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Abstract: Smoothing functions can transform the unsmooth twin support vector machines (TWSVM) into smooth ones, and thus better
classification results can be obtained. It has been one of the key problems to seek a better smoothing function in this field for a long time.
In this paper, a novel version for smooth TWSVM, termed polynomial smooth twin support vector machines (PSTWSVM), is proposed.
In PSTWSVM, using the series expansion, a new class of polynomial smoothing is proposed, and then their important properties are
discussed. It is shown that the approximation accuracy and smoothness rank of polynomial functions can be as high as required.
Subsequently, the polynomial functions are adopted to convert the original constrained quadratic programming problems of TWSVM
into unconstrained minimization problems, and then are solved by the well-known Newton-Armijo algorithm. The effectiveness of the
proposed method is demonstrated via experiments on synthetic and real-word benchmark datasets.
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1 Introduction

Support vector machine (SVM) presented by Vapnik and
co-worker [1] is a computationally powerful kernel-based
tool for binary data classification and regression. Because
the theory of SVM is based on the idea of structural risk
minimization principle, SVM has successfully solved the
high dimensionality and local minimum problems.
Therefore, compared with other machine learning
methods, such as artificial neural network [2,3,4], SVM
owns better generalization ability. Within a few years
after its introduction SVM has played excellent
performance on many real-world predictive data mining
applications such as text categorization [5], time series
prediction [6], pattern recognition [7] and image
processing [8], etc.

Although SVM owns better generalization ability
compared with many other machine learning methods,
however, its computational complexity in training stage is
too expensive, i.e.,O(n3), wheren is the total size of the
training samples. To overcome this problem, so far, many
improved algorithms for reducing the computational
complexity of SVM have been presented, such as
chunking algorithm [9], decomposition algorithm [10]

and sequential minimal optimization (SMO) [11], etc. On
the other hand, many researchers have proposed some
deformation algorithms based on the standard SVM. For
example, in 2006, Mangasarian et al. [12] proposed a
nonparallel plane classifier for binary data classification,
named the generalized eigenvalue proximal support
vector machine (GEPSVM). The essence of GEPSVM is
to look for two nonparallel planes, so that data points of
each class are proximal to one of them. GEPSVM has
good learning speed because it solves two generalized
eigenvalue problems of the order of input space
dimension, but its classification accuracy is low. In 2007,
Jayadeva et al. [13] proposed a new machine learning
method called twin support vector machine (TWSVM)
for the binary classification in the spirit of GEPSVM.
TWSVM would generate two non-parallel planes, such
that each plane is closer to one of the two classes and is as
far as possible from the other. In TWSVM, a pair of
smaller sized quadratic programming problems (QPPs)
are solved, instead of solving single large one in SVM,
makes the computational speed of TWSVM
approximately 4 times faster than the traditional SVM.
Because of its excellent performance, TWSVM has been
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applied to many areas such as speaker recognition [14],
medical detection [15], etc.

Similar to SVM, TWSVM solves its QPPs in the dual
space. However, this solving method will be affected by
time and memory constraints when dealing with the large
datasets, which would make the learning speed of
TWSVM low. In order to address this problem in 2008,
M. Arun Kumar et al. [16] used the sigmoid function to
approach the objective function of TWSVM and then
proposed smooth twin support vector machines
(STWSVM). STWSVM directly solved QPPs in the
original space instead of the dual space. Experimental
results showed that STWSVM could make the classifier
faster to compute in the classification phase than
TWSVM. However, because of the low approximation
ability of the sigmoid function, the classification accuracy
of STWSVM was unsatisfactory. In order to further
improve the classification performance of STWSVM,
looking for a new smooth function with better
approximation ability is the key problem.

In this paper, using the series expansion, a new class
of polynomial smoothing is proposed. We have proved
that the proposed smoothing functions have better smooth
performance and their approximation accuracy can be as
high as required. Subsequently, the polynomial functions
are adopted to convert the original constrained quadratic
programming problems of TWSVM into unconstrained
minimization problems, and then are solved by the
well-known Newton-Armijo algorithm. Based on the
above idea, a novel version for smooth TWSVM, termed
polynomial smooth twin support vector machines
(PSTWSVM), is proposed in this paper. The experimental
results show that as the smoothness rank of polynomial
functions increases, the approximation accuracy and the
classification performance are correspondingly improved.
Therefore, the new class of polynomial functions provides
better performance for smoothing the TWSVM.

The paper is organized as follows: In section 2, we
propose the PSTWSVM model and prove its global
convergence. Section 3 deals with experimental results,
while section 4 is devoted to concluding remarks.

2 Polynomial Smooth Twin Support Vector
Machines

2.1 Twin support vector machines

Consider a binary classification problem of classifyingm1
data points belonging to class +1 andm2 data points
belonging to class -1. Then let matrixA in Rm1×n

represent the data points of class +1 while matrixB in
Rm2×n represent the data points of class -1. Two
nonparallel hyper-planes of the linear TWSVM can be
expressed as follows.

xT w1+b1 = 0, xT w2+b2 = 0 (1)

The target of TWSVM is to generate the above two
nonparallel hyper-planes in then-dimensional real space
Rn, such that each plane is closer to one of the two classes
and is as far as possible from the other. A new sample
point is assigned to class +1 or -1 depending upon its
proximity to the two nonparallel hyper-planes. The linear
classifiers are obtained by solving the following
optimization problems.

min
w(1),b(1),ξ (2)

1
2

∥

∥

∥
Aw(1)+ e1b(1)

∥

∥

∥

2
+ c1eT

2 ξ (2)

s.t. − (Bw(1)+ e2b(1))≥ e2−ξ (2)
, (2)

ξ (2) ≥ 0.

min
w(2),b(2),ξ (1)

1
2

∥

∥

∥
Bw(2)+ e2b(2)

∥

∥

∥

2
+ c2eT

1 ξ (1)

s.t. (Aw(1)+ e1b(2))≥ e1−ξ (1)
, (3)

ξ (1) ≥ 0.

Where c1 and c2 are penalty parameters,ξ (1) and
ξ (2)are slack vectors,e1 ande2 are the vectors of ones of
appropriate dimensions.

In TWSVM, generally, we solve the QPPs in the dual
space. However, this solving method will be affected by
time and memory constraints when dealing with the big
datasets. In order to improve the computational speed, the
TWSVM model represented by (2) and (3) would be
transformed into two unconstrained nonsmooth
optimization problems by using the plus function.

According to the KKT theorem, we can get

ξ (2) = max{0,e2+(Bw(1)+ e2b(1))} (4)

ξ (1) = max{0,e1− (Aw(2)+ e1b(2))} (5)

The optimization problems (2) and (3) can be rewritten as

min
w(1),b(1),ξ (2)

1
2

∥

∥

∥
Aw(1)+ e1b(1)

∥

∥

∥

2

+c1eT
2 max{0,(e2+Bw(1)+ e2b(1))} (6)

min
w(2),b(2),ξ (1)

1
2

∥

∥

∥
Bw(2)+ e2b(2)

∥

∥

∥

2

+c2eT
1 max{0,(e1−Aw(2)+ e1b(2))} (7)

Let
(x1)+=max{0,(e2+Bw(1)+ e2b(1))},

(x2)+ = max{0,(e1−Aw(2)+ e1b(2))},

where (x1)+and (x2)+are the plus functions. The
objective functions of the unconstrained optimization
problems (6) and (7) are convex and non-smooth which
can be proved as follows.
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Theorem 1 The unconstrained TWSVM model can be
represented as (6) and (7) and the model is continuous but
nonsmooth.
Proof Obviously, the differentiability and smoothness of
(6) and (7) completely depends on the plus functionx+.

Because ofx+ =

{

x, x≥ 0
0, x < 0 , we can calculate that

lim
x→0+

= 1 and lim
x→0−

= 0. Therefore, x+ is not

differentiable in x = 0. Meanwhile, x+ also can be
expressed asx+ = |x|+x

2 , sox+ is the continuous function.
Therefore,x+ is continuous but nonsmooth. End.

Theorem 1 shows that (6) and (7) are nonsmooth, so
we can’t use the gradient optimization method such as the
Newton-Armijo method to solve (6) and (7). In order to
address this problem, we will use the polynomial smooth
function to approach (6) and (7).

2.2 The polynomial smooth function

Weierstrass Theorem [17] Set arbitrary continuous
function f (x), x ∈ [m,n], existing polynomialPn(x), can
make lim

n→∞
max

m≤x≤n
| f (x)−Pn(x)| = 0. The weierstrass

theorem shows that any continuous real-valued function
in closed interval can be arbitrarily approached by the
polynomial function. From theorem 1 we can know that
the plus function is a continuous function, so we can use
the polynomial function to approach it. In this paper, we
will give the common formula of the polynomial smooth
function by transforming it to an equivalent infinite series.
Lemma 1 [18] Two expansion ofm = 1

2 can be expressed
as
√

1+ x = 1+
1
2

x− 1
2·4x2+

1·3
2·4·6x3

− 1·3·5
2·4·6·8x4+ · · ·

= 1+
1
2

x−
∞

∑
n=2

(2n−3)!!
(2n)!!

(−x)n
, (8)

−1≤ x≤ 1

Theorem 2 The plus functionx+ can be transformed to an
equivalent infinite series in[−1

k ,
1
k ] as follows.

x+ =
1
2k

(
1+ k2x2

2
−

∞

∑
n=2

(2n−3)!!
(2n)!!

(1− k2x2)n) (9)

+
x
2

Proof According to the definition ofx+, we can get

x+ = max(0,x)

=
|x|+ x

2

=
|kx|
2k

+
x
2

=
1
2k

√

1+(k2x2)−1+
x
2

(10)

Figure 1 The approximation image of the plus function by the
polynomial function

According to lemma 1 and (10), x+ can be rewritten as

x+ =
1
2k

(
1+ k2x2

2
−

∞

∑
n=2

(2n−3)!!
(2n)!!

(1− k2x2)n) (11)

+
x
2

End.
Theorem 3 The polynomial approximation function forx+
in [−1

k ,
1
k ] is

Pn(x,k)

=























x, x≥ 1
k

1
2k (

1+k2x2

2 −
n
∑

l=2

(2l−3)!!
(2l)!! (1− k2x2)l)+ x

2,

|x|< 1
k , k > 0

0, x≤−1
k ,

(12)

wheren is a positive integer. The approximation image of
the plus function by the polynomial function whenk =
10n = 1,2 is shown as figure 1. From Figure 1, we can see
that the approximation accuracy ofPn(x,k)will be higher
with n larger.

Theorem 4 Pn(x,k) is defined as (12), it has some
characteristics as follows.

(1) Pn(x,k) hasn-order smoothness aboutx.
(2) lim

n→∞
max(Pn(x,k)− x+) = 0.

Proof (1) If Pn(x,k) hasn-order smoothness aboutx, it
must meet the following conditions.

Pn(
1
k
,k) =

1
k
, Pn(−

1
k
,k) = 0

∇Pn(
1
k
,k) = 1, ∇Pn(−

1
k
,k) = 0

∇nPn(
1
k ,k) = 0, ∇nPn(−1

k ,k) = 0n≥ 2

According to (12), it can be got
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Pn(
1
k ,k) =

1
k , Pn(−1

k ,k) = 0

We find the partial derivative ofx, it can be got
Whenn≥ 1,

∇Pn(x,k) =























1, x≥ 1
k

kx
2 (1+

n
∑

l=2

(2l−3)!!
(2l−2)!! (1− k2x2)l−1)+ 1

2,

|x|< 1
k , k > 0

0, x≤−1
k

Whenn≥ 2,

∇2Pn(x,k)

=



























0, x≥ 1
k

k
2(1+

n
∑

l=2

(2l−3)!!
(2l−2)!! (1− k2x2)l−1)

− k3x2

2

n
∑

l=2

(2l−3)!!
(2l−4)!! (1− k2x2)l−2, |x|< 1

k ,k > 0

0, x≤−1
k

Obviously,∇Pn(x,k), ∇2Pn(x,k) and∇nPn(x,k)(n > 2) are
existence and continuation inx = ±1

k .So Pn(x,k) hasn-
order smoothness aboutx.

(2) According to Weierstrass Theorem, it can be got
easily

lim
n→∞

max(Pn(x,k)− x+) = 0.

End.
Theorem 4 shows that the polynomial smooth

function transformed to an equivalent infinite series can
achieve arbitrary precision to approach the plus function
whenn is large enough.

2.3 The optimal smoothing factor

There is a parameterk called smoothing factor in (12). We
give the formula of optimal smoothing factor as follows.
Theorem 5 Give arbitrary precisionE, if the smooth
function Pn(x,k) meets the condition|Pn(x,k)− x| ≤ E
when it approaches tox+, the smoothing factork is called
the optimal smoothing factor and is denoted askopt(n,E).

Because the error ofPn(x,k) approaching tox+ is
maximum inx = 0, we can getkopt(n,E) when it meets
the conditionPn(x,k)− x+ ≤ E in x = 0.

Therefore, ifx = 0, calculate (12), we can get

kopt(n,E)≥
1
2−

n
∑

l=2

(2l−3)!!
(2l)!!

2E
(13)

2.4 PSTWSVM algorithm

BecausePn(x,k) has n-order smoothness whenn ≥ 2,
Newton-Armijo optimization algorithm can be used to

solve the following unconstrained optimization problems.

min
w(1),b(1),ξ (2)

1
2

∥

∥

∥
Aw(1)+ e1b(1)

∥

∥

∥

2

+c1eT
2 P((e2+Bw(1)+ e2b(1)),k) (14)

min
w(2),b(2),ξ (1)

1
2

∥

∥

∥
Bw(2)+ e2b(2)

∥

∥

∥

2

+c2eT
1 P((e1+Aw(2)+ e1b(2)),k) (15)

Algorithm 1 PSTWSVM based on the Newton-Armijo method

Input: Give the initial value(w0,b0) ∈ Rn+1,η , let the
iteration numberi = 0, the order of polynomial functionn,
the arbitrary precisionE
Output: The optimal value of the objective function

Step1: calculatePn(x,k) andgi = ∇Pn(x,k).
Step2: If

∥

∥gi
∥

∥≤ ηselect(w∗,b∗) = (wi,bi), then terminate
programs. Otherwise according to∇2Pn(x,k)di =−gi,

calculate the down directiondi.
Step3: (Armijo method) takeδ ∈ (0, 1

2),
λi = max{1, 1

2 ,
1
4 , · · ·}

let Pn(x,k)−Pn((wi,bi)+λidi,k)≥−δλigidi, then
let (wi+1,bi+1) = (wi,bi)+λidi

Step4: Let i← i+1turn to Step2.

2.5 The nonlinear PSTWSVM

If the previous conclusions are extended to nonlinear
smooth PSTWSVM, it can be used to deal with the
nonlinear problem.

In order to obtain the nonlinear classifiers we consider
the following kernel generated surfaces

K(xT
,CT )u1+b1 = 0, K(xT

,CT )u2+b2 = 0, (16)

whereCT = [A B]T , (u(i), b(i)) ∈ (Rm×R) (i = 1, 2)
and K is an chosen kernel. The nonlinear TWSVM are
obtained by solving the following optimization problems.

min
w(1),b(1),ξ (2)

1
2

∥

∥

∥
K(A,CT )w(1)+ e1b(1)

∥

∥

∥

2
+ c1eT

2 ξ (2)

s.t. − (K(B,CT )w(1)+ e2b(1))≥ e2−ξ (2)
, (17)

ξ (2) ≥ 0.

min
w(1),b(1),ξ (2)

1
2

∥

∥

∥
K(B,CT )w(2)+ e2b(1)

∥

∥

∥

2
+ c2eT

1 ξ (1)

s.t. (K(A,CT )w(2)+ e1b(2))≥ e1−ξ (1)
, (18)
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ξ (1) ≥ 0.

Introducing the plus function, (16) and (17) can be
transformed into the following optimization problems
without constraint.

min
w(1),b(1),ξ (2)

1
2

∥

∥

∥
K(A,CT )w(1)+ e1b(1)

∥

∥

∥

2

+c1eT
2 (e2+K(B,CT )w(1)+ e2b(1))+ (19)

min
w(2),b(2),ξ (1)

1
2

∥

∥

∥
K(B,CT )w(2)+ e2b(2)

∥

∥

∥

2

+c2eT
1 (e1−K(A,CT )w(2)+ e1b(2))+ (20)

We can get the nonlinear PSTSVMs-NA model using the
polynomial smooth function.

min
w(1),b(1),ξ (2)

1
2

∥

∥

∥
K(A,CT )w(1)+ e1b(1)

∥

∥

∥

2

+c1eT
2 P((e2+K(B,CT )w(1)+ e2b(1)),k) (21)

min
w(2),b(2),ξ (1)

1
2

∥

∥

∥
K(B,CT )w(2)+ e2b(2)

∥

∥

∥

2

+c2eT
1 P((e1−K(A,CT )w(2)+ e1b(2)),k) (22)

The previous conclusions and theorems are also applicable
to the nonlinear PSTWSVM model.

3 Numerical experiments and analysis

In this section, in order to show the performance of
PSTWSVM, we conduct experiments on one synthetic
dataset and ten benchmark datasets using four algorithms,
that is, GEPSVM, TWSVM, STWSVM and PSTWSVM.
Furthermore, in order to test the ability of these
algorithms to deal with the large samples, we make
experiment on NDC dataset. The environments of all
algorithms are implemented in Intel (R) Core (TM) 2Duo
CUP E4500, 2G memory and MATLAB 7.11.0. The dual
QPPs arising in TWSVM are solved using mosek
optimization toolbox for MATLAB [19] which
implements fast interior point based algorithms.
Classification accuracy of each algorithm is measured by
standard tenfold cross-validation methodology.

3.1 Experiment on synthetic dataset

This synthetic dataset is 2-dimensional and it is mainly
used to intuitively test the classification performance of
linear PSTWSVM and nonlinear PSTWSVM. The
performance of these algorithms depends heavily on the
choices of parameters. In this experiment, the optimal
parameters of these algorithms are searched from set
{2i|i =-6, -4, -2, 0, 1, 2, 4, 6}. In PSTWSVM, the
parameter of Newton-Armijo method is setε1 = 1.0E−3,

Figure 2 The classification result of linear PSTWSVM

the approximation accuracy of smooth function is set
ε2 = 1.0E − 3. For the nonlinear case, we only consider
the Gaussian kernel function. The optimal value of
Gaussian kernel parameter is selected over the range
{2i|i =-6, -4, -2, 0, 1, 2, 4, 6}. The order of polynomial is
setn = 5.

Table 1 shows the comparison of classification
accuracy and CPU time for PSTWSVM with GEPSVM,
TWSVM and STWSVM for linear kernel on the synthetic
dataset. Table 2 shows the comparison of classification
performance for nonlinear extensions of PSTWSVM with
GEPSVM, TWSVM and STWSVM. Figure 2 and figure
3 are the classification map of linear PSTWSVM and
nonlinear PSTWSVM.

Table 1 Comparison for linear kernel

Algorithms Train accuracy (%) Test accuracy (%) Time (s)

GEPSVM 85.5±6.35 82.7±1.49 0.0679
TWSVM 87.8±3.21 83.0±5.21 0.1141

STWSVM 86.7±5.47 81.6±6.54 0.0910
PSTWSVM 87.3±0.21 84.5±1.25 0.0772

Table 2 Comparison for Gaussian kernel

Algorithms Train accuracy (%) Test accuracy (%) Time (s)

GEPSVM 91.7±3.26 86.2±2.12 0.1954
TWSVM 94.2±3.07 87.1±2.25 0.1278

STWSVM 92.8±2.23 86.5±1.58 0.1023
PSTWSVM 94.3±2.21 87.9±1.29 0.0954

Figure 2. The classification result of linear PSTWSVM
Figure 3. The classification result of nonlinear PSTWSVM

Table 1 and Table 2 reveal that the accuracy of
PSTWSVM is significantly better than STWSVM also. It
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Figure 3 The classification result of nonlinear PSTWSVM

can also be observed that the accuracy of PSTWSVM is
almost same as that of TWSVM. Compared with linear
PSTWSVM, the classification accuracy of nonlinear
PSTWSVM is improved, but its training time has
increased. This is because that it needs to calculate the
nuclear matrix computation time for nonlinear
PSTWSVM. From Figure 2 and 3, we can intuitively see
that this synthetic dataset is nonlinear, so the
classification performance of nonlinear PSTWSVM is
better than the linear PSTWSVM.

3.2 Experiment on UCI machine learning
datasets

In order to further demonstrate the performance of our
algorithm, we conduct experiments on ten benchmark
datasets from the UCI. Table 3 shows the comparison of
classification accuracy for PSTWSVM with GEPSVM,
TWSVM and STWSVM for linear kernel on 10 UCI
datasets. Table 4 shows the comparison of classification
performance for nonlinear extensions of PSTWSVM with
GEPSVM, TWSVM and STWSVM. The parameters are
selected the same as 3.1.

Table 3 and 4 show that the accuracy performance of
PSTWSVM is better than STWSVM. It can also be
observed that the accuracy of PSTWSVM is almost same
as that of TWSVM. In fact, accuracy of PSTWSVM is
slightly better than TWSVM on some datasets.

3.3 Experiment on NDC datasets

In order to test the ability of our algorithm for dealing
with the large datasets, we conducted experiment on NDC
datasets which are generated by David Musicant’ NDC
Data Generator [20]. For experiment on NDC datasets,
we fix penalty parameters of all algorithms to be one (i.e.

Table 3 Comparison for linear kernel

Dataset PSTWSVM STWSVM TWSVM GEPSVM

Hepatitis
(155×19)

78.05±4.31 77.39±2.15 78.08±2.16 77.28±2.78

Housing
(506×13)

86.21±2.39 84.42±3.87 85.42±4.53 74.81±2.85

Wdbc
(596×30)

96.10±6.32 94.89±4.31 96.22±6.67 92.81±2.54

Glass6
(214×10)

96.52±4.56 95.70±6.05 96.55±2.40 96.21±2.72

Votes
(435×16)

95.50±1.23 94.96±4.24 95.85±2.24 95.63±2.74

Pima
(768×8)

75.95±2.31 74.52±3.37 75.40±9.68 74.48±4.67

Spect
(267×22)

80.85±8.36 80.50±9.85 81.98±2.17 55.98±2.17

Table 4 Comparison for Gaussian kernel

Dataset PSTWSVM STWSVM TWSVM GEPSVM

Wpbc
(194×32)

77.01±6.56 75.89±7.68 77.27±8.62 75.81±6.35

Ionosphere
(351×34)

94.01±1.76 92.84±2.09 93.68±2.74 86.62±6.78

Heart-
statlog

(270×14)
78.23±8.67 74.89±9.17 79.26±6.34 63.35±12.56

Hepatitis
(155×19)

78.88±10.16 78.85±8.99 78.81±9.18 78.54±10.17

C = C1 = C2 = 1). We use Gaussian kernel withσ=2−17.
Other parameters are set as same as the section 3.1. Table
5 gives a description of NDC datasets. Table 6 shows the
comparison of computing time and accuracy for three
algorithms with linear kernel. On the other hand, table 7
shows the comparison of classification performance for
these algorithms with Gaussian kernel.

Table 5 Description of NDC datasets

Dataset # Training data # Test data # Feature

NDC-500 500 50 32
NDC-700 700 70 32
NDC-900 900 90 32
NDC-1k 1000 100 32
NDC-2k 2000 200 32
NDC-3k 3000 300 32
NDC-4k 4000 400 32
NDC-5k 5000 500 32
NDC-10k 10,000 1000 32
NDC-1l 100,000 10,000 32
NDC-3l 300,000 30,000 32
NDC-5l 500,000 50,000 32
NDC-1m 1,000,000 100,000 32
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Table 6 Comparison for linear kernel

Dataset

PSTWSVM STWSVM TWSVM
Train (%) Train (%) Train (%)
Test (%) Test (%) Test (%)
Time (s) Time (s) Time (s)

NDC-3k
80.05 79.85 79.93
77.64 77.51 77.66
0.0469 0.0545 27.08

NDC-4k
79.82 79.69 79.80
73.77 73.75 73.75
0.0605 0.0663 60.94

NDC-5k
79.12 78.95 79.15
80.22 80.20 80.23
0.0734 0.0761 114.24

NDC-10k
86.58 86.42 86.45
87.29 87.24 87.38
0.1178 0.1239 1092.07

NDC-1l
87.59 86.35 -
86.78 86.24 -
0.996 1.014 -

NDC-3l
81.07 78.79 -
78.89 78.75 -
2.899 3.103 -

NDC-5l
79.36 78.85 -
80.08 79.12 -
5.1312 5.3505 -

“-” We stop experiment as computing time was very high

Table 7 Comparison for Gaussian kernel

Dataset

PSTWSVM STWSVM TWSVM
Train (%) Train (%) Train (%)
Test (%) Test (%) Test (%)
Time (s) Time (s) Time (s)

NDC-500
100.00 100.00 99.25
80.18 80.15 80.18
0.5621 0.5687 0.789

NDC-700
99.28 99.25 99.27
84.25 83.14 84.29
1.3119 1.3119 1.7322

NDC-900
99.56 99.56 99.56
81.89 81.34 80.58
2.5014 2.5328 3.4675

NDC-1k
98.83 98.47 98.85
85.32 84.12 83.85
3.5012 3.5198 4.1176

NDC-2k
100.00 100.00 99.68
88.26 88.24 88.27
21.07 21.23 25.8958

NDC-3k
100.00 100.00 99.53
90.38 90.12 90.45
66.298 66.604 85.445

From table 6, we can see that in view of the high
computing time, TWSVM can’t work when the training
samples reach 100000. However, PSTWSM and
STWSVM can get reasonable accuracy in the relatively
short time when the training samples reach 500000,
which indicates that PSTWSVM and STWSVM have the

advantage on dealing with large dataset comparing with
TWSVM. Furthermore, from table 6 and 7, we also see
that the classification accuracy of PSTWSVM and the
computing time are better than STWSVM. The accuracy
of PSTWSVM is almost same as that of TWSVM. In fact,
accuracy of PSTWSVM is slightly better than TWSVM
on some datasets. Therefore, PSTWSVM is suitable for
dealing with the large dataset.

4 Conclusion

In order to improve the performance of STWSVM,
seeking a better smoothing function is the key problem. In
this paper, a novel version for smooth TWSVM, called
polynomial smooth twin support vector machines
(PSTWSVM), is proposed. Firstly, using the series
expansion, a new class of polynomial smoothing is
proposed, and then we prove their important properties.
Subsequently, the polynomial functions are adopted to
convert the original constrained QPPs of TWSVM into
unconstrained minimization problems, and then are
solved by the well-known Newton-Armijo algorithm. The
experiments on synthetic and real-word benchmark
datasets show that the proposed algorithm can obtain
better classification than STWSVM. At last, we enhance
our algorithm to deal with large datasets, the results
indicate that PSTWSVM is a good method to deal with
large datasets.
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