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Abstract: This paper is devoted to discuss the stress-strength reliability model R = Pr(Y < X) when X and Y have an exponentiated
generalized inverse Weibull distribution (EGIW) with different parameters. The problem of stress-strength reliability is studied to
obtain estimates of a component reliability function of EGIW distribution. Reliability for multi-component stress-strength model for
EGIW distribution is also studied. Maximum likelihood estimation for stress-strength reliability of underlying distribution is
performed. Bayesian estimator of R is obtained using importance sampling technique. A simulation study to investigateand compare
the performance of each method of estimation is performed. Finally analysis of a real data set has also been presented forillustrative
purposes.
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1 Introduction

In reliability studies, the stress-strength model is oftenused to describe the life of a component which has a random
strength X and is subject to a random stress Y. The component fails if the stress applied to it exceeds the strength, and the
component will function satisfactorily wheneverY < X thus R = Pr(Y < X) is a measure of a component reliability
which has many applications in physics,engineering, genetics, psychology and economics.
The term stress-strength was first introduced by Church and Harris [1] which introduced the estimation of R when X and
Y are normally distributed. Since then several studies has been done both from parametric and non-parametric point of
view. A good application on the different stress-strength models can be found in the monograph by Kotz et al. [2]. Some
of studies on the stress-strength model can be obtained in [3,4], [5] which considered this problem when X and Y are
generalized exponential, Weibull and Burr type X distributions respectively. Stress strength Reliability for
three-parameter Weibull distribution has been discussed by Kundu and Raqab [6]. Krishnamoorthy et al. [7] introduced
an inference on reliability in two-parameter exponential stress-strength model. Stress-strength reliability for Lindely and
weighted Lindely distributions considered by Al-Mutairi et al. [8,9] respectively. Recently Hanagal and Bhalerao [10]
discussed generalized inverse Weibull software reliability growth model.
In this paper we study the stress strength reliability for the Exponentiated Generalized Inverse Weibull Distribution
(EGIW) which introduced in [11] as extension of exponentiated generalized family. The EGIW distribution has a p.d.f
f (x) and c.d.fF(x):

f (x) = αβ θλ θ x−θ−1e−( λ
x )

θ
[1− e−( λ

x )
θ
]α−1[1− (1− e−( λ

x )
θ
)α ]β−1, (1)

F(x) = [1− (1− e−( λ
x )

θ
)α ]β , (2)

where
x > 0,λ ,θ ,α,β > 0.
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The EGIW distribution is very flexible model that approachesto different distributions when its parameters are
changed. Its flexibility is explained in the following,if X is a random variable with pdf in Eq.(1), then we have the
following special cases:
1- If α = β = 1, then Eq. (1) reduces to the inverse Weibull distribution.
2- If α = 1, then we get the generalized inverse Weibull distribution.
3- If θ = 1, then we get the exponentiated generalized inverse exponential.
4- If α = β = θ = 1, then we get the inverse exponential distribution.

The rest of the article is organized as follows. In Section 2,the problem of stress-strength reliability is studied to
obtain estimates of a component reliability function of EGIW distribution. Reliability for multi-component stress-strength
model for EGIW distribution is also studied in Section 3. Maximum likelihood estimation for stress-strength reliability of
underlying distribution is performed in Section 4. In Section 5, a general procedure of deriving the Bayesian estimatorof
reliability using squared error loss function is presented, wherein we adopt the importance sampling technique to compute
the approximation of this estimator. Section 6 presented simulation study to investigate and compare the performance of
each method of estimation. Also a real data set analysis has been presented, in section 7, for illustrating all the inferential
methods developed here. Finally, conclusions appear in Section 8.

2 Stress-Strength Reliability

In this section, we derive the reliability R whenX ∼ EGIW (α1,β1,λ1,θ2) andY ∼ EGIW(α2,β2,λ2,θ2) are independent
random variables with pdff (x) andw(y), respectively. We have

R = Pr(Y < X)

=
∫ ∞

0

∫ x

0
f (x)w(y) dydx.

The formula of Eqs. (1) and (2) will complicate the integration, so we write f(x) and F(x) in an expansion form, using
fractional binomial theorem (See [12]), as follows:

f (x) = αβ θλ θ x−θ−1e−( λ
x )

θ
[1− e−( λ

x )
θ
]α−1[1− (1− e−( λ

x )
θ
)α ]β−1

= αβ θλ θ x−θ−1e−( λ
x )

θ
[1− e−( λ

x )
θ
]α−1

∞

∑
j1=0

(−1) j1

(

β −1
j1

)

[1− e−( λ
x )

θ
]α j1

= αβ θλ θ x−θ−1e−( λ
x )

θ ∞

∑
j1=0

(−1) j
1

(

β −1
j1

)

[1− e−( λ
x )

θ
]α( j1+1)−1

= αβ θλ θ x−θ−1e−( λ
x )

θ ∞

∑
j1=0

(−1) j
1

(

β −1
j1

) ∞

∑
j2=0

(−1) j2

(

α( j1+1)−1
j2

)

[e−( λ
x )

θ
] j2

= αβ θλ θ x−θ−1
∞

∑
j1=0

∞

∑
j2=0

(−1)( j1+ j2)
(

β −1
j1

)(

α( j1+1)−1
j2

)

e−( j2+1)( λ
x )

θ
. (3)

Likelly for F(x),

F(x) = [1− (1− e−( λ
x )

θ
)α ]β

=
∞

∑
j3=0

(−1) j3

(

β
j3

)

[1− e−( λ
x )

θ
]α j3

=
∞

∑
j3=0

(−1) j3

(

β
j3

) ∞

∑
j4=0

(−1) j4

(

α j3
j4

)

[e−( λ
x )

θ
] j4

=
∞

∑
j3=0

∞

∑
j4=0

(−1)( j3+ j4)
(

β
j3

) (

α j3
j4

)

e− j4(
λ
x )

θ
. (4)
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Now we can derive the stress strength reliability using Eqs.(3) and (4) as following:

R = Pr(Y < X)

=

∫ ∞

0

∫ x

0
f (x)w(y) dydx

=

∫ ∞

0
f (x)Wy(x) dx

=

∫ ∞

0
α1β1θλ θ x−θ−1

∞

∑
j1=0

∞

∑
j2=0

(−1)( j1+ j2+ j3+ j4)
(

β1−1
j1

) (

(α1( j1+1))−1
j2

)

e−( j2+1)( λ
x )

θ

×

∞

∑
j3=0

∞

∑
j4=0

(

β2

j3

) (

α2 j3
j4

)

e− j4(
λ
x )

θ
dx

= α1β1

∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

∞

∑
j4=0

(−1)( j1+ j2+ j3+ j4)
(

β1−1
j1

) (

α1( j1+1)−1
j2

) (

β2

j3

) (

α2 j3
j4

)

×

∫ ∞

0
θλ θ x−θ−1e−( j2+ j4+1)( λ

x )
θ

dx

= α1β1

∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

∞

∑
j4=0

(−1)( j1+ j2+ j3+ j4)
(

β1−1
j1

)(

α1( j1+1)−1
j2

)(

β2

j3

)(

α2 j3
j4

)

1
( j2+ j4+1)

.

Note that when the exponents in Eqs. (1) and (2) are integers, the expansions in Eqs.(3), (4) and (5) become finite and this
is a special case from fractional binomial theorem.

3 Reliability For Multi-Component Stress-Strength Model

Let the random samplesY,X1,X2, · · · ,Xk be independent,G(y) be the cumulative distribution function of Y andF(x)
be the common cumulative distribution function ofX1,X2, · · · ,Xk. The reliability for a multi-component stress-strength
model has developed by Bhattacharyya and Johnson [13] is:

Rs,k = Pr[at least s o f the (X1,X2, · · · ,Xk) exceed Y ]

=
k

∑
i=s

(

k
i

)

∫ ∞

0
[1−F(y)]i[F(y)]k−idG(y). (5)

The reliability for multi-component stress-strength of the exponentiated generalized inverse Weibull distributionis:

Rs,k =
k

∑
i=s

(

k
i

)

∫ ∞

0

[

1−
(

1− (1− e−( λ
y )

θ
)α1

)β1
]i
[

(1− (1− e−( λ
y )

θ
)α1)β1

]k−i

×α2β2θλ θ y−θ−1e−( λ
y )

θ [

1− e−( λ
y )

θ ]α2−1[

1− (1− e−( λ
y )

θ
)α2

]β2−1
dy

=
k

∑
i=s

(

k
i

)

α2β2

∫ ∞

0

[

1− (1− tα1)β1
]i
[1− tα1]β1(k−i)

×α2β2θλ θ y−θ−1e−( λ
y )

θ
tα2−1[1− tα2]β2−1 dy

=
k

∑
i=s

(

k
i

) i

∑
j1=0

(

i
j1

)

(−1) j1α2β2

∫ ∞

0
[1− tα1]β1( j1+k−i)

×α2β2θλ θ y−θ−1e−( λ
y )

θ
tα2−1[1− tα2]β2−1 dy
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=
k

∑
i=s

i

∑
j1=0

β1( j1+k−i)

∑
j2=0

β2−1

∑
j3=0

(

k
i

)(

i
j1

)(

β1( j1+ k− i)
j2

)(

β2−1
j3

)

(−1) j1+ j2+ j3α2β2

×

∫ ∞

0
θλ θ y−θ−1e−( λ

y )
θ
tα1 j2+α2 j3+α2−1 dy

=
k

∑
i=s

i

∑
j1=0

β1( j1+k−i)

∑
j2=0

β2−1

∑
j3=0

(

k
i

)(

i
j1

)(

β1( j1+ k− i)
j2

)(

β2−1
j3

)

(−1) j1+ j2+ j3α2β2

×

∫ 1

0
tα1 j2+α2( j3+1)−1 dt

=
k

∑
i=s

i

∑
j1=0

β1( j1+k−i)

∑
j2=0

β2−1

∑
j3=0

(

k
i

)(

i
j1

)(

β1( j1+ k− i)
j2

)(

β2−1
j3

)

(−1) j1+ j2+ j3+1 α2β2

α1 j2+α2( j3+1)
, (6)

where

t = (1− e−( λ
y )

θ
)

4 Maximum Likelihood Estimation for Reliability

Suppose
X ∼ EGIW (α1,β1,λ ,θ )

and
Y ∼ EGIW (α2,β2,λ ,θ )

and they are independent random variables. We need to compute the MLE of the vector of parameters
φ = (α1,β1,β2,α2,λ ,θ ) to compute the MLE of R.

Supposex1,x2, · · · ,xn is random sample fromEGIW (α1,β1,λ ,θ ), and y1,y2, · · · ,ym is random sample from
EGIW (α2,β2,λ ,θ ). The log likelihood function can be written as :

logL(x,y;φ ) = n logα1+ n logβ1+mlogα2+mlogβ2+(n+m) logθ +θ (n+m) logλ

−(θ +1)[
n

∑
i=1

logxi +
m

∑
j=1

logy j]−
n

∑
i=1

(
λ
xi
)θ

−

m

∑
j=1

(
λ
y j
)θ

+(α1−1)
n

∑
i=1

log(1− e
−( λ

xi
)θ
+(α2−1)

m

∑
j=1

log(1− e
−( λ

y j
)θ

+(β1−1)
n

∑
i=1

log[1− (1− e
−( λ

xi
)θ
)α1]+ (β2−1)

m

∑
j=1

log[1− (1− e
−( λ

y j
)θ
)α2].

(7)

The MLE ofα1,β1,β2,α2,λ ,θ can be obtained as a solution of the following equations:

∂L
∂β1

=
n
β1

+
n

∑
i=1

log[1− (1− e
−( λ

xi
)θ
)α1] = 0, (8)

∂L
∂β2

=
m
β2

+
m

∑
j=1

log[1− (1− e
−( λ

y j
)θ
)α2] = 0, (9)

∂L
∂α1

=
n

α1
+

n

∑
i=1

log[1− e
−( λ

xi
)θ
]+ (β1−1)

n

∑
i=1

−(1− e
−( λ

xi
)θ
)α1 × log(1− e

−( λ
xi
)θ
)

[1− (1− e
−( λ

xi
)θ
)α1]

= 0,

(10)
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∂L
∂α2

=
m
α2

+
m

∑
j=1

log[1− e
−( λ

y j
)θ
]+ (β2−1)

m

∑
j=1

−(1− e
−( λ

y j
)θ
)α2 × log(1− e

−( λ
y j
)θ
)

[1− (1− e
−( λ

y j
)θ
)α2]

= 0,

(11)

∂L
∂λ

=
θ (n+m)

λ
−

n

∑
i=1

θ (
1
xi
)(

λ
xi
)θ−1

−

m

∑
j=1

θ (
1
y j
)(

λ
y j
)θ−1

+θ (α1−1)
n

∑
i=1

e−( λ
xi
)θ
( 1

xi
)( λ

xi
)θ−1

[1− e
−( λ

xi
)θ
]

+θ (α2−1)
m

∑
j=1

e
−( λ

y j
)θ
( 1

y j
)( λ

y j
)θ−1

[1− e
−( λ

y j
)θ
]

+θα1(β1−1)
n

∑
i=1

e
−( λ

xi
)θ
( 1

xi
)( λ

xi
)θ−1

[1− (1− e
−( λ

xi
)θ
)α1]

+θα2(β2−1)
m

∑
j=1

e
−( λ

y j
)θ
( 1

y j
)( λ

y j
)θ−1

[1− (1− e
−( λ

y j
)θ
)α2]

= 0,

(12)

and

∂L
∂θ

=
(n+m)

θ
+(n+m) logλ −

n

∑
i=1

logxi −

m

∑
j=1

logy j −

n

∑
i=1

(
λ
xi
)θ log(

λ
xi
)

−

m

∑
j=1

(
λ
y j
)θ log(

λ
y j
)+ (α1−1)

n

∑
i=1

e
−( λ

xi
)θ
( λ

xi
)θ log( λ

xi
)

(1− e
−( λ

xi
)θ
)

+(α2−1)
m

∑
j=1

e
−( λ

y j
)θ
( λ

y j
)θ log( λ

y j
)

(1− e
−( λ

y j
)θ
)

+α1(β1−1)
n

∑
i=1

[1− e−( λ
xi
)θ
]α1−1e−( λ

xi
)θ
( λ

xi
)θ log( λ

xi
)

[1− (1− e
−( λ

xi
)θ
)α1]

= 0.

(13)

These nonlinear equations are solved numerically using iterative process as Newton Raphson to get

α̂1, α̂2, β̂1, β̂2, θ̂ , λ̂ ,

then we can get the MLE of R as follows

R̂ = α̂1β̂1

∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

∞

∑
j4=0

(−1)( j1+ j2+ j3+ j4)
(

β̂1−1
j1

)(

α̂1( j1+1)−1
j2

)(

β̂2

j3

)(

α̂2 j3
j4

)

1
( j2+ j4+1)

. (14)

Similarly, We can calculate the MLE of reliability for multi-component stress-strength model from Eq. (6).

5 Bayesian Estimation

In this section we provide the Bayes estimate of R whereφ = (λ ,θ ,α1,α2,β1,β2) are unknown parameters and all of
these parameters having independent gamma prior distribution as following:

π(λ )∼ Gamma(b1,a1),

π(θ )∼ Gamma(b2,a2),

π(α1)∼ Gamma(b3,a3),

π(α2)∼ Gamma(b4,a4),
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π(β1)∼ Gamma(b5,a5),

and
π(β2)∼ Gamma(b6,a6).

The joint posterior PDF is defined as

g( φ/data) =
L(x,y/α1,β1,λ ,θ ,α2,β2)π(λ )π(θ )π(α1)π(α2)π(β1)π(β2)

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 L(x,y/α1,β1,λ ,θ ,α2,β2)π(λ )π(θ )π(α1)π(α2)π(β1)π(β2)dφ

.

Then

g( φ/data) ∝ α1
nα1

mβ1
nβ2

mθ n+mλ (n+m)θ
n

∏
i=1

xi
−θ−1(1− e

−( λ
xi
)θ
)α1−1[1− (1− e

−( λ
xi
)θ
)α1]β1−1

× e
−∑n

i=1 (
λ
xi
)θ
−∑m

j=1 (
λ
y j
)θ m

∏
j=1

y j
−θ−1(1− e

−( λ
y j
)θ
)

α2−1

[1− (1− e
−( λ

y j
)θ
)α2]β2−1

× λ a1−1e−b1λ θ a2−1e−b2θ α1
a3−1e−b3α1α2

a4−1e−b4α2β1
a5−1e−b5β1β2

a6−1e−b6β2

∝ g1(θ/data)g2(λ/θ ,data)g3(α1/λ ,θ ,data)g4(α2/λ ,θ ,data)g5(β1/data)g6(β2/data)h(φ/data),

(15)

where

g1(θ/data) ∝ Gamma

(

b2+
n

∑
i=1

lnxi +
m

∑
j=1

lny j,a2+ n+m

)

, (16)

g2(λ/θ ,data) ∝ Gamma(b1,a1+(n+m)θ) , (17)

g3(α1/λ ,θ ,data) ∝ Gamma

(

b3−

n

∑
i=1

ln(1− e
−( λ

xi
)θ
),a3+ n

)

, (18)

g4(α2/λ ,θ ,data) ∝ Gamma

(

b4−

m

∑
j=1

ln(1− e
−( λ

y j
)θ
),a4+m

)

, (19)

g5(β1/data) ∝ Gamma(b5,a5+ n) , (20)

g6(β2/data) ∝ Gamma(b6,a6+m) , (21)

and

h(φ/data) = e
−∑n

i=1 (
λ
xi
)θ
−∑m

j=1 (
λ
y j
)θ n

∏
i=1

[

1− (1− e
−( λ

xi
)θ
)α1

]β1−1 m

∏
j=1

[

1− (1− e
−( λ

y j
)θ
)α2

]β2−1

×

Γ (a1+(n+m)θ)e−∑n
i=1 ln(1−e

−( λ
xi

)θ
)e−∑m

j=1 ln(1−e
−( λ

y j
)θ
)

b1
(n+m)θ [b3−∑n

i=1 ln(1− e
−( λ

xi
)θ
)]a3+n[b4−∑m

j=1 ln(1− e
−( λ

y j
)θ
)]a4+m

. (22)

Therefore, the Bayes estimate of reliability, sayR̂B under the squared error loss function

R̂B =

∫ ∞
0 R∗ g1(θ/data)g2(λ/θ ,data)g3(α1/λ ,θ ,data)g4(α2/λ ,θ ,data)g5(β1/data)g6(β2/data)h(φ/data)dφ
∫ ∞

0 g1(θ/data)g2(λ/θ ,data)g3(α1/λ ,θ ,data)g4(α2/λ ,θ ,data)g5(β1/data)g6(β2/data)h(φ/data)dφ
.

(23)

It is impossible to compute Eq.(23) analytically, therefore instead, we propose to approximate it by using importance
sampling technique as suggested by Chen and Shao [14].
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5.1 Importance Sampling Technique

In statistics, importance sampling is the name for the general technique of determining the properties of a distribution by
drawing samples from another distribution. The focus of importance sampling here is to determine as easily and accurately
as possible the properties of the posterior from a representative sample from the second distribution.

Sinceg1(θ/data), g2(λ/θ ,data), g3(α1/λ ,θ ,data), g4(α2/λ ,θ ,data), g5(β1/data), g6(β2/data) follow gamma, it
is quite simple to generate from them. Now we use the following algorithm assuming thata1, · · · ,a6 andb1, · · · ,b6 are
known a prior, and assuming initial values forλ , θ , α1, α2, β1, β2.

Importance Sampling Algorithm:

–Step 1: Generateθ1 from g1(./data).
–Step 2: Generateλ1 from g2(./θ ,data).
–Step 3: Generate

α11 f rom g3(./λ ,θ ,data),

and
α21 f rom g4(./λ ,θ ,data).

–Step 4: Generate
β11 f rom g5(./data),

and
β21 f rom g6(./data).

–Step 5: Repeat this procedure N times to obtain(θ1,λ1,α11,α21,β11,β21), · · · ,(θN ,λN ,α1N ,α2N ,β1N ,β2N).
–Step 6: An approximate Bayes estimate of R under a squared error loss function can be obtained as

R̂B =
1
N ∑N

i=1 Rih(θi,λi,α1i,α2i,β1i,β2i/data)
1
N ∑N

i=1 h(θi,λi,α1i,α2i,β1i,β2i/data)
,

where
Ri = R(θi,λi,α1i,α2i,β1i,β2i),

as defined in Eq(5), for i = 1, · · · ,N .

Using the same technique, We can obtained the Bayesian estimation of reliability for multi-component stress-strength
model.

6 Simulation Study

In this section, we mainly present some simulation experiments to see the behavior of the proposed methods for various
sample sizes and for parameter valuesα1 = 0.75, α2 = 1.5, β1 = 3.5, β2 = 2.2, λ = 1.008,θ = 0.61, so that the true
reliability value is 0.847751. We compared the performances of the MLEs and the Bayes estimates with respect to the
squared error loss function in terms of biases and mean squares errors (MSEs). We have taken sample sizes namely
(n,m) = (5,5),(10,10),(20,20),(30,30).

For Bayesian estimation, we used importance sampling method under the informative gamma priors. For choosing a
suitable hyper-parameters, the experimenters can incorporate their prior guess in terms of location and precision forthe
parameter of interest. Such that
mean = a/b, andvarience = a/b2.
We assume a small value of priorvarience(0.005), and taken the mean equal to the parameter of interest. For each
parameter priors we solve the two equations of the mean and the varience, we obtain the following values of hyper-
parameters :
a1 = 201.6, a2 = 76.25, a3 = 107.14, a4 = 500,a5 = 2500,a6 = 956.5 andb1 = 200,b2 = 125,b3 = 142.857,b4 =
333.333,b5 = 714.286,b6 = 434.783.

The maximum likelihood and Bayes estimates of the stress-strength reliability are obtained in Table 1.
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Table 1: Average Bias and MSE of R using different estimators

Estimators MLE Bayesian
(m,n) R̂ Bias MSE R̂B Bias MSE
(5,5) 0.90616 0.05841 0.01502 0.88337 0.0316 0.00425

(10,10) 0.89713 0.04938 0.01116 0.87597 0.02822 0.00124
(20,20) 0.89001 0.04226 0.00612 0.86825 0.0205 0.00096
(30,30) 0.87338 0.02563 0.00379 0.86002 0.01227 0.0007

7 Real data analysis

In this section, we present a data analysis of the strength data introduced in [15]. The data stand for the strength data
measured in GPA, for single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers were tested under
tension at gauge lengths of 1, 10, 20 and 50mm. Impregnated tows of 1000 fibers were tested at gauge lengthsof 20, 50,
150 and 300mm. For illustrative purpose, we consider the data sets consisting the single fibers of 20 mm (Data Set 1) and
10 mm in gauge lengths (Data Set 2), with sample sizes 69 and 63respectively. Data sets are provided below:

Data set 1:(strength measurements)
0.312, 0.314, 0.479, 0.552, 0.7, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.997, 1.006, 1.021, 1.055, 1.063, 1.098, 1.14,
1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511,
1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809,
1.818, 1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.

Data set 2:(stress measurements)
0.101, 0.332, 0.403, 0.428, 0.457, 0.550, 0.561, 0.596, 0.597, 0.645, 0.6540, 0.674, 0.718, 0.722, 0.725, 0.732, 0.775,
0.814, 0.816, 0.818, 0.824, 0.859, 0.875, 0.938, 0.940, 1.056, 1.117, 1.128, 1.137, 1.137, 1.177, 1.196, 1.230, 1.325,
1.339, 1.345, 1.420, 1.423, 1.435, 1.443, 1.464, 1.472, 1.494, 1.532, 1.546, 1.577, 1.608, 1.635, 1.693, 1.701, 1.737,
1.754, 1.762, 1.828, 2.052, 2.071, 2.086, 2.171, 2.224, 2.227, 2.425, 2.595, 3.2.

We fit the two data sets separately with the exponentiated generalized inverse Weibull distribution(EGIW) . we
provide the Kolmogorov-Smirnov (K-S),Anderson-Darling(A-D) and Cramr-von Mises goodness-of-fit tests in Table 2.
Obviously, the (EGIW) model fits well to Data Set 1 and Data Set2.
The MLE and Bayesian estimates of R for the real data are provided in Table 3.

Table 2: P-value of different goodness-of-fit tests for data set 1, 2.

K-S A-D Cramr-von

data set 1. 0.231248 0.143961 0.152425
data set 2. 0.192997 0.126852 0.213019

Table 3: Maximum likelihood ,Bayesian estimates of the parameters and R.

α1 α2 β1 β2 λ θ R

MLE 2.7192 1.9639 4.4707 2.0057 0.9511 1.0789 0.55826
Bayes 1.1070 1.5513 3.6196 2.1963 1.5344 1.06724 0.7493

In case of multi-component stress-strength model, the maximum likelihood and Bayes estimates of the stress-strength
reliability based on the real data sets, are presented in Table 4 for different values ofs andk.
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Table 4: The Maximum likelihood ,Bayesian estimates ofRs,k.

(s,k) MLE Bayes
(1,3) 0.73573 0.82293
(1,5) 0.83869 0.91084
(2,4) 0.54955 0.70667
(3,3) 0.16096 0.34609
(3,5) 0.42262 0.6608

From Table 4 we notice that: For fixed k, as s increases then thevalue ofRs,k decreases, also for fixed s, as k increases
then the value ofRs,k increases.

8 Conclusion

In this paper we presented two methods for estimatingR = Pr(Y < X) when X and Y both follow exponentiated
generalized inverse Weibull distribution with different parameters. We investigated Maximum likelihood and Bayesian
estimation methods of R and their performances are examinedby simulation study.
We have computed the Bayes estimate of R based on the independent gamma priors and using squared error loss
function. Since the Bayes estimate cannot be obtained in explicit form, we have used he importance sampling technique
to compute the Bayes estimate. Simulation results suggest that the performance of the Bayes estimator is better than
maximum likelihood for all different sample sizes, also, maximum likelihood method provides very satisfactory results
as sample size increased.

It is hoped that our investigation will be useful for researchers dealing with the kind of data considered in this paper.
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