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We solve analytically master equations that describe a cavity filled with a kerr medium,
taking into account the dissipation induced by the environment, and parametric down
conversion processes. We use superoperator techniques.
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1 Introduction

The study of the quantum anharmonic oscillator has attracted some attention because
of their significant role in nonlinear quantum optics, such as the prediction of Yurker and
Stoler that with this system Schrödinger cat state can be produced [1]. The study of the
anharmonic oscillator, in the isolated case, was carried out by Milburn [2]. The study of
the anharmonic oscillator interacting with a heat bath was made by many authors [3–7]. In
particular, Milburn and Holmes [4] studied this system when the oscillators in the reservoir
are at zero temperature. Daniel and Milburn [3] and Peřinová and Lukš [5] studied this
model with the reservoir at temperature different from zero. All these authors found that
the quantum coherence effects are destroyed because of the interaction of the system with
the environment. This phenomenon was called decoherence [8]. A common feature of the
majority of these studies is that they were realized using the usual technique of finding a
Fokker-Planck type equation and the result found was that the time of environment-induced
decoherence is very short. Recently there have been some studies of the behaviour of
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this system [9, 10] that shows that there can be quantum effects at times greater than the
decoherence time.

It is well known that one way to produce optical bistability is for instance by injecting
a field inside a high Q cavity filled with a Kerr medium [11]. Solving the master equation
for stationary conditions shows that optical bistability may be produced in such a system.

In this contribution we show solutions of master equations using superoperator tech-
niques for both parametric down conversion and for the field interacting with a Kerr
medium. This enable us to find the evolution of the system for an arbitrary initial state.

2 Kerr Medium and Dissipation

Milburn and Holmes [4] have studied the damped annharmonic oscillator by mapping
the master equation in quantum state space into an evolution equation in classical state
space. They managed to solve the master equation for an initial coherent state by using
Fokker-Planck equations. Here we develop a solution that may be applied to any initial
state. We write the master equation (in a frame rotating at field frequency ω) for a lossy
cavity filled with a Kerr medium

ρ̇ = (S + J− + L)ρ, (2.1)

where the superoperators S, J and L are defined as

Sρ = −iχ[a†2a2, ρ] (2.2)

and
J−ρ = 2γ−aρa†, Lρ = −γ−(a†aρ + ρa†a). (2.3)

It is not difficult to show that the solution to (2.1) is

ρ(t) = eSteLt exp
(

1− e−2t(γ−+iχR)

2(γ− + iχR)
J−

)
ρ(0), (2.4)

where
Rρ = a†aρ− ρa†a. (2.5)

To check that the above density matrix is the solution of Equation (2.1) we need to use the
commutation relations

[L, J−]ρ = 2γ−J−ρ, [S, J−]ρ = i2χRJ−ρ, [R, J−]ρ = 0. (2.6)

3 Non-Zero Temperature

The master equation in the non-zero temperature case is slightly different from (2.1)

˙̃ρ = (S + J− + J+ + L+ Cγ)ρ̃. (3.1)
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superoperators that appear are defined as

J+ρ = 2γ+a†ρa, Lρ = −γ0(a†aρ + ρa†a). (3.2)

Cγ is a constant. We will now perform a set of transformations to arrive to a master equation
that has a known solution. First we get rid off the constant term via ρ̃ = exp(Cγt)ρ to
obtain

ρ = eCγtρ, (3.3)

ρ̇ = (S + J− + J+ + L)ρ. (3.4)

Next we do ρ = exp(St)ρ1 so we obtain

ρ̇1 = (J−e−2iχRt + J+e2iχRt + L)ρ1. (3.5)

The next transformation allows us to get rid off the superoperator J+, ρ1 =
exp(βe2iχRtJ+)ρ2, with

β1,2 =
(iχR + γ0 ±

√
(γ0 + iχR)2 − 4γ−γ+)
4γ−γ+

, (3.6)

so we get

ρ̇2 = (J−e−2iχRt + αL+ F )ρ2, (3.7)

where α = 1 − 4βγ−γ+/γ0 and F = 4γ−γ+β. We have almost succeeded in taking the
master equation to a known one, as the superoperators involved in the above equation are
the ones involved in the master equation at zero temperature (because they commute with
R and functions of it). Therefore we do ρ2 = exp[F (R)t]ρ3

ρ̇3 = (J−e−2iχRt + αL)ρ3, (3.8)

and by doing ρ3 = exp[δJ−e−χ2iRt]ρ4 we arrive to the equation

ρ̇4 = αLρ4, (3.9)

where we have set
δ = − 1

2(γ0α + iχR)
(3.10)

with the solution
ρ̇4(t) = exp [α(R)tL] ρ4(0). (3.11)

We now write the solution for ρ̃ with the initial condition ρ̃(0)

ρ̃(t) = eCγteSteβe2iχRtJ+eF (R)teδJ−e−2iχRt

eα(R)tLe−δJ−e−βJ+ ρ̃(0). (3.12)
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4 Parametric Down Conversion

Parametric down conversion processes consists in the conversion of an incident photon
of frequency ω into two photons of frequency ω/2, called idler and signal photons. This
process occurs in the interaction of an electromagnetic field with a nonlinear crystal. In the
case where the incident wave is very intense, the Hamiltonian of this interaction is given
by [12]:

H = ~ωa†a + ~(εa†2 + ε∗a2). (4.1)

We consider the interaction of this system with a reservoir. In this case, the master
equation at nonzero temperature in the so called diffusive limit i.e, when the damping
constant goes to zero κ → 0 and the number of thermal photon goes to infinity, but keeping
the product γ = κn̄ finite, may be written as (in the interaction picture)

dρ

dt
= (S + J + K + L)ρ, (4.2)

where
Sρ = −i[εa†2 + ε∗a2, ρ], (4.3)

and
Jρ = 2γaρa†2, Kρ = 2γa†ρa, Lρ = −γ(a†aρ + ρa†a). (4.4)

The terms S and L suggest a phase sensitive reservoir as they may be expressed as only
one superoperator via a squeeze transformation. Because of this, we introduce some opera-
tors used in the phase sensitive reservoir we previously studied [13] via the transformations

ρ1 = eα+J+ρ, J+ρ = a†ρa†,

ρ̃ = eα−J−ρ1, J− = aρa. (4.5)

The commutation relations between J−, J+ and the relevant superoperator in (4.2) are

[J+, J ]ρ = −2γρa†2, [J+,K]ρ = 2γa†2ρ, (4.6)

[J+, S]ρ = i
ε∗

γ
(J + K)ρ, [J−, J ]ρ = −2γa2ρ, (4.7)

[J−,K]ρ = 2γρa2, [J−, S]ρ = −i
ε

γ
(J + K)ρ, (4.8)

and

[J−, L]ρ = [J+, L]ρ = 0, [J−, R+]ρ =
β

γ
(K + J). (4.9)
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We still do the definition

X−ρ = iερa†2, X+ρ = −iε∗a2ρ, (4.10)

Y−ρ = −iεa†2ρ, Y+ρ = iε∗ρa2, (4.11)

so that we write the superoperator S as

Sρ = (X− + X+ + Y− + Y+)ρ. (4.12)

After transformation we obtain

dρ̃

dt
=

[
S + (J + K)

(
1 + iε∗

α+

γ
− iε

α−
γ
− iε

α−
γ

β

)
+ L

]
ρ̃

+
[
(X+ + Y+)

[
2iγ

α−
ε∗

(
1 + iε∗

α+

γ

)
+ βα2

−
ε

ε∗

]
+ β(X− + Y−)

]
ρ̃ (4.13)

with β = 2iγα+ − ε∗α2
+. In order to cancel the term X− + Y− with the same term in S,

see equation (4.12), we need β = −1, which produces the value for α+

α+ =
−γ ±

√
γ2 − |ε|2

iε∗
. (4.14)

Finally, to cancel the term X+ + Y+ we have to find the value for α−, which is given by

α− = ∓ iε∗

2
√

γ2 − |ε|2
. (4.15)

In [15] there was a mistake in finding such parameters, which however does not change the
conclusion of it. With the choices given above, (4.13) is finally written in the form

dρ̃

dt
=

[
(J + K)

√
1− |ε|2

γ2
+ L

]
ρ̃, (4.16)

i.e. a master equation that has only the terms present in the case of losses at nonzero
temperature and which has been solved in [14].

The parameter α− has a singularity at γ2 = |ε|2, which indicates that it was not nec-
essary to make the (second) transformation to ρ1, see (4.5). In that case it would be only
needed to do the first transformation, which yields master equation

ρ1 = (X+ + Y+ + L)ρ1,

and because

[X+ + Y+), L]ρ = −2γ(X+ + Y+)ρ, (4.17)
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the superoperators involved close an algebra and the solution may be easily found [14].
Finally, it is worth to note that, if we consider the following definitions

N = J+ + J−, (4.18)

M =
iX−

ε
− iX+

ε∗
, (4.19)

Q =
iY−
ε
− iY+

ε∗
, (4.20)

J ′ =
2J

γ
, K ′ =

2K

γ
, (4.21)

[, ] = M J ′ N Q K ′

M 0 0 −J ′ 4
(

L
γ − 1

)
−2N

J ′ 0 0 −4M 8N −16
(

L
γ − 1

)

N J ′ 4M 0 K ′ 4Q

Q −4
(

L
γ − 1

)
−8N −K ′ 0 0

K ′ 2N 16
(

L
γ − 1

)
−4Q 0 0

Table 4.1: Table of commutators of relevant superoperators.

we can identify two subalgebras in the table {J ′,M, N} , {K ′, Q, N} .

5 Conclusions

We have shown how a solution to master equations describing the interaction of an
anharmonic oscillator and a heat bath can be obtained. Also, we have given a solution to
the master equation describing parametric down conversion.
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