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Inverse of the Vandermonde and Vandermonde confluent matrices
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The inverse of the Vandermonde and confluent Vandermonde matrices are presented.
In the case of the Vandermonde matrix, we present a decomposition in three factors,
one of them a diagonal matrix. The evaluation of such inverse matrices is a key point
to find functions of a matrix, namely exponential functions (evolution operators) and
logarithmic functions (entropies) in quantum mechanical topics.
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1 Introduction

Although Vandermonde systems arise in many approximation and interpolation prob-
lems [?, 2], they also appear when we need to solve systems of differential equations [3],
such as when we interact a multi-level atom with a classical or quantum field, a trapped ion
with a laser field (see for instance [4]), etc. When an atom interacts with a quantized field
they get entangled [5]. This produces that, by analyzing the density matrix of the atom or
the density matrix of the quantized field, we can determine when they disentangle. To do
so we need either to calculate the entropy of the sub-systems and this requires evaluation
of functions of (density) matrices.

In the particular case of the entropy, we need to calculate logarithmic functions of the
sub-system’s density matrices [5]. Vandermonde matrices, and in particular, their inverse,
are helpful to determine such functions. A more common function is the exponential func-
tion of a matrix, as a Hamiltonian may be written usually in matrix form, and therefore the
solution of Scrödinger equations involve the use of evolution operators, i.e. exponentials of
Hamiltonians (see for instance [6], also for the case when superoperators are considered,
and [7] for time dependent Hamiltonians). The key point for the evalution of such functions
is to find the inverse of a Vandermonde matrix or of the confluent Vandermonde matrix (in
case there are repeated eigenvalues). The purpose of the present paper is precisely this.
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2 Vandermonde matrices

A matrix N ×N of the form

V =



1 1 1 . . . 1 1

λ1 λ2 λ3 . . . λN−1 λN

λ2
1 λ2

2 λ2
3 . . . λ2

N−1 λ2
N

λ3
1 λ3

2 λ3
3 . . . λ3

N−1 λ3
N

. . . . . . . .

. . . . . . . .

. . . . . . . .

λN−1
1 λN−1

2 λN−1
3 . . . λN−1

N−1 λN−1
N


(2.1)

or
Vi,j = λi−1

j i = 1, 2, 3, ..., N ; j = 1, 2, 3, ..., N (2.2)

is said to be a Vandermonde matrix [?, 8].
The determinant of the Vandermonde matrix can be expressed as det (V ) =∏

1≤i≤j≤N

(λj − λi). Therefore, if the numbers λ1, λ2, ..., λN are distinct, V is a nonsingu-

lar matrix [8].
When two or more λi are equal, the corresponding matrix is singular. In that case,

one may use a generalization called confluent Vandermonde matrix [?, 9], which makes
the matrix non-singular, while retaining most properties. If λi = λi+1 = ... = λi+k and
λi ̸= λi−1, then the (i+ k)th column is given by

Ci+k,j =
{ 0 j ≤ k

(j − 1)!

(j − k − 1)!
xj−k−1
i j > k

(2.3)

The confluent Vandermonde matrix looks as

C =

1 1 ... 1 0 0 ... 1 1

λ1 λ2 ... λi 1 0 ... λm−1 λm

λ2
1 λ2

2 ... λ2
i 2λi 0 ... λ2

m−1 λ2
m

λ3
1 λ3

2 ... λ3
i 3λ2

i . ... λ3
m−1 λ3

m

... ... ... ... ...
(i− 1)!

(i− k − 1)!
λi−k−1
i ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

λn−1
1 λn−1

2 ... λn−1
i (n− 1)λn−2

i

(n− 1)!

(n− k − 1)!
λn−k−1
i ... λn−1

m−1 λn−1
m


.

(2.4)

Another way to write the (i+ k) column is using the derivative, as follows
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Ci,j+k =
dCi,j+k−1

dλj
. (2.5)

3 The inverse of the Vandermonde matrix

In applications, a key role is played by the inverse of the Vandermonde and confluent
Vandermonde matrices [?, ?, ?, ?, 2, 3, 13, 14]. Both matrices, Vandermonde and confluent
Vandermonde, can be factored into a lower triangular matrix L′ and an upper triangular
matrix U ′ where V or C is equal to L′U ′. The factorization is unique if no row or column
interchanges are made and if it is specified that the diagonal elements of U ′ are unity.

Then, we can write V −1 = (U ′)
−1

(L′)
−1. Denoting (U ′)

−1 as U , we have found that
U is an upper triangular matrix whose elements are

Ui,j = 0 if i > j

Ui,j =
j∏

k=1, k ̸=i

1

λi − λk
otherwise.

The matrix U can be decomposed as the product of a diagonal matrix D and other upper
triangular matrix W. It is very easy to find that

Di,j =
{ N∏

k=1, k ̸=i

1

λi − λk
i = j

0 i ̸= j

(3.1)

and

Wi,j =
{ 0 i > j

N∏
k=j+1, k ̸=i

(λi − λk) otherwise
. (3.2)

The matrix L = (L′)
−1 is a lower triangular matrix, whose elements are

Li,j =
{ 0 i < j

1 i = j

Li−1,j−1 − Li−1,jλi−1 i = 2, 3, ..., N ; j = 2, 3, ..., i− 1

. (3.3)

Summarizing, the inverse of the Vandermonde matrix can be written as V −1 = DWL.

4 The inverse of the confluent Vandermonde matrix

We will treat now the case of the confluent Vandermonde matrix. We suppose that
just one of the values λi is repeated, and it is repeated m times. We make the usual LU
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decomposition, getting C = L′
cU

′
c, where L′

c is a lower triangular matrix and U ′
c an upper

triangular matrix U ′. Then, we can write C−1 = (U ′
c)

−1
(L′

c)
−1. Denoting (U ′

c)
−1 as Uc,

we have found that Uc is an upper triangular matrix whose elements are

(Uc)i,j = 0 i i > j (4.1)

(Uc)i,j =
δij

(i− 1)!
i = 1, 2, 3, ...,m; j = 1, 2, 3, ...,m (4.2)

(Uc)i,j = − 1

(i− 1)!

j∑
α=m+1

j∏
β=i,β ̸=α

1

(λα − λβ)
(4.3)

i = 1, 2, 3, ...,m;

j = m+ 1,m+ 2, ..., N

(Uc)i,j =

j∏
β=1,β ̸=α

1

(λi − λβ)
i = m+ 1,m+ 2, ..., N ; j = i, ..., N (4.4)

where it is understood that λm = λm−1 = ... = λ2 = λ1, and where the numbers
λm, λm−1, ..., λ2 appear, they must be substituted by λ1.

The matrix Lc = (L′
c)

−1 is a lower triangular matrix, whose elements are given by the
following recurrence relation,

(Lc)i,j =
{ 0 ifi < j

1 ifi = j

(Lc)i,ji−1,j−1 − (Lc)i,ji−1,jλi−1 ifi = 2, 3, ..., N ; j = 2, 3, ..., i− 1

,

(4.5)
also here it is understood that λm = λm−1 = ... = λ2 = λ1, and where the numbers
λm, λm−1, ..., λ2 appear, they must be substituted by λ1.

When more than one value is repeated, the inverse has blocks with the same structure
that we have already found.

5 Conclusions

We have shown a form to determine the inverse of Vandermonde and confluent Vander-
monde matrices. Although several studies exist for Vandermonde matrices, it is not so for
systems with repeated eigenvalues, which lead to confluent matrices. Such inverse matrices
are of importance in several quantum mechanical topics where it is needed to find functions
of matrices, such as in quantum information processes, where entropies play a key role.
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