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Abstract: Adjoint triples are an interesting generalization of t-norms and their residuated implications, since they increase the
flexibility in the framework where they are used. Following the same motivation of adjoint triples, in order to reduce themathematical
requirements for the computation, extended-order algebras are studied. Extended-order algebras are implicative algebras that generalize
the integral residuated structures. In this paper, adjointtriples will be related to the operators considered in extended-order algebras.
Furthermore, a comparison between adjoint negations and the negations introduced in extended-order algebras is presented.
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1 Introduction

The use of general aggregation operators in different
frameworks is very important obtaining useful
consequences in the applications [15,16,32,33,30,31]

Several of these frameworks, such as Fuzzy
Logic [26], Fuzzy Relation Equations [18], Rough Set
Theory [29] and Formal Concept Analysis [17,30], need
to consider algebras with implications. The most usual
operators in these frameworks are left-continuous t-norms
and their residuated implications and, specifically,
residuated lattices.

Adjoint triples are general operators which provide
less restrictive settings, since their conjunctors are neither
required to be commutative nor associative. Therefore,
the use of this kind of operators increases the flexibility
and applicability of the frameworks in which they are
considered, such as Logic Programming [20], Fuzzy
Formal Concept Analysis [19], Fuzzy Relation
Equations [11] and Rough Set Theory [7]. This
consequence is one of the most important reasons which
justifies that these triples have widely been studied in
several papers [2,5].

An important generalization of the integral residuated
structures are extended-order algebras, which were
introduced by C. Guido and P. Toto in [14] and developed
in several papers [10,9]. Extended-order algebras are
implicative general structures that follows the same
motivation of adjoint triples in order to reduce the

mathematical requirements of the basic operators for the
computation, but based on implications. The main goal of
this paper is the comparison of w-eo algebras with the
operators mentioned previously and the obtainment of the
relationship between them. As this paper will prove, w-eo
algebras are more restrictive than multi-adjoint algebras.

In addition, this paper will carry out a study of
negation operators. Negation operators are widely studied
in [10,12,27,28] and are very useful in fuzzy logic and
logic programming. This paper considers adjoint
negations obtained from adjoint triples and operators
introduced in w-eo algebras corresponding to the negation
connectives [10]. The comparison between these two
kinds of negations is also shown.

The organization of this paper is as follows: Section2
recalls the notion of adjoint triple and presents the multi-
adjoint algebras. The definitions of the different extended-
order algebras and several remarks about the comparison
with adjoint triples are included in Section3. Section4
presents the corresponding relationship between negation
operators. Lastly, the paper finishes with some conclusions
and prospects for future work.

2 Adjoint triples and multi-adjoint algebras

This section recalls the definition of adjoint triple, several
interesting properties derived from these operators and
introduces the definition of multi-adjoint algebra.
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Definition 1. Let(P1,≤1), (P2,≤2), (P3,≤3) be posets and
& : P1×P2 → P3, ւ : P3×P2 → P1, տ : P3×P1 → P2 be
mappings, then(& ,ւ,տ) is anadjoint triplewith respect
to P1,P2,P3 if & , ւ,տ satisfy theadjoint property:

x≤1 zւ y iff x& y≤3 z iff y≤2 zտ x

where x∈ P1, y∈ P2 and z∈ P3.

The following monotonicity properties are
straightforwardly obtained from the adjoint property.

Proposition 1. If (& ,ւ,տ) is an adjoint triplew.r.t. the
posets(P1,≤1), (P2,≤2) and(P3,≤3), then

1.& is order-preserving on both arguments.
2.ւ, տ are order-preserving on the first argument and

order-reversing on the second argument.

The result below states that given the conjunctor of an
adjoint triple, its residuated implications are unique.

Proposition 2. Given a conjunctor& , if there exist its
residuated implicationsւ andտ, they are unique.

Moreover, these residuated implications conserve the
infima on the first argument.

Proposition 3. Let (& ,ւ,տ) be a adjoint triple with
respect to the posets(P1,≤1), (P2,≤2) and(P3,≤3), then
the following properties are satisfied:

1.(
∧

zi∈Z

zi)ւ y=
∧

zi∈Z

(zi ւ y), for any Z⊆ P3 and y∈ P2,

when the infima exist.
2.(

∧

zi∈Z

zi)տ x=
∧

zi∈Z

(zi տ x), for any Z⊆ P3 and x∈ P1,

when the infima exist.

Another notion needed in this paper is associated with
a well-know property of implications, which was called
forcing-implication in [23,24]. Later, in [2], the authors
used it in a more general environment and interesting
properties were proven. Since this definition and
properties will be considered later, these will be recalled
next.

Definition 2. Given two posets(Q,≤Q), (P,≤P), with a
top element⊤P in (P,≤P). The operator→: Q×Q → P
which is order-reversing on the first argument and
order-preserving on the second argument, satisfying the
equivalence

a→ b=⊤P if and only if a≤Q b, for all a,b∈ Q (1)

is calledforcing-implication onQ.

Before introducing the following result, the definition
of the next mappings is required:ւop: P2 × P3 → P1,
տop: P1 × P3 → P2, as y ւop z = z ւ y and
xտop z= zտ x, for all x∈ P1, y∈ P2 andz∈ P3.

Proposition 4([2]). Given an adjoint triple(& ,ւ,տ)
with respect to P1,P2 and P3.

1. If P2 ⊆ P3 and P1 has a maximum⊤1, the following
statements are equivalent.

– ւop is a forcing implication.
– ⊤1& y= y, for all y∈ P2.

2. If P1 ⊆ P3 and P2 has a maximum⊤2, the following
statements are equivalent.

– տop is a forcing implication.
– x& ⊤2 = x, for all x∈ P1.

Examples of adjoint triples are the Gödel, product and
Łukasiewicz t-norms together with their residuated
implications. Note that, these t-norms are commutative,
then the residuated implications satisfy thatւG=տG,
ւP=տP andւL=տL . Specifically, they are defined on
[0,1] as:

&G(x,y) = min(x,y) zտG x=

{

1 if x≤ z
z otherwise

&P(x,y) = x ·y zտP x= min(1,z/x)

&L(x,y) = max(0,x+ y−1) zտL x= min(1,1− x+ z)

Example 1.Given m ∈ N, the set [0,1]m is a regular
partition of [0,1] in m pieces, for example
[0,1]2 = {0,0.5,1} divides the unit interval in two pieces.

A discretization of the product t-norm is the operator
&∗

P : [0,1]20 × [0,1]8 → [0,1]100 defined, for each
x∈ [0,1]20 andy∈ [0,1]8 as:

x& ∗
Py=

⌈100·x ·y⌉
100

where⌈ ⌉ is the ceiling function and whose residuated
implications ւ∗

P : [0,1]100 × [0,1]8 → [0,1]20,
տ∗

P: [0,1]100× [0,1]20→ [0,1]8 are defined as:

bւ∗
P a =

⌊20·min{1,b/a}⌋
20

bտ∗
P c =

⌊8 ·min{1,b/c}⌋
8

where⌊ ⌋ is the floor function.
Hence, the triple(& ∗

P,ւ
∗
P,տ

∗
P) is an adjoint triple and

the operator&∗
P is straightforwardly neither commutative

nor associative. Similar adjoint triples can be obtained
from the Gödel and Łukasiewicz t-norms.⊓⊔

The algebraic structure that considers these triples is
the biresiduated multi-adjoint algebra. In [21,22], the
notion of multi-adjoint lattice was introduced considering
only pairs, that is, several conjunctors& i and the
corresponding residuated implicationsւi . Later, in [20]
biresiduated multi-adjoint lattices were presented in
which adjoint triples (& i ,ւ

i ,տi) on lattices were
considered. The definition below generalizes this last
notion, since posets are only assumed as carriers.
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Definition 3. Given the posets(P1,≤1), (P2,≤2), (P3,≤3)
and a family of adjoint triples (& i ,ւ

i ,տi), with
i ∈ {1, . . . ,n}. A (biresiduated) multi-adjoint algebra is
the tuple

P = (P1,P2,P3,≤1,≤2,≤3,&1,ւ
1,տ1, . . . ,&n,ւ

n,տn)

From now on, we will denote these algebras as
P = (P1,P2,P3,≤1,≤2,≤3,&1, . . . ,&n), since, by
Proposition2, the residuated implications are unique.

3 The comparison with extended-order
algebras

C. Guido and P. Toto [14] introduced extended-order
algebras as implicative algebras that generalize the
integral residuated structures, Hilbert algebras, BCK
algebras, etc. These operators have been used in several
frameworks, chasing the same motivation of adjoint
triples, that is, introducing a general setting which reduces
the mathematical requirements needed to compute in
several frameworks, such as in fuzzy logic, fuzzy relation
equations, rough sets, etc. Now, a deeper comparison than
the one given in [3,4] is introduced and it is proven that
extended-order algebras are more restrictive.

3.1 Extended-order algebras with an operator

This section recalls several algebraic structures given
in [10,14] with only one operator and compares them
with adjoint triples. Firstly, the definition of w-eo algebra
is introduced, from which the rest of structures will be
presented.

Definition 4([14]). Let P be a non-empty set,
→ : P×P→ P a binary operation and⊤ a fixed element
of P. The triple(P,→,⊤) is a w-eo algebra, if for all
a,b,c∈ P the following conditions are satisfied1

(o1) a→⊤=⊤ (upper bound condition)
(o2) a→ a=⊤ (reflexivity condition)
(o3) a→ b= ⊤ and b→ a= ⊤ then a= b (antisymmetry

condition)
(o4) a → b = ⊤ and b→ c = ⊤ then a→ c = ⊤ (weak

transitivity condition)

From a w-eo algebra(P,→,⊤) an ordering can be defined
on the setP, which providesP with a poset structure. This
relation≤ is defined as follows:

a≤ b if and only if a→ b=⊤, for all a,b∈ P (2)

Straightforwardly,≤ is an order relation inP, which was
calledthe natural ordering in P[14]. Note that the poset
(P,≤) has a greatest element which coincides with the

1 Note that the names of the properties are those in [14].

fixed element ⊤ of P. Other interesting structures
introduced in [10,14] arise when the poset(P,≤)
associated with the w-eo algebra(P,→,⊤) is a complete
lattice. In this case, we say that(P,→,⊤) is a complete
w-eo algebra(P,→,⊤), in short, aw-ceo algebra. In this
case we will write L and � instead of P and ≤,
respectively.

The notion of right-distributive w-ceo algebra is
defined as follows.

Definition 5([10]). Let L be a non-empty set,→ : L×L →
L a binary operation and⊤ a fixed element of L. The triple
(L,→,⊤) is a right-distributive w-ceo algebra, if it is a w-
ceo algebra and satisfies the following condition

(d′
r ) for any a∈ L, B⊆ L : a→

∧

b∈B

b=
∧

b∈B

(a→ b)

In the remainder of this section, we will present several
results relating the latest structures to adjoint triples.

The first one states that Equivalence (2) coincides with
the forcing-implication property.

Proposition 5. Given a poset(P,≤) with a greatest
element⊤ and→ : P×P→ P a forcing-implication on P,
then(P,→,⊤) is a w-eo algebra.

Proof. As → : P×P → P is a forcing-implication onP,
then Equation (2) holds, which clearly provides properties
(o1), (o2), (o3) and (o4). ⊓⊔

The second result shows under what conditions
should be defined an adjoint triple in order to provide a
w-eo algebra.

Proposition 6. Given a poset(P,≤), with a maximum
element⊤, and an adjoint triple(& ,ւ,տ) with respect
to P. The conjunctor satisfies⊤& y = y, for all y∈ P, if
and only if(P,ւop,⊤) is a w-eo algebra and the natural
ordering in P is≤.

Proof. First of all, we will prove that(P,ւop,⊤) is w-eo
algebra and the natural ordering inP is ≤. By hypothesis,
we have that⊤& y = y, for all y ∈ P, and applying
Proposition4 we obtain thatւop is a forcing-implication
and ≤ is the natural ordering inP. Moreover, by
Proposition5 the triple(P,ւop,⊤) is a w-eo algebra.

The counterpart is obtained since the triple
(P,ւop,⊤) is a w-eo algebra and≤ is the natural
ordering in P, which is defined by means of the
Equivalence (1). Therefore, applying Proposition4 the
boundary condition⊤& y = y is obtained, for ally ∈ P.
⊓⊔

Analogously, the following proposition is obtained.

Proposition 7. Given a poset(P,≤), with a maximum
element⊤, and an adjoint triple(& ,ւ,տ) with respect
to P. The conjunctor satisfies x& ⊤ = x, for all x∈ P, if
and only if(P,տop,⊤) is a w-eo algebra and the natural
ordering in P is≤.
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Proof. The proof is similar to the previous one.⊓⊔

As a consequence, adjoint triples are less restrictive
operators. Therefore, multi-adjoint algebras are more
flexible structures than w-eo algebras. Moreover, different
adjoint triples can be considered, which provides an extra
useful feature as in the papers [8,11,19,21] was shown.

3.2 Extended-order algebras with two operators

This section begins presenting the residuated operator
⊗ : L × L → L, which was defined in [10,14] from
right-distributive w-ceo algebra(L,→,⊤) as follows:

a⊗ x=
∧

{t ∈ L | x� a→ t} (3)

Moreover, an additional binary operation was
introduced in order to enrich the structures shown in [10].
For this purpose, a right-distributive w-ceo algebra
(L,→,⊤) was considered and the presented operator was
denoted as : L×L → L satisfying the equivalence

a� b c iff a⊗b� c iff b� a→ c (4)

for all a,b,c∈ L.
So that, a triple is considered. Consequently, we will

compare this triple with adjoint triples in this section.
The flexibility supported by adjoint triples provides

that( ,⊗,→) straightforwardly is an adjoint triple.

Proposition 8. Given a complete lattice(L,�) and the
mappings , ⊗ and → defined above, the triple
( ,⊗,→) is an adjoint triple with respect to L.

Proof. The proof straightforwardly follows from
Equivalence (4). ⊓⊔

The symmetrical w-eo algebra was the following
structure shown in [10]. In the definition of this structure,
the operators and→ are considered.

Definition 6([10]). A w-eo algebra(L,→,⊤) is called
symmetrical if there exists a binary operation
 : L×L → L such that(L, ,⊤) is a w-eo algebra,→
and induce the same ordering and

y≤ x b if and only if x≤ y→ b

holds, for all b,x,y∈ L.
The w-eo algebras(L,→,⊤), (L, ,⊤) and their

implications→, are said to be dual to each other.

Due to symmetrical character of this notion,(L, ,⊤)
is symmetrical if and only if(L,→,⊤) is symmetrical [10].

From Proposition8 we assert that every symmetrical
right-distributive w-ceo algebra always provides an adjoint
triple.

Proposition 9. Let (L,→,⊤) be a symmetrical
right-distributive w-ceo algebra and the operator
⊗ : L×L → L defined by Equation(3), then(→,⊗, ) is
an adjoint triple on L.

However, the counterpart is not true. The following
proposition specifies the properties which must be
satisfied by an adjoint triple to obtain a symmetrical
right-distributive w-eo algebra.

Proposition 10. Given a poset(P,≤), with⊤ as maximum
element, and an adjoint triple(& ,ւ,տ) with respect to P.
The conjunctor satisfies x& ⊤ = x and⊤& y = y, for all
x,y∈ P, if and only if(P,ւop,⊤) is a symmetrical right-
distributive w-eo algebra and the natural ordering in P
is≤.

Proof. By Proposition6, we have that(P,ւop,⊤) is a
w-eo algebra and the natural ordering inP is ≤. Also, as
(& ,ւ,տ) is an adjoint triple, by Condition (1) of
Proposition 3, we obtain that (P,ւop,⊤) is a
right-distributive w-eo algebra.

Now, the symmetrical property must be proven.
Taking into account Proposition7, we obtain that
(P,տop,⊤) is a w-eo algebra and the natural ordering in
P is ≤. Therefore, we have that the implicationsտop and
ւop induce the same ordering inP. In addition, the
equivalence

y≤ xտop z if and only if x≤ yւop z

holds, for all x,y,z ∈ P, since (& ,ւ,տ) is an adjoint
triple. Therefore, (P,ւop,⊤) is a symmetrical
right-distributive w-eo algebra.

The counterpart is straightforwardly obtained from
Proposition4. ⊓⊔

An analogous result is obtained with respect to(P,տop
,⊤).

In a similar way, these results can be developed with
the left-distributive structures which were also introduced
in [10]. Therefore, right and left-distributive w-eo algebras
are more restrictive settings than multi-adjoint algebras.

4 Adjoint negations and extended-order
algebras with negations

In this section, we will show a comparison between the
negation operators presented in [10] and adjoint
negations [6]. The negation operators introduced by Della
Stella and Guido are defined from symmetrical algebras
as follows.

Definition 7([10]). Let (L,→,⊤) a w-ceo algebra. We
define the following unary operation

[·]− : L → L, x 7→ x− = x→⊥

c© 2015 NSP
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If (L,→,⊤) is a symmetrical w-ceo algebra, then we can
define a further unary operator

[·]∼ : L → L, x 7→ x∼ = x ⊥

Both these operations are callednegationand they are said
to be dual to each other.

The negation[·]− ([·]∼, respectively) isinvolutive if
x−− = x (x∼∼ = x, respectively), for every x∈ L.

The negations[·]− and[·]∼, and the symmetrical w-ceo
algebra as well, are said to becross-involutiveif x∼− =
x−∼ = x, for every x∈ L.

From definition above, basic properties of the negations
were stated in [10].

The adjoint negations are also residuated negations [1,
13,25] defined from the implications of an adjoint triple.

Definition 8([6]). Given two posets(P1,≤1), (P2,≤2), a
lower bounded poset(P3,≤3,⊥3) and an adjoint triple
(& ,ւ,տ) with respect to P1, P2 and P3, the mappings
nn : P1 → P2 and ns: P2 → P1 defined, for all x∈ P1,
y∈ P2 as

nn(x) =⊥3 տ x ns(y) =⊥3 ւ y

are calledadjoint negations with respect toP1 andP2.
The operators ns and nn satisfying that x= ns(nn(x))

and y= nn(ns(y)), for all x ∈ P1 and y∈ P2, are called
strong adjoint negations.

Note that, three different bounded partially ordered
sets have been considered in the definition of adjoint
negations, which provides a more general definition of
negation operator.

The following result fixes the relation between both
negation operators.

Proposition 11. Given a symmetrical w-ceo algebra
(L,→,⊤), the unary operations[·]− and [·]∼ are adjoint
negations.

Proof. The proof is straightforwardly obtained from
Proposition9 and Definitions8 and7. ⊓⊔

As a consequence, adjoint negations defined from
multi-adjoint algebras are more general than the ones
given from symmetrical algebras. Moreover, we can
conclude that the properties of the adjoint negations are
also satisfied by the operators[·]−, [·]∼.

Furthermore, almost all these properties given in [10]
are satisfied by adjoint negationsns and nn and so, less
conditions are needed to be satisfied.

One property that the adjoint negations do not verify,
in general, is thatns(⊤) = ⊥ and nn(⊤) = ⊥, although
the negation operators[·]− and[·]∼ defined in [10] always
satisfy these conditions⊤− =⊥ and⊤∼ =⊥.

Besides this property, for example, Proposition 6.2,
6.3 and 6.4 of [10] show properties that adjoint negations
verify. From now on, we will introduce some technical

results of adjoint negations which require less hypotheses
than the ones given in [10].

Firstly, we will introduce an important result which
relates these negations to Galois connections.

Proposition 12. Let (P1,≤1), (P2,≤2) be two posets,
(P3,≤3,⊥3) a lower bounded poset and ns, nn adjoint
negations. The pair(ns,nn) forms an antitone Galois
connection between P1 and P2.

Proof. In order to prove that(ns,nn) is an antitone Galois
connection betweenP1 andP2, we must to check thatns, nn
are order-reversing and the inequalitiesx ≤1 nsnn(x) and
y≤2 nnns(y) hold, for allx∈ P1 andy∈ P2.

Firstly, we will prove that ifx1,x2 ∈ P1 andx1 ≤1 x2,
thennn(x2) ≤2 nn(x1). We suppose thatx1 ≤1 x2, by the
monotony of the operator տ we obtain
⊥3 տ x2 ≤2 ⊥3 տ x1, which is equivalent to
nn(x2) ≤2 nn(x1). The monotonicity of ns is proven
analogously.

Now, we will check thatx≤1 nsnn(x) holds, for allx∈
P1. The adjoint property provides that the inequalityx≤1
⊥3 ւ (⊥3 տ x) is equivalent to the inequalityx&(⊥3 տ
x) ≤3 ⊥3 and they are true since, by the adjoint property,
the trivial inequality⊥3 տ x≤2 ⊥3 տ x holds, for allx∈
P1. The proof of the inequalityy≤2 nnns(y) is analogous.
⊓⊔

As a consequence, the properties of Galois
connections will be inherited by adjoint negations. The
following proposition recalls several of them, which are
associated with some of the properties corresponding to
Proposition 6.2, 6.3 and 6.4 of [10], avoiding extra
restrictions.

Proposition 13. Let (P1,≤1), (P2,≤2) be posets,
(P3,≤3,⊥3) lower bounded poset and ns,nn adjoint
negations. The following statements hold:

1.If (P1,≤1,⊥1,⊤1) and (P2,≤2,⊥2,⊤2) are bounded
partially ordered sets, then ns(⊥2) =⊤1 and nn(⊥1) =
⊤2;

2.nn and ns are antitone;
3.x≤1 nsnn(x) and y≤2 nnns(y);
4.nsnnns = ns and nnnsnn = nn;
5.nsnn and nnns are closure operators;
6.x≤1 ns(y) iff y ≤2 nn(x), for all x ∈ P1, y∈ P2;
7.When the supremum and the infimum exist, for any X⊆

P1, Y ⊆ P2,
(a)ns(

∨

y∈Y

y) =
∧

y∈Y

ns(y),

(b)nn(
∨

x∈X

x) =
∧

x∈X

nn(x).

The next results are associated with Proposition 6.2
of [10].

Proposition 14. Let (& ,ւ,տ) be an adjoint triple with
respect to the two posets(P1,≤1), (P2,≤2) and the lower
bounded poset(P3,≤3,⊥3). The adjoint negation ns and
nn, obtained from the adjoint triple, satisfies that ns(y)≤1
zւ y and nn(x)≤2 zտ x, for all x∈ P1, y∈ P2, z∈ P3.
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Proof. Clearly ⊥3 ≤3 z holds, for all z ∈ P3. As ւ is
order-preserving on the first argument, the inequality
⊥3 ւ y ≤1 zւ y is satisfied, for ally ∈ P2 and z∈ P3,
which is equivalent tons(y)≤1 zւ y.

The proof is analogous fornn(x)≤2 zտ x. ⊓⊔

Proposition 15. The adjoint negation ns, obtained from
the adjoint triple (& ,ւ,տ) with respect to the
join-semilattice (P1,≤1), the meet-semilattice(P2,≤2)
and the lower bounded poset(P3,≤3,⊥3), satisfies the
following properties for all{yi}i∈I ⊆ P2.

1.
∨

i∈I

ns(yi)≤1 ns(
∧

i∈I

yi);

2. If ns and nn are strong adjoint negations, then
∨

i∈I

ns(yi) = ns(
∧

i∈I

yi).

Proof. (1) By the infimum property and the monotonicity
of ւ, the inequality⊥3 ւ y≤1 ⊥3 ւ (

∧

i∈I yi) is verified,
for all {yi}i∈I ⊆P2. Now, applying the supremum property,
it is obtained that

∨

i∈I (⊥3 ւ yi) ≤1 ⊥3 ւ (
∧

i∈I yi), i.e.,
∨

i∈I ns(yi)≤1 ns(
∧

i∈I yi).
(2) Applying the operatorns to the Condition 7(b) of

Proposition 13, we obtain
ns(

∧

i∈I nn(xi)) = ns(nn(
∨

i∈I xi)), for all {xi}i∈I ⊆ P1.
Since ns is a strong adjoint negation, the equality
ns(

∧

i∈I nn(xi)) =
∨

i∈I xi holds, for all{xi}i∈I ⊆ P1.
Now, given {yi}i∈I ⊆ P2, applying the previous

equality to xi = ns(yi), we obtain
ns(

∧

i∈I nn(ns(yi))) =
∨

i∈I ns(yi). Hence, asnn is a strong
adjoint negation, we can conclude that
∨

i∈I ns(yi) = ns(
∧

i∈I yi), for all {yi}i∈I ⊆ P2. ⊓⊔

An analogous result is obtained consideringnn.

Proposition 16. Let (& ,ւ,տ) be an adjoint triple with
respect to the meet-semilattice(P1,≤1), the
join-semilattice(P2,≤2) and the lower bounded poset
(P3,≤3,⊥3). The adjoint negation nn satisfies the
following statements for all{xi}i∈I ⊆ P1.

1.
∨

i∈I

nn(xi)≤2 nn(
∧

i∈I

xi);

2. If ns and nn are strong adjoint negations, then
∨

i∈I

nn(xi) = nn(
∧

i∈I

xi).

The following proposition presents a generalization of
the properties given in Proposition 6.3 of [10], since they
are established in a more general framework.

Proposition 17. Given an adjoint triple(& ,ւ,տ) with
respect to the posets(P1,≤1), (P2,≤2) and the lower
bounded poset(P3,≤3,⊥3). The adjoint negation nn,
obtained from the residuated implicationւ, satisfies the
following properties, for all x∈ P1,y∈ P2.

1. x& nn(x) =⊥3
2. y≤2 nn(x) if and only if x& y=⊥3

Proof. (1) The trivial inequality⊥3 ≤3 x&(⊥3 տ x)
holds, for allx∈ P1. Therefore, we only have to prove that
x&(⊥3 տ x) ≤3 ⊥3, which follows applying the adjoint
property directly to⊥3 տ x≤2 ⊥3 տ x.

(2) Firstly, we will prove the first implication. The
equivalencey ≤2 nn(x) if and only if x& y ≤3 ⊥3 is
obtained straightforwardly from adjoint property.
Moreover, ⊥3 ≤3 x& y holds, for all x ∈ P1,y ∈ P2.
Therefore, we obtain thatx& y=⊥3.

In order to prove the counterpart, we suppose that
x& y = ⊥3. Clearly, x& y ≤3 ⊥3 which is equivalent to
y≤2 nn(x) by the adjoint property. ⊓⊔

The operatorns satisfies a similar result.
Therefore, although the definition of adjoint negations

is more general, they almost satisfy the same properties
that the negation operators from symmetrical w-eo
algebras, requiring less conditions in general.

5 Conclusions and future work

Two important structures, multi-adjoint algebras and
extended-order algebras, have been taken into account,
which were introduced under the same motivation:
reducing the mathematical requirements needed to
compute in several frameworks, such as in fuzzy logic,
fuzzy formal concept analysis, etc.

The formal definition of multi-adjoint algebra has
been introduced. Moreover, the main contribution have
been the comparison of both algebras in order to know
what is the most general one, keeping the needed
properties to compute in the applications.

Furthermore, since the use of residuated negations is
very useful in fuzzy logic and other frameworks, this
paper has considered adjoint negations from multi-adjoint
algebras, which are a generalization of the definition of
the logic connective. We have presented a comparison
between adjoint negations and negation operators
introduced in [10], obtaining that adjoint negations are
more general operators. Indeed, the properties satisfied by
the negation operators defined from symmetrical w-eo
algebras have been generalized avoiding extra restrictions
in most cases. Consequently, the applications in which
adjoint negations can be considered are wider.

As future work, more properties will be studied and the
comparison with other general structures will be given.
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