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Abstract: In this article, the problem of determining the optimal spartation schedule is formulated as multiobjective captsc
fractional transportation problem with mixed constrainitswhich objectives are fractional functions and constisiare linear. The
compromise solution of the problem is derived by using a yugmgramming approach, in which we use three different form
of membership functions viz. linear, exponential and higpéc, and lexicographic goal programming with minimum tdigces
techniques. The problem and solution procedures are deératetsthrough a numerical example.
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1 Introduction are varying.

In  mathematical optimization, linear fractional Real life TPs are mostly multiobjective and in case of
programming (LFP) is a generalization of linear multiple conflicting objectives, it is not necessary tha th
programming (LP). As the objective functions in linear optimum solution for one objective is also optimum for
programs are linear functions, the objective function in athe others. So, in order to deal with such solutions, a
linear fractional program is a ratio of two linear functions compromise criterion is used in which a solution is
A linear program can be regarded as a special case of abtained which is optimum for all the objectives in some
linear fractional program in which the denominator is the sense. Also, real life TPs have mixed constraints but no
constant function one. systematic method for finding an optimal solution for TPs
. ) o . with mixed constraints are revealed in literature. Regentl
The Transportation problem (TP) is a situation in which asome authors consider this situation such as Adlakha et
product/products is/are to be transported from severaly [1], Mondal et al. [L0],Gupta and Bari§], etc.
sources (also called origin, supply or capacity centers) to
several sinks (also called destination, demand orn this article, multiobjective capacitated fractional
requirement centers). HitchcocK][developed the basic transportation problem (MOCFTP) with mixed
transportation problem. The TP in which the objective constraints is formulated in which the objective functions
function is of fractional type are known as Fractional are fractional, that is, its a ratio of two linear functions.
transportation problem (FTP). The FTP was originally Fractional programs finds its application in a variety of
proposed by Swarup 1l]. The TP with fractional real world problems such as stock cutting problem,
objective functions have been extensively used by severalesource allocation problems, routing problem for ships
authors such as Verma and PutP] worked on paradox and planes, cargo loading problem, inventory problem
in LFTP, Gupta et al.d] presented a paradox in linear and many other problems. The compromise solution is
fractional TPs with mixed constraints, etc. Recently, somederived by two approaches viz, fuzzy programming and
authors who have discussed FTPs are Khurana and Arorexicographic goal programming with minimum
[9], Gupta and Arora 3, 5, 4]. Joshi and Gupta§ distances. To demonstrate the problem and solution
investigated the transportation problem with fractional procedures a numerical example is provided.
objective function when the demand and supply quantities
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2 Formulation of the problem

Consider a fractional transportation problem with
origins havinga (i = 1,2,...,m) units of supply to be
transported among destinations witb; (j =1,2,...,n)

units of demand. Here we consider three fractional Payoff Matrix=

objective functions , which are

—Units transporting costi; due to the traveled route
and unit transporting cost due to preferring route
for transporting the product froni" origin to j"
destination.

—Actual transportation timet;’j—1

and a standard
transportation timetﬁ, for transporting the product

fromit" origin to j" destination.
—Unit transporting damage cody; (lost of quality and

model first we have to define the payoff matrix as:

C D T
Xi(jl> C(Xi(jl>) D(Xi(jl>) T(Xi(jl>)
2 2 2 2
Xi(j> C(Xi(j)) D(Xi(j)) T(Xi(j))
K I k :k
X0 Loy by T
wherexi(jk); k=12,...,K are the individual optimum
solutions.

Now, the membership functions for the problem are
defined. Let the membership functions for the cost
objective are:

guantity of transportation)due to the traveled route and
unit transporting damage cost due to preferring route3.1.1 Linear membership function

rij, for transporting the product froif" origin to jt"
destination.

For cost objective function a linear membership function
u(C) is defined as:

The problem is to determine the transportation schedule

of transporting the available quantity of products, to
satisfy demand that minimizes the total transportation

cost, time and damage charges. kgtbe the number of
units transported front" origin to j'" destination. Then,
the mathematical model for the MOCFTP with mixed
constraints can be expressed as follows:

Yit1 3 1 FijXj

m n SRV
2i=12j=1CijXj
m

Minimize C= =¥——=————
ity 3 riXij
subject to inj{g /=/>}a

Minimize T = max{ ———

i {tisj|x“- >0
m o0 dixi
Minimize D = 221212100

tiéjl|Xij >0
1)
i=

_ixﬁs/z/zwj
=

lij <xj <sj; Xj >0.

whereljj be the minimum ang; be the maximum amount
of quantity transported froiff’ origin to j" destination i.e.
Xij < §j or the capacitated restriction on the route j.

3 Optimization Techniques

3.1 Fuzzy programming with different
membership functions

1 ifc<g
pt{C} = CC:'—_‘g,ifQ <C<GCy
0, IfC>Cy

whereC; and C, are respectively the lower and upper
tolerance limits of the objective functions such that the
degrees of the membership function are 0 and 1,
respectively.

3.1.2 Exponential membership function

For cost objective function an exponential membership
functionu®(C) is defined as:

1 ifc<G
-a(C-C)
E — —
HE{Cy =4 Clu_*e‘f'm)_;x“ Yifci<c<cy

ifC>Cy, and o —

where o is a non-zero parameter, prescribed by the
decision maker and;, C, have the usual meaning as
described in section 3.1.

3.1.3 Hyperbolic membership function

For cost objective function a hyperbolic membership
functionu™ (C) is defined as:

1 ifC <G
uh{c} = %tanh((cl‘;c' —C) ak) +lifc<c<qy
0 ifC>Cy

whereay = ﬁ andC;, C, have the usual meaning as
described in section 3.1.

To derive the compromise solution of MOCFTP we are This membership function has the following formal
using fuzzy programming (FP). To formulate the fuzzy properties given by Zimmermant3:
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—uM(C) is strictly monotonously decreasing function hyperbolic membership function, as follows:

with respect tC.

_“H(C) -2 <:>C— 2(CU+CI)

—uH (C) is strictly convex foC > 3 (CU+C|) and strictly
concave folC < 3(C, +C|)

-uH(C )satlsf|e50<u (C )<1forC| <uH(c
and approaches asymptotically™(C) =
ut(C) = 1 asC — o and—o respectively.

) <

0 and

Similarly, the membership functions for the other
objectivesi.e., time & damage charges, can be defined.

Minimize o

subject to - tanh((
(2
(>

;Xij{S/Z/Z}bj

ZNJ{</ / =}a;
=

lij <xj <sj; xj >0, d>0.

1
2
1

Tu+T

Du‘|‘DI

(4)

Now, the MOCFTP with mixed constraints given in eq. Whered represents the deviations.

(1) can be written as an equivalent linear model, for linear
membership function, as follows:

Minimize o
—-C
subject to <o
e =
Tu—T Dy,—D
<9 <
Tu—T <0 Dy— Dy <o

i=ixu*{ﬁ/:/Z}a@: élxij{S/Z/Z}bj

lij <xij <sj; xj=>0;, d>0.

(2)

Similarly, the MOCFTP with mixed constraints given in

eg. (1) can be written as an equivalent nonlinear model,

for exponential membership function, as follows:

Minimize &
S b'ecttoexp( & Cl) Sx-) 0
b 1—exp—a) -
exp(i) exp—a)
1—exg—a) <0
exp(i“D D ) exp—a)
1—exp—a) <o
Zixij{ﬁ /=/>}a; leij{é / =/ >}bj
i= =
lij <xj <sj; %j>0; d>0.

3)
And, the MOCFTP with mixed constraints given in eq.
(1) can be written as an equivalent nonlinear model, fo

3.2 Lexicographic goal programming with
minimum distance

Lexicographic goal programming (LGP), also termed as
Preemptive goal programming, mainly features the
existence of number of priority levels. Each priority level
contains a number of unwanted deviations to be
minimized or in other words unwanted deviations are
placed into priority levels. LGP with minimum distance is
an improved form of original LGP. For solving LGP with
minimum distance, firstly the priorities are given to
objectives one after the other and a set of solution is
obtained, then an ideal solution is identified as follows:

Table 1: Calculations for ideal solutions

Priority Structure| x31 X2 Xpq
S
P X7 % Xbq
P ) X e
Ideal Solution | Xj; X5 Xpg
Ideal Solution =
‘ G G 1
xij:{mln(x<11)7...7x(1r1))7m|n(x<22)7...7x(2r) mln(xE]q)7 7xg&)}
= {X11,%02: - - -, Xpq -

A general procedure with K objectives is the following.
As explained above, we will obtain K! (Factorial)
different solutions by solving the K! problems arising for
K! different priority structures.

Let x| = {x{},503.....X)}.1 < r < K! be the K
number of solutions obtained by giving priorities to K
objective functions. Let(xj;,X5,,...,Xp,) be the ideal

rsolution. But in practice ideal solution can never be
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achieved. The solution, which is closest to the ideal Table 3: Cost Matrix

solution, is acceptable as the best compromise solution, by by bs | Supply
and the corresponding priority structure is identified as a 5/3 714 15/13| <12

most appropriate priority structure in the planning a 8/12  17/14 12/7] =15

context. TheD4-distances of different solutions from the a3 19/15  10/6 13/8| >20

ideal solution defined below are then calculated. The Demand| >9 =13 <21

solution corresponding to the minimuln -distance gives

th t compromi lution.
e best compromise solutio Table 4: Time Matrix

Now,
b q by by bs Supply
D) = N (r) a 17/9 5/2 10/3| <12
(Dy) i;;' 0% | &% | 12 114 65| =15
ag 13/8 16/12 10/11 >20
is defined as theD;-distance from the ideal solution Demand| >9 =13 <21

(Xi1:%55: - - -»Xnq) » to ther™ solution

Table 5: Damage Charges Matrix

{X07,%57, ... xpa}, 1< <P b1 b, b3 | Supply
a1 13/8 15/9 8/11| <12
Therefore, ap 11/15 14/6 19/7| =15
a3 9/7 15/6 8/17| >20
Demand| >9 =13 <21

P q
(D1)opt = MiM<r<pi(D1)" = Mim<<pi Z Z X} — Xi(jr)|
i=1j=1

D;-distances are calculated from the ideal solution givenmixed constraints can be given as:

below in table 2 as

5X11+ 7X12+ 15X13+ 8X%21+ 17%02 + 12%p3+ 1931 + 1032+ 13X33
3X11+ 4X12+ 1313+ 12%1 + 14X92 + 7Xp3+ 15%31 + 6X32+ 8Xa3

13%11+ 15X12+ 813+ 15X21 + 14%00 + 1903+ 9X31 + 15X32 + 8X33
8X11+ 912+ 11x13+ 15%21 + 6%+ X3+ 7X31+ 6X32+ 17X33

17x91+ 5X12+ 10X13+ Xo1 + 12X02 + 6Xo3+ 13X31 + 16x32+ 10%33

Minimize C =

Minimize D =

Table 2: D1-distances from the ideal solution o
Minimize T =

Priorities X11 ‘e Xpg (D1)" a1+ 2X12+ 3X13+ 221+ 4Xa2+ BXo3+ 8Xa1+ 122+ 11Xa3
p(l) * (1) * (1) p q * (1) . S 3 3
iy —xqq | Xpg—Xpd | | Tiz1 3 i1 X =%’ Subject t0 5 x0j <12 3 xgj = 15; 3 33 > 20
2 (2) (2) P <a () = = i=
P I =X1 || | Xpg—Xpal | s Xjea X — %57 3 3 3
. . Xi1 > 9; X2 = 13; Xz <21
: : : ez e 1% 3
r (r) (r) P <9 ()
p() =Xl | | Xpg—=Xpal | Fica Xi—a X %

The capacitated constraints are given below:
0<x11<6,0<x12<7,0<%x3<130<%1<6,0<
. . X2 < 2,0 <x3<13,0<x31 < 4,
Let the minimum be attained for r=t. Then
0<x32<7,0<x33<14.
t t t
0416, Xpa)

is the best compromise solution of the problem. 4.1 Compromise solution using fuzzy
programming with different membership

functions
4 Numerical lllustration The payoff matrix for the casdljj = OJobtained after
solving the above problem separately for each problem
In order to demonstrate the problem and the utility of theusing the optimizing software LINGO is as follows:
approaches discussed above, a numerical problem is
presented. Here, we consider three origins and three @ c D T
destinations. The TP cost, time and the damage charges X" [1.316832 116129 134472
(both quality and quantity damage) during the Payoff Matrix= Xi(j2> 1.37988 1068410 179661
transportation are represented in fractions. (3)
Case I: When theljj = 0 %] 1406433 1170886 116828
Using the data given in matrice8)( (4) and 6), the
multiobjective capacitated transportation problem with ci = 1.406433c} = 131683202 = 1.170886D7? = 1.068410T3 = 1.79661 andT;? = 1.168285
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Individual optimum solutions are obtained by solving the

By optimizing software LINGO, the compromise solution

above problem separately for each objective using thds obtained as:

optimizing software LINGO as follows:

Table 6: Individual optimum solution

Allocations
Objectives Objective values X111 X12 X13 X1 X22 X23 X31  X32 X33
Cost 1.316832 0 4 5 2 6 7 4 7 9
Damage Charge: 1.068410 0 7 0 6 2 7 3 4 14
Time 1.168285 0 6 0 6 0 9 3 7 12

An equivalent crisp problem for the linear membership
function can be obtained as follows:-

Minimize &
Subject to
5%11+ 7X12+ 15%13+ 8Xa1 + 172+ 12¢p3 + 1931 + 1032 + 13X33
1.406433— < 0.089601D
( ( 3x11+ X2+ 133+ 12%01 + 14%p0 + 7Xo3+ 15X31 + 6X32+ 8X33 -

1711+ 5x12+ 1013+ Xp1 + 1 1X2 + 6X23+ 13Xg1 + 632+ 10x33

X121+ 2X12+ 3X13+ 2X21+ 422+ SXo3+ 8Xa1+ 122 + 11x33

13x11 4 15x12+ 8x13+ 11x01 + 14%p2 4 19Xg + 9X31 + 15%32 + 8X33
8x11+ 9x12+ 1113+ 15><21+ 6x22+ 7><23+ 7><31+ 632+ 17%33

12; lezjfls z&l>20 Zlm>9 ZXZ"]'B zlx.3<21

OS X11<6,0<x2<7,0<%3<130<%1<60<%2<2,
0<x3<130<x31<40<x32<7,0<x33<14

1.79661— ( )) <0.62832%

)) <.10247&

(
(

1.170866— (

J\/]w

The compromise solution obtained by the LINGO
software for linear membership function is as follows:-

Xip =4, X{p =4, X13=4,%X51 = 5,X50 = 2, X553 = 8,X3, = 4,X3, = 7, X33 = 9andd = 0

If we are using exponential membership function with
parametera = 1, an equivalent crisp problem can be
formulated as:
Minimize &
C-1.316832 1
@7 008901 — @ <5
1-el

T-1.168285
e 0628325 —

1-el

Subject to

D-1.068410
102476

1e-

12; ZxZ, — 15 Zx3, >20
3

el

.e7

—1
—€
<o

w

<

1

3

zl 1>9 Zl =13; lei3§21
0<x11<6,0<x12<7,0<x13<130< X1 <6,0<X02<2,
0§X23§130§X31§4,0S>Q2§7~,0§X33S14

By optimizing software LINGO, the compromise solution
is obtained as:

Xi1 = 0,X{p =4, X{3= 1 X5; = 6,X55 = 2,X53 = 7, X3 = 4,X3, = 7, X35 = 9and = 0

If we are using hyperbolic membership function, an
equivalent crisp problem (4) can be formulated as:

Minimize &

Subject to

1 17%11+5%12+ 10x13+ Xo1 + 11Xp2 + BXp3+ 13K31 + 6Xa2 + 10xa3

Ztan ((1'3616325 < 941+ 2Xaz+ Xz + D1+ Ao+ o+ BXa1 + 12Xz + 11xg3

17x11+ 5X12+ 1013+ X21 + 1102 + 6X23+ 13X31 + 6X32+ 10x33
9x11+ 2X12+ 3X13+ 2Xp1 + 4Xo2+ SXo3+ 8X31+ 1232+ 1133

1341+ 1502+ 8xa3+ 1101 + 1462+ 199 + 931 + 152+ 8Xas
811+ 12+ 11x13 4 15%1 + BXo2 + TXp3+ 7Xa1+ 6X32+ 17x33

éxl, <12 gxn =15; gm >20; ém >9; in. =13; ém <21

0<x1<60<x2<7,0<x3<130<%1<60<x2<2,
0<x3<130<x31<4,0<x32<7,0<x33<14

)) 669635) + %S 3
1

)) 9.5492) + 5 <d
1

)> 58.5503) + 5 <d

%tanh (<1,482447& <

%tanh ((1 119648 (

Xip =4, X =4, X13=4,%X51 = 5,X55 = 2,X53 = 8,X3, = 4,X3, = 7, X33 = 9andd = 0

Case Il: When thelj; >0

Using the data given in matrice8)( (4) and 6), the
multiobjective capacitated transportation problem with
mixed constraints can be given as:

5X11+ 7X12+ 15X13+ 8X21+ 1 %22 + 1203+ 1931 + 10X32 + 13X33

Minimize C = 3Xq1+ X120+ 1313+ 12X01 + 14Xp + 7Xp3+ 15Xa1 + 6Xsp + BXaz

Minimize D — X1+ 1562 + 83+ 1561 + 14%2+ 1963 + 91 + 15632+ 8xa
8xu1 + 9x12 + 11X13 + 151 + BXo2 + Tp3+ TXa1 + BXaz + 173

Minimize T — 1741+ 512+ 10613+ X1 + 105 + B3 + 13661 + 1662 + 10¢33

9X11 4 2X12+ 3X13+ 2X21 + 4X22+ SXo3+ 8X31+ 12632+ 11X33

3 3 3
Subject to § x5 <12; Xoj = 15; x3j > 20
2N S 218 ),

3 3 3
i1>09; o = 13; i3 <21
i;m = j;xqz JZlXG

The capacitated constraints are given below:
1<x1<62<x2<7,4<x3<132<%1<6,0<
X2 <2,5<%3<131<x31<4,

2<X32<7,<Xx33<14.

4.2 Compromise solution using fuzzy
programming with different membership
functions

The payoff matrix for the caséj; > O] obtained after
solving the above problem separately for each problem
using the optimizing software LINGO is as follows:

C D T
X' [1.31941 1169133 136092
Payoff Matrix= x? | 133 1147303 133333
x” 133333 1152542 131788
Ci=1.33333C! = 1.31941D2 = 1.169133D7 = 1.147303T3 = 1.360927 andT;® = 1.317881

Individual optimum solutions are obtained by solving the
above problem separately for each objective using the
optimizing software LINGO as follows:

Table 7: Individual optimum solution

Allocations
Objectives Objective values X371 Xi2  X13  Xp1  Xp2  X23 X31  X32 X33
Cost 1.31941 1 4 5 6 2 7 4 7 9
Damage Charge: 1.147303 1 5 4 6 2 7 4 6 10
Time 1.168285 1 4 4 6 2 7 3 7 10

An equivalent crisp problem for the linear membership
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function can be obtained as follows:- problem, so we have to solve 3! = 6 problems according
to the priority. The solutions obtained for the two cases |

Minimize & L L i B
Subject to and Il by giving priority to each of the objectives one by
5xa1+ TXap+ 1513+ 81 + 1oz + 1263+ 191 + 10z + 133 one are given below in the Tabl nd @)for the case |
<1'3333&( 3Xa1+ 4X12+ 13x13+ 12%1 + 14X + TXo3+ 15%31 + 6X32+ 8Xa3 )) £00130D d ” g t I ” th ®§ 6) I d b
(1 360027— (17><11+5><1z+ 103+ X1+ 1u22+6xZ3+13x31+6x32+10<33)) - 0.0430465 an 11 I'QSDGC vely (a e problems are solve y
i OX11+ 2X12+ 3X13+ 2X21 + 4Xa2 + BXo3+ 8Xa1 + 1232+ 11xa3 - 0pt|m|zat|0n SOftWare LINGO)
1311+ 15%12+ 813+ 11X21 + 14X + 199 + a1 -+ 15%32 4 8X33
(1-16913& < 8X11+ 9X12+ 1113+ 15%1 + BXoo+ TXo3+ TXa1+ BXaz + 1 Xa3 )) < 02189

3 3 3 3 3 3
J;X“ <12; J;XZ' =15; J;xa > 20; I;m >9; I;Xa =13; ‘;st <21
1<x1<6,2<X12<7,4<X13< 13,2 < Xp1 < 6,0 < Xp2 < 2, .
5 o= 191 X A2 e 75X 1h Table 8: Ideal solutions for case |
Priority structure | xi1 X12 X13 X1  Xo2 X3 X31 X32 X33
The compromise solution obtained by the LINGO PICDT] 0 4 1892 6 2 7 3 7 114361
. . . . . P[C,T,D] 0 4 1.8892 6 2 7 3 7 11.4361
software for linear membership function is as follows:- PID.C,T] o 7 0 6 2 7 31340 4 14
P[D,T,C] 0 7 0 6 2 7 3 4 14
. P[T,C,D] 0 5.2547 0 6 2 7 3 5.7453 14
X11=4X12=4Xi3= 4% = 5%, = 2,X53 = 8,X3, = 4,X3, = 7, X33 = 9and = 0 P[T,D,C] 0 52547 0 6 2 7 3 57453 14
Ideal solution(x‘v*j) 0 4 0 6 2 7 3 4 11.4361
If we are using exponential membership function with
parametera = 1, an equivalent crisp problem can be
formulated as:
Minimize o
—(C—1.31941) =
) e~ 001392 —¢e
Subjectto ——————— <9
1-e?
e oot el 5 e ~Corom _ el 5 Table 9: Ideal solutions for case II
l1-el - 1-e? - Priority structure | x;1 X2 X13  Xo1 Xo2 Xo3  Xa1 X32 Xa3
3 3 3 P[C,D,T] 1 4002 4323 6 2 7 3325 6.998 9.677
D X <12 Y x5 =15; 3 x5 =20 P[C,T.D] 1 4 4277 6 2 7 3363 7 9637
=1 1:1 =1 PID,C,T] 1 4556 4 6 2 7 3556 6444 10
3 PID,T.C] 1 4341 4 6 2 7 3341 6659 10
lel >0; 21)(2' —13; 21)(‘3 <21 P[T,C.D] 1 4 4 6 2 7 3 7 10
& P[T.D,C] 1 4 4 6 2 7 3 7 10
1<x1<6,2<x12<7.4<x13<132< %1 <6,0< X0 < 2, ideal solution(x;) | 1 4 4 6 2 7 3 6444 9637
5<Ix3<131<X31<4,2<x3,<7,5<x33<14

By optimizing software LINGO, the compromise solution
is obtained as: Using the ideal solutionD;-distances are calculated as

shown in Tables ¥0and (@1)for the case | and Il
Xi1 =4 X1p =4 X13= 4,51 = 6,X0 = 2,X53= 7,31 = 4 X3, = 7, X33 = 9andd = 0 respectively.

If we are using hyperbolic membership function, an
equivalent crisp problem (4) can be formulated as:

gi"bimiﬁ s Table 10: Case I: TheD4-distance from the ideal solutions
ubject to
N N Priority structure| Xq1 X12 X13 X201 X2 Xo3 X31 X32 X33 (D1)"
1 17%11+ 5X12+ 1013+ Xo1 + 11X22 + 6X23+ 13X31 + 6X32 + 10x33 1
E‘anh«l 32637~ ( 11+ 21+ 31+ DXar+ Aaz+ Biaa+ Bra1+ 122+ 11xas )) 4310344) 2= P[C,D.T] 0 0 18892 0 0 © 0 3 0 | 4.8892
1 131 + 1512+ 8x13 + 111+ 14X+ 19 + Ixa1 + 1535+ Bxas 1 PIC,T,D] 0 0 18892 0 0 O 0 3 0 | 48892
élanh<<1,1584& ( B0s T 90 + Ty 1501+ 650n 1 7o~ s 1 kg - T3 >> 2751915) 5% <o E[[ggg g g g g g 8 0_10340 é) 22.556633g ggg;g
%tanh<<1.33940¢ (Zﬁ“izﬂ ;S“lfzfliiixzigfxzﬁi&ﬂ;‘”ﬁx%ﬁ) 13938577) <8 PTCD] | O 12547 0 O 0 0 0 17453 2.56395.6979
TSR SRS SR e TR T LT SR T A P[T,D.C] 0 1.2547 0 0 0 0 0 1.7453 2.56395.6979
zxxh <12; zlxzJ =15; z Xaj > 20; Exm >09; sz. =13; Zim <21
1<x1<6, 2<x12<74<><13 132<%1<6,0<x22<2,
5<x3<131<x31<42<x32<7,5<x3<14
By optimizing software LINGO, the compromise solution
is obtained as:
Xip=4X1,=4,X3=4,X51=5X3,=2,X53=8,X3 = 4, X5, = 7,X33= 9andd = 0 Table 11: Case II: TheD;-distance from the ideal solutions
Priority structure| x1 X12 X13 X1 Xo2  Xo3  X31 X32 X33 (Dy)'
P[C,D,T] 0 0.002 0.323 0 0 0 0325 0.554 0.041.244
. . . . . P[C,T,D] 0 0 0.277 0 0 0 0.363 0.556 0| 1.196
4.3 Compromise solution using lexicographic PDCT] |0 0556 0 0 0 0 0 055 03631475
. . - . P[D,T,C] 0 0341 0 0 0 0 0.341 0.215 0.3¢631.26
goal programming with minimum distance PTCD] [0 0 0 0 0 0 0 055 03640019
P[T,D,C] 0 0 0 0 0 0 0 0 0.55¢ 0.363

Since we have three objectives of minimizing
transportation cost,time and damage charges in our

(© 2016 NSP
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5 Discussion [3]K. Gupta and S. Arora. An algorithm to find
optimum cost time trade off pairs in a fractional
5.1 Case | capacitated transportation problem with restricted

flow. International Journal Of Research In Social
. . . . Sciences?(2):418-436, 2012.
From the calculations done in section 4 & summarized [4]K. Gupta and S. Arora. Paradox in a fractional
results n Table 12), It can t.)e seen that FP W'th capacitated transportation problemInternational
exponential membership function derives the optimum Journal Of Research In IT, Management and
compromise solution as compared to the other methods. Engineering 2(3):43-64, 2012. '
[5]1 K. Gupta and S. Arora. Restricted flow in a non
linear capacitated transportation problem with bounds

5.2 Case on rim conditionslnternational Journal Of Research
In IT, Management and Engineering(5):226—243,
It can be seen that whdp > 0, the LGP gives the best 2012. ) o

capacitated transportation problem with mixed
constraints. 2014.
. [7] F. L. Hitchcock. The distribution of a product from
6 Conclusion and Summary several sources to numerous localiti@sMath. phys
20(2):224-230, 1941.
This article derives the compromise solution of MOCFTP [8]V. D. Joshi and N. Gupta. Linear fractional
with mixed constraints using FP approach, in which three  transportation problem with varying demand and
different forms of membership functions viz. linear, supply. Le Matematichg66(2):3-12, 2011.
exponential and hyperbolic are used along with LGP with [9] A. Khurana and S. Arora. The sum of a
minimum distances approach. also,two cases are studied linear and a linear fractional transportation problem
for two values of The results are summarized in the Table  with restricted and enhanced flow. Journal of
(12)(13). Interdisciplinary Mathematic9(2):373-383, 2006.
[10] R. N. Mondal, R. Hossain, and M. K. Uddin. Solving
transportation problem with mixed constraints. In
Proceedings of the 2012 International Conference on

Table 12: Compromise optimum solution for case | Industrial Engineering and Operations Management

Objective values

Methods Cost Damage charges Time Istanbul, Turkey, Jul,yvolume 3,2012.

FP with Linear membership function 1.359296 1.238494 10389 i i i i

FP with Exponential membership function  1.349030 1.229213 1.314935 [11] K. S_W&lrup. _Transportatlon_ technlque n “near
FP with Hyperbolic membership function ~ 1.359296 1.238494 389058 fractional functional programmlng]ournal of Royal
LGP with D4 -distance 1.353103 1.129854 1.237344 Nava| SCientiﬁC SerV|CQ1(5)256—260 1966.

[12]V. Verma and M. Puri. On a paradox in
linear fractional transportation problem. Recent
Developments in Australian Society of Operational
Research, Gordan and Breach Science Publishers

Table 13: Compromise optimum solution for case Il pages 413-424,1991.
Objective values [13] H.-J. Zimmermann. Applications of fuzzy set theory
Methods , , Cost __Damage charges _ Time to mathematical programmingnformation sciences
FP with Linear membership function 1.359296 1.238494 10389 i
FP with Exponential membership function  1.332506 1.201646 1.386503 36(1)29_581 1985.
FP with Hyperbolic membership function ~ 1.359296 1.238494 .389058
LGP with D;-distance 1.3333 1.152542 1.317881
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