerically. Then we can get the family of
curvesĈt , so we can determine the surface that is generated
by this family of curves (Fig.3).

(a) (b) Close up

Fig. 4: The surface that is generated by motion of the
family of curvesĈt for ŝ∈ [0,6], t ∈ [0,3], c1 = − 1

2,c2 =
1 and c3 = 0.1. The bold black curves in the surface
represent the family of curveŝCt for t = 0,1.4,2,2.8.
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