
Appl. Math. Inf. Sci. 7, No. 2, 755-761 (2013) 755

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

A Fast Regular Expressions Matching Algorithm for
NIDS
Meng-meng Zhang1∗, Yan Sun2 and Jing-zhong Wang3

1School of Information Engineering, North China University of Technology, Beijing 100144, China
2School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington 99164C2752, U.S.A
Email: zmm@ncut.edu.cn

Received: 8 Jul. 2012; Revised 4 Oct. 2012; Accepted 6 Dec. 2012
Published online: 1 Mar. 2013

Abstract: In this paper, we propose a new algorithm to accelerate the searching speed in network intrusion detection system (NIDS)
and we implement our algorithm in Snort, a popular open-source intrusion detection system. The algorithm is based on the fact that
normal data stream rarely matches any virus signature and different packets need to check different keys. The algorithm does not need
preprocessing and can check multiple characters in parallel. Experimental results show that our implementation is faster than original
NFA/DFA based algorithms to deal with the same real packet traces while consuming an order of magnitude less memory.

Keywords: NIDS, matching, Snort

1. Introduction

Computer network security [1] is gaining popularity
among network practitioners, with organizations investing
more time and money to protect their valuable informa-
tion. Security has also recently attracted considerable at-
tention from network researchers due to the importance
of network security has grown tremendously. A number
of devices have been introduced to improve the security
of a network, and the network intrusion detection systems
(NIDS) are among the most widely deployed such systems
[2, 3]. A network intrusion detection system (NIDS) is an
intrusion detection system that tries to detect malicious ac-
tivity such as denial of service attacks, port scans or even
attempts to crack into computers by monitoring network
traffic. The NIDS does this by reading all the incoming
packets and trying to find suspicious patterns. But exist-
ing methods such as Non-deterministic Finite Automata
(NFA), Deterministic Finite Automata (DFA) and Boyer-
Moore string search algorithm have limitations in this par-
ticular application.

Many important services in current networks are based
on payload inspection, in addition to headers processing.
NIDS as well as traffic monitoring and layer-7 filtering re-
quire an accurate analysis of packet content in search of

matching with a predefined data set of patterns to iden-
tify specific classes of applications, viruses, protocol defi-
nitions, etc. Traditionally, the data sets were constituted of
a number of signatures to be searched with string match-
ing algorithms, security signatures have been specified as
string based exact match, but the exact string matching
is not expressive enough to detect malicious patterns, so
nowadays more expressive regular expressions are used to
describe a wide variety of payload signatures [4]. For ex-
ample, in the Linux Application Protocol Classifier [5], all
protocol identifiers are expressed as regular expressions.
Similarly, the Snort [6], which is an open-source network
intrusion detection system, has evolved from no regular
expressions in its rule set in April 2003 to 5,549 out of
8,786 rules contain at least one Perl Compatible Regular
Expression (PCRE) as of November 2010. Another open-
source intrusion detection system, Bro [7], also uses reg-
ular expressions as its pattern language. These are used in
firewalls and devices by different vendors such as Cisco
[8].

Packet content scanning is crucial to network security
and network monitoring applications. Modern network de-
vices need to perform deep packet inspection at high speed
for security and application-specific services. Boyer-Moore
string search algorithm, which is a particularly efficient

∗ Corresponding author: email: zmm@ncut.edu.cn
c⃝ 2013 NSP

Natural Sciences Publishing Cor.

756 Meng-meng Zhang, et al. : A Fast Regular Expressions Matching Algorithm for NIDS

string searching algorithm and has been the standard bench-
mark for the practical string search literature, is widely
used in deep packet inspection, but it has two critical limi-
tations: first Boyer-Moore algorithms speed is not fast enough
because it needs to pre-process each target string (key) and
it cannot search multiple keys in parallel; second, it only
performs exact string matching. Finite Automata (FAs) [9–
13] are the most popular methods used to implement regu-
lar expressions matching these years, but they require com-
plex preprocessing to construct FAs and require a large
amount of memory.

Nondeterministic Finite Automata (NFA) are represen-
tations which require more state transitions per character,
thus having a time complexity for lookup of O(m), where
m is the number of states in the NFA; on the other hand,
they are very space-efficient structures. Instead, Determin-
istic FAs (DFAs) require only one state traversal per char-
acter, but for the current regular expression sets they need
an excessive amount of memory. When checking a particu-
lar packets payload, only a very small subset of the rule set
need to be considered, so DFAs waste most of the mem-
ory. For these reasons, such solutions do not seem to be
proper for implementation in real deep packet inspection
applications, which are required to perform on line packet
processing at high speeds.

To speed up the pattern matching speed, some hard-
ware solutions have been proposed [14–17], and they are
mostly based on Finite Automaton (FAs). In this paper, we
implement our algorithm based on software, but we argue
that our algorithm also efficient if implemented in hard-
ware such as FPGA, and we will focus on that in the future
work.

To the best of our knowledge this paper presents a
novel and different approach to the pattern matching prob-
lem: we divide the packets payload into fixed- length blocks
and performs the pattern matching for every block one by
one. For each block, only a small number of comparisons
are required based on the fact that normal data streams
rarely match any virus signature in NIDS and most of the
keys we need to compare are short. And multiple keys are
checked in parallel to accelerate the processing speed and
reduce the data dependency between instructions. For the
unfixed-length regular expression keys, our algorithm is
used as a hash table to exclude most of the packets from
further check. Our algorithm only need a small amount
of memory to store frequently used data, which stored in
Cache, so most of time the CPU does not need to access
main memory. The latency of memory access is usually
hundreds of times longer than the CPU execution clock
cycle, so our algorithm speeds up the pattern matching
mainly because of seldom memory access. The remain-
der of the paper is organized as follows. In section 2 NIDS
and Snort rule set are discussed. Section 3 describes our al-
gorithm and section 4 compares our algorithm with other
algorithms. Then in section 5 the implementation and sim-
ulation are shown. Finally, conclusions and future works
are exposed in Section 6.

2. NIDS and Snort

A network intrusion detection system (NIDS) is an im-
portant security tool for network administrators to protect
their networks. It enables them to monitor the networks
by inspecting packets in real time and detecting malicious
attacks such as unauthorized accesses, port scans, and de-
nial of service (DoS) attacks. A NIDS classifies packets
using a rule (or signature) database in order to determine
whether packets are malicious. Snort uses a simple lan-
guage to define rules to describe network behaviors. Each
rule consists of five mandatory fields and numerous option
fields. The mandatory fields include protocol type (e.g.,
TCP, UDP), source/destination IP addresses and port num-
bers, all of which are part of a packet header. A straight-
forward way to check whether a packet matches any of the
rules is to search the rule database in a brute force manner:
testing each rule against the packet one by one. It is easy to
implement but time-consuming. To reduce the number of
rules to examine, Snort builds a tree structure called rule
tree as shown in Figure 2.1 to store and organize all the
rules. For each rule, the mandatory fields are stored in a
rule tree node (RTN) and the option fields are stored in an
option tree node (OTN). An OTN is associated with the
corresponding RTN. If there are multiple rules that have
the same mandatory fields, only a single RTN is created
and OTNs share it.

Figure 2.1 A simple rule tree in Snort

3. Proposed Fast Regular Expressions
Matching Algorithm

A. Related works on Regular Expressions Matching

Our proposed fast regular expressions matching algorithm
focus on the pattern matching over packets payload. When
a rule matches all the mandatory fields in a packet header,
our pattern matching engine performs string pattern match-
ing over payload, and the keys are stored in the corre-
sponding OTN set.

The traditional DFA based NIDS has three main lim-
itations: first they fail to exploit the fact that normal data
streams rarely match any virus signature; second, DFAs

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 755-761 (2013) / www.naturalspublishing.com/Journals.asp 757

are extremely inefficient in following multiple partially match-
ing signatures, and third DFAs require long latency to be
reconstructed when the rule set is updated. We propose
mechanisms to solve these drawbacks and demonstrate that
our solutions can implement a NIDS much more efficiently.

When the string pattern matching over payload is need,
only a small number of keys need to be checked. Typically,
on microprocessors, the key matching isperformed by first
converting the given key into a corresponding NFA or De-
terministic Finite Automaton (DFA) which is then used
to search input text characters. While a DFA can process

Figure 3.2 Architecture of the Fast String Matching

each character in constant time (i.e. it requires O(1) time),
the number of DFA states, for an n character key, can be
O(2n) [18] , which in some cases can significantly degrade
performance. Some recent methods use all the keys to con-
struct big DFAs in order to check multiple keys in parallel
and can check one character each time but almost need
memory access each time, which will increase the search-
ing latency. Unfortunately, most of packets rarely match
any keys, so we want to exclude the unmatched packets
fast and check the payload of a packet in parallel instead
of checking one character each time.
B. Proposed Fast Regular Expressions Matching Algorithm

First, lets consider exact string matching. We divide the
payload of a packet into same-length blocks. Assuming
that the length of a block is L bytes, and need three L-bit
long Windows to record the temporary result. The Window
used to record current being checked blocks result is called
Current Window (CW), the record generated by the previ-
ous block is called Previous Window (PW), and the re-
sult generated by current block and used for the next block
matching is called Next Window (NW). The architecture
of the proposed string matching engine is shown in Figure
3.1.

Our engine checks the blocks on by one as following
steps:

Step 1: For the first block, the three windows are set to
be zero and set a counter “CNT” to be L for initialization.

Step 2: If CNT is L, NXOR the current block with L
duplicated first character of the key, and store the L-bit re-
sult into CW, or NXOR the current block with L duplicated
next character of the key then take AND operation with the
CW and store the result into CW.

Step 3: If this is the last character in the key and the
new CW is not zero, then a match has been found, or go to
step 4.

Step 4: If the PW and CW are all zero, shift {CW, NW}
CNT bits right, then copy the NW to PW, set CNT to be L
and move in the next block for further check.

Step 5: If the PW is all zero and CW is all zero except
the least significant bit, shift {CW, NW} CNT bits right,
then copy the NW to PW, set CNT to be L and move in the
next block for further check.

Step 6: If PW is not zero, or CW is not zero or one,
shift {PW, CW, NW} one bit right and CNT count down
1.

Step 7:Go back to step 2.
A simple example is shown in Figure 3. In this example,L=

8, key=“key”, block 1 and block 2 contain a string “Tm-
norrkeyinokruk”. From (b) to (c), a new block moves in
and {CW, NW} shifts 7-bit right (CNT = 7). Some win-
dows are omitted in Figure 3.2. if the content of the win-
dow is “00000000”, and a match is found in (e).

Above sequence is a subset of our algorithm, for we
do not consider the wild cards in regular expressions and
we assume the length of key is less these two problems in
section 3.3. From the theory and experimental Results, we
can conclude:

a) If a block does not contain the first character of key,
only once check is needed for this block, and experimental
results show that when L = 8, approximate 83 percent of
blocks only need to check 1 to 3 times for each block.

b) The longer of the block length the better perfor-
mance we can get, because the times of comparison in a
block only depend on the longest match in this block and
the previous one. So the times of comparison in a large
combined block is roughly the same as times of compari-
son in the longest times of these small blocks.

c) This algorithm does not require preprocessing and
rarely access memory for does not need to save or restore
much data.

d) We can check multiple keys simultaneously. Match
one block with keys one by one and only need to save the
temporary result of each key, and they can be stored in reg-
isters or cache to avoid time consuming memory access.
And this also can reduce the data dependency during the
instruction execution of a single key.

We need to consider the worst case even though it seems
cannot happen ever. For the worst case, every block needs
L comparisons with one key, but only this special key can
match the worst case condition. Even though this needs
much more comparisons, our algorithm still can achieve
high packet throughput for these simple instructions have
much shorter latency compared with memory access. And
we will discuss the detail of the worst case later.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

758 Meng-meng Zhang, et al. : A Fast Regular Expressions Matching Algorithm for NIDS

Figure 3.3 Architecture of the Fast String Matching

C. Special Cases

The algorithm above is based on some assumptions, but
we need to consider all situations in practice, so we will
discuss these in this section.

1. Long Key Problem
If the length of a key is larger than the length of the

block, we can use double windows (or more windows) to
deal with and calculate using the similar way. Actually, we
cut the long key into several L byte pieces and compare
them with one block separately, then multiple results are
passed on to the next block comparison.

2. Non-Exact Character
In the recent rule sets, some characters are not “exact”,

but the length of the characters is “exact”, such as “!a”
and “a|b”, which mean “is not character a and character
a or character b” separately. For these characters, we can
simply modify the operations used in the comparisons. For
example, we can use XOR operation instead of NXOR to
represent “!a”, and use (NXOR a)|(NXOR b) to represent
“a|b”.

3. Variable Length Key
Some regular expressions have variable length, such as

Kleene Star (*), which means matches zero or more occur-
rences of the regular expression. So when there are random
numbers of characters in the key, we have two methods to
deal with.

The first is that we can find the fixed-length prefix of
the key as a hash value, and some of the packets will be
excluded using the hash value as a new key. Thats because

a packets payload does not match a part of the key must
not match the whole key. And we can prove that we can
find at least one-character long exact prefix in any regular
expression because the first character in every regular ex-
pression must not be marked by a Kleene Star. For exam-
ple, a regular expression “a∗bc+d” is equal to “bc+d”,
for the “a∗” is meaningless, and we only need to check
bc, which is the max exact prefix, as the hash value to per-
form string matching over packets payload. When the first
match is found, further match checking is needed. But we
only need to check the reminder part of the regular expres-
sion instead of the whole one to reduce the states of DFAs.
So we construct a simple DFA for the remainder part of the
regular expression, and use the result created by the hash
value to perform further checking. Only the strings follow
the matched hash value need further checking and finish
this possible match checking when the start state in the
DFA is active. So only a small part of the packets payload
goes into the DFA when a packets payload need further
checking.

We can also build a big DFA engine to combine all
these variable length keys instead of several small DFAs.
But experimental results show that this method is worse
than the previous one, thats because: (1) Building several
small DFAs is faster than building a big combined DFA;
(2) After checking the prefix, only a small part of the pack-
ets payload need further checking and among them only
a small part of a packets payload goes into the DFA; (3)
Some small DFAs can be reused by other packets and easy
to be stored in Cache.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 755-761 (2013) / www.naturalspublishing.com/Journals.asp 759

The second method uses counters instead of DFAs.
This avoids using DFAs but need to preprocess the reg-
ular expressions. The preprocessor divides the regular ex-
pressions in to several pieces to separate the exact length
parts and variable length parts. For example, abc+d” can be
divided into three pieces: “abc”, “c*” and “d”. Using the
method discussed above When checking “abc” and “d”,
and the only difference is how to check“c*”. Our engine
checks “c*” matching after checking the string “abc”, and
the difference is that the result of the NXOR operation
should be stored in a Temporary Window (TW) instead
of updating Current Window(CW), and the three windows
(PW, CW and NW) stalled during this matching. Then the
matching engine compares character d using NXOR oper-
ation and the result is called T. The i th bit of the CW can
be updated using the following equation:

CW (i) = T (i)&(CW (i)|(TW (i+1)&CW (i+1))
|(TW (i+2)&TW (i+1)&CW (i+2))|...|(TW (L−1)&...&

TW (i+1)&CW (L−1)))
(1)

We need to use counters to record the length of char-
acter “c” between “abc” and “d” if the regular expressions
have length require of “c”, such as matching N or more
occurrences of the character “c”. Table 1 shows the sup-
ported regular expressions (RegExp).

4. Comparison with Boyer-Moore string
search algorithm

The BoyerCMoore string search algorithm is a partic-
ularly efficient string searching algorithm, and it has been
the standard benchmark for the practical string searching.
Usually, the Snort use Boyer-Moore string search algo-
rithm to perform pattern matching, but this algorithm needs
to preprocess each key and needs to check one character
each time even though can skips over some of the charac-
ters in the payload. Furthermore, this algorithm gets faster
as the key being searched for becomes longer, but most
keys are short in the Snort rules.
Compare with Boyer-Moore string search algorithm, our
algorithm have following advantages:
a) Our algorithm does not need to preprocess each key.
b) The length of packets payload shifted in is fixed (one
block), but the length of packets payload shifted in for
Boyer-Moore algorithm depends on the previous checking
result.
c) The above two “static” properties make our algorithm
more easy to be implemented in hardware, such as in FPGA.
d) The length of packet shift in is fixed instead of depends
on the previous checking result, and this makes our algo-
rithm more easy to check multiple keys in parallel.
e) Our algorithm checks the characters in parallel instead
of one by one. Our algorithm is more scalable.

For Boyer-Moore string search algorithm, the worst-case
to find all occurrences in a payload needs approximately
3 ∗N comparisons, and N is the number of characters in
the payload. For our algorithm, the worst-case to find all
occurrences in a payload needs approximately N compar-
isons. In the worst-case situation, the length of the key is
equal to the length of the block and all the characters ex-
cept the last one of the key is the same as content of each
block, for example, the key is “abc”, the length of block is
3 and the payload is “abdabeabdabf...”.

5. Implementation and Simulation

We implement our algorithm in Snort 2.8.3.1., and use
the intrusion detection evaluation data set from the MIT
DARPA for performance comparison. We compare our al-
gorithm with the original detection engine of Snort, the
start-of-the-art NFA-based regular expression matching al-
gorithm and DFA-based algorithm proposed in [19] . All
the experimental results reported were obtained on PCs
with 3 GHz CPU and 3 GB memory. The results are shown
in Table II. Our algorithm is 17 times faster than the NFA-
based algorithm and consumes a half of the memory used
by the NFA-based algorithm.

Compared to DFA-based algorithm, our algorithm has
approximate 7 times performance improvements and re-
duces the memory usage to one-ninth.

6. Conclusion and future work

In this paper, we propose a new algorithm to acceler-
ate the searching speed in NIDS and we implement our
algorithm in Snort. Our algorithm based on the fact that
normal data stream rarely matches any virus signature and
different packets need to check different keys. Compared
with Boyer-Moore string search algorithm, our algorithm
has many advantages in some special applications. Our al-
gorithm does not need preprocessing and can check mul-
tiple characters in parallel. Experimental results show that
our implementation is faster than original NFA/DFA based
algorithms to deal with the same real packet traces while
consuming less memory. Even though some papers have
proposed many methods to improve the NFA/DFA algo-
rithms to meet the requirements of high throughput and
low memory consumption, our algorithm solves these prob-
lems through a novel way. Further, based on analysis dis-
cussed in section 4, our algorithm is easy to be imple-
mented in FPGA, so configuring our algorithm onto ASIC/FPGA
to further increase the throughput are being worked out.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

760 Meng-meng Zhang, et al. : A Fast Regular Expressions Matching Algorithm for NIDS

Table 1 Syntaxes currently supported by our Regular Expression Engine

Syntax Description Support
abc123.. All ASCII alphanumerics, match a single occurrence of themselves Well

. Dot: Matches any character other than . Well
RegExp Groups regular expressions, so syntaxes can be applied. Well

RegExp1RegExp2 Concatenation: Regular Expression 1, followed by Regular Expression 2. Well
RegExp1/RegExp2 Union: Regular Expression 1 OR Regular Expression 2. Well

RegExp* Kleene Star: Matches zero or more occurrences of the regular expression. Not well, need additional processing
RegExp+ Plus: Matches one or more occurrences of the regular expression. Not well, need

additional processing
RegExp? Question Mark: Matches at most one occurrence of the regular Well, but need

expression. additional processing
RegExpN Exactly matches N occurrences of the regular expression. Well
RegExpN, At least: Matches N or more occurrences of the regular expression. Not well, need

additional processing
RegExp,M At most: Matches M or less occurrences of the regular expression. Not well, need

additional processing
RegExpN,M Between: Matches if the regular expression occurs between N and M Not well, need

times. additional processing
NRegExp Anchor: Matches the regular expression at position N from the Well

beginning of the payload.

Table 2 Comparison between different algorithms

Average Memory Average
Algorithms Consumption(KB) Throughput

(Gbps)
NFA-based 1763 0.124
DFA-based 7532 0.319

Our approach 827 2.108

7. ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (61103113) and BJNSF (KZ2010
10009008).

References

[1] Liu Yanguo Michael. Properties for Security Measures of
Software Products. Applied Mathematics & Information Sci-
ences.vol: 1, (2007) 129-156.

[2] Pastrana, S. Orfila, A. Ribagorda. A Functional Framework
to Evade Network IDS, 2011 44th Hawaii International Con-
ference on System Sciences (HICSS), (2011)1 C 10.

[3] Daeseob L. and Dongho W. A Study on Security Manage-
ment Service System for Wireless Network Environment, Ap-
plied Mathematics & Information Sciences , VOL: 6, (2012)
209-220.

[4] R. Sommer and V. Paxson. Enhancing byte-level network in-
trusion detection signatures with context, CCS ’03 Proceed-
ings of the 10th ACM conference on Computer and commu-
nications security, (2003)262-271.

[5] J. Levandoski, E. Sommer, and M. Strait. Application Layer
Packet Classifier for Linux. http://l7- filter.sourceforge.net/.

[6] SNORT Network Intrusion Detection System.
http://www.snort.org.

[7] “Bro Intrusion Detection System”. http://bro-ids.org
/Overview.html.

[8] J. William and Will Eatherton, An encoded version of reg-
ex database from cisco systems provided for research pur-
poses.2005.

[9] Y. Sun, Victor Valgenti and Min Sik Kim, Hierarchical NFA-
Based Pattern Matching for Deep Packet Inspection, In Pro-
ceeding of ICCCN11. (2011) 1-12.

[10] Y. Sun and M. S. Kim, DFA-based Regular Expression
Matching on Compressed Traffic. In Proceeding of IEEE
International Conference on Communications (ICC’11).
(2011)1-5. June

[11] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.
Turner, Algorithms to accelerate multiple regular expressions
matching for deep packet inspection. In Proc. of SIGCOMM
’06. (2006)339-350.

[12] Y. Sun, H. Liu, V. Valgenti and M. S. Kim, Hybrid Regular
Expression Matching for Deep Packet Inspection on Multi-
core Architecture. In Proceeding of the International Confer-
ence on Computer Communication Networks, (ICCCN’10).
(2010)1-7. Aug.

[13] R. Smith, C. Estan, and S. Jha. XFA: Faster signature match-
ing with extended automata, In IEEE Symposium on Security
and Privacy, (2008)187-201.

[14] I. Bonesana, M. Paolieri, and M.D. Santambrogio. An adapt-
able FPGA-based System for Regular Expression Matching,
Design, Automation and Test in Europe, (2008)1262 C1267.

[15] P. Marco, B. Ivano, S. Marco D. ReCPU: A parallel and
pipelined architecture for regular expression matching, IFIP
International Conference on Very Large Scale Integration,
(2007)19 - 24. Oct.

[16] N. Yamagaki, R. Sidhu, S. Kamiya, “High-speed regular ex-
pression matching engine using multi-character NFA”, Inter-

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 2, 755-761 (2013) / www.naturalspublishing.com/Journals.asp 761

national Conference on Field Programmable Logic and Ap-
plications. (2008)131-136. Sept.

[17] W. Zhang, Y. Xue, D.S. Wang, T. Song, “A multiple simple
regular expression matching architecture and coprocessor for
deep packet inspection”, Asia-Pacific Conference on Com-
puter Systems Architecture. (2008) 1-8.

[18] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to Automata Theory, Languages and Computability, 2nd Edi-
tion, Addison-Wesley, Nov. 2000.

[19] D. Ficara, S. Giordano, G. Procissi, etc.. An improved DFA
for fast regular expression matching, SIGCOMM Comput.
Commun. Rev, (2008)29 C 40.

Mengmeng Zhang received
the MS degree in Electrical En-
gineering from Beijing Jiaotong
University in 1996, and the PhD
degree in Communication En-
gineering from University of Sci-
ence and Technology of Bei-
jing in 2011. He is currently
an associate professor in North
China University of China. His
research interests are in the ar-

eas of network security and image video coding.

Yan Sun received his B.S.
degree in Applied Physics in
2005 from University of Sci-
ence and Technology, Beijing,
China, the M.S. degree in 2008
in Microelectronics from Uni-
versity of Science and Tech-
nology of China, and PhD in
Computer Science from Wash-
ington State University in 2011.
He is currently a Staff Scien-

tist in Broadcom at Santa Clara, CA. USA. His research in-
terests include Network Security, High-Performance VLSI
systems and computer architectures.

Jingzhong Wang received
his MS degree in Computer Sci-
ence and Technology form In-
ner Mongolia University of Tech-
nology, Beijing, China. He is
currently a professor in North
China University of China. His
research interests ere in the ar-
eas of computer information se-
curity and digital image pro-
cessing.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

