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Abstract: The goal of determining the relative importance of predictors is to expose the individual contribution of the predictor
in the presence of other predictors within a selected model.In practice, it is often desired to understand the extent to which each
predictor variable drives the response variable The purpose of this article is to expand the current research practice to evaluate the
relative importance of each predictor in a logistic regression setting by developing a statistical model-based approach in the Bayesian
framework. Results from extended simulation studies suggest that the proposed weighted paired comparison model with the two sided
power (TSP) link function provides the most effective and reliable measure of the relative importance of predictors.
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1 Introduction

Regression analysis is one of the most important tools used by researchers and practitioners in determining the relationship
between a response variable and its predictor variables. Often times there is a desire to further analyze the selected model to
determine which predictor or predictors are considered more important the others. Analysis of this type is referred to as the
relative importance analysis, and serves as an important supplement to traditional regression analysis. For cases where the
predictor variables are uncorrelated, zero-order correlation and regression coefficients nicely provide the answersto these
questions. The problem arises when the predictor variablesare correlated with each other. Past research has documented
how commonly used indices fail to appropriately answer thisquestion when predictors are correlated (Darlington 1968).

Over the years, researchers have suggested various methodsfor measuring the relative importance of predictors in
various subjects such as, statistics, psychology, political economy, organizational research, and medicine; for a
comprehensive review see Johnson and LeBreton (2004). Statements have been confused, because there has been a lack
of agreement on the definition of the relative importance of apredictor. In an effort to circumvent this issue, the concept
of predictor ”dominance” was proposed by Budescu (1993) as anew way to compare predictors in a multiple regression
context. Dominance Analysis (Budescu 1993) approaches theproblem of relative importance by examining the change
in R2 resulting from adding a predictor to all possible subset regression models. Azen and Traxel (2009) introduces and
extends the Dominance Analysis in logistic regression models. The novelty of the approach is that predictors are
compared in a pairwise fashion based on a common subset reference model across all possible subset models, and a
hierarchy of levels of dominance is established,i.e., complete dominance, conditional dominance and general
dominance. Nevertheless, critics have disapproved of Dominance Analysis on the grounds that such analysis is
atheoretic. Moreover, the general dominance weight is calculated based on average of conditional dominance weights
over difference sizes of subset models, which introduces bias in the aggregation because the additional contribution of a
predictor is more substantial in subset models with fewer number of predictors. As the number of predictors increases,
the additional contribution of the predictor gets less, fordetailed explanation. Wang and Yao (2014) mentions that the
value of the general dominance index is influenced to a greater extent by the conditional dominance of the subset model
with a smaller number of predictors.
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With regards to these issues, Wang et. al. (2013) proposed aninferential approach to discover the intrinsic dominance
ability of predictors from a behavioral study point of view in the Bayesian framework using the Bradley-Terry paired
comparison model. Results show that, in most cases, conclusions from the Bayesian approach are consistent with those
from the Dominance Analysis methods. However, the basic Bradley-Terry model is weak in identifying the suppressor
variable, that is, a predictor that is uncorrelated with theresponse variable but whose presence improves prediction
because of its correlation with other predictors. As a remedy, Wang and Yao (2014) proposed a weighted Bradley-Terry
model, which is more efficient and accurate than the basic un-weighted Bradley-Terry model and the Dominance
Analysis method. One weak point of those methods is that it isdifficult to apply practical meaningful interpretation to
the resulting dominance index, which varies from−∞ to ∞. The dominance ability is compared based on the additional
R2, which varies between 0 and 1. It would be desirable to have a dominance index on the 0-1 scale. Wang (2015) applies
the cumulative distribution function of the two-sided power (TSP) distribution as the link function in the paired
comparison model to ensure the resulting dominance index vary between 0 and 1. The results show that the TSP link
function provides similar conclusions as the logit link function but it is more computational efficient.

Linear regression is used to determine the scalar relationship of observed data and its corresponding predicted variable.
Logistic regression models are used to predict binary outcomes and the probability of an event occurring (as opposed to
not occurring) from a set of predictors. In this article, we extend the current research of Bayesian analysis of predictors’
relative importance (Wang et. al, 2013; Wang and Yao 2014; Wang 2015), which initially developed for linear regression,
to the logistic regression setting to determine the dominance hierarchy of the predictors. In section2, we discuss the
measures of model adequacy in the logistic regression setting. In section3, we formulate paired comparison models
based on logit and TSP link functions with weighted and un-weighted likelihood functions. In section4, we introduce the
Bayesian inference and the computation procedure. In section 5, we perform simulation studies to evaluate the accuracy
of the proposed methods using simple random samples from a known population. In section6, we report an empirical
example of choosing between fixed and adjustable rate mortgages. Finally, we discuss potential future research avenues
regarding the relative importance of predictors.

2 Model Adequacy Measures

In linear regression, the measure of goodness-of-fit is defined as the proportion of variation in the response accounted for
by the predictors, or the squared correlation between the observed and the predicted responses. This measure is commonly
referred asR2. In logistic regression, however, aR2 analogues goodness-of-fit measure is required because the classicalR2

measure does not extend to the non-linear case. To extend thedominance analysis to the logistic regression, it is necessary
to define what is meant by the additional contribution of a predictor to the prediction model and how to measure this
contribution.

Reviews of measures of fit proposed for logistic regression can be found in Amemiya (1981), Menard (2000),
Mittlbock and Schemper (1996), and Zheng and Agresti (2000). The following criteria are typically applied for defining
appropriateR2 analogues (Kvalseth, 1985; Vanden Burg and Lewis, 1988, Azen and Traxel, 2009):

–Boundedness: The measure should vary between a minimum of zero, indicating complete lack of fit, and a maximum
of one, indicating perfect fit.

–Linear invariance: The measure should be invariant to non-singular linear transformations of the variables (Y’s and
X’s).

–Monotonicity: The measure should not decrease with the addition of a predictor.
–Intuitive interpret-ability: The measure of fit is intuitively interpretable, in that it agrees with the scale of the linear
case for intermediate values.

Based on these criteria, the following threeR2 analogues were chosen that satisfied at least three of these four
properties.

–McFadden’s (1974) measure is defined as

R2
M =

ln(L0)− ln(LM)

ln(L0)

–Nagelkerke’s (1991) measure is defined as

R2
N =

1− (L0/LM)2/n

1−L2/n
0

–Estrella’s (1998) measure is defined as

R2
E = 1−

[

ln(LM)

ln(L0)

]−(2/n) ln(L0)
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For these measures,L0 represents the likelihood of the null (intercept-only) model andLM represents the likelihood of the
fitted (intercept and predictors) model. A summary of the properties satisfied by all three measures of fit (R2 analogues) is
presented in Table1. Using each of these threeR2 analogues, the additional contribution of a given predictor to a specific
logistic model can be measured as the change (i.e., increase) in theR2 analogue when the predictor is added to the model.
Azen and Traxel (2009) provided an algebraic proof showing that all three of these measures will produce the same order
of dominance analysis results but the magnitude of these measures are different. In this paper, we will show that, applying
the proposed Bayesian approach, all these three measure produce the same index of relative importance.

3 Paired Comparison Models

Statistical methods of determining relative dominance abilities based on paired comparisons have long history dated back
to Bradley and Terry (1952) in the context of chess tournaments and have been broadly applied in many fields such as
statistics, psychometrics, marketing research, preference measurement, sports competition, behavioural study, education,
machine learning, and many others. In this paper, we determine the intrinsic dominance ability of predictors by applying
the statistical method of paired comparisons based on the additional increase ofR2 analogues amongst all possible subset
models.

3.1 Likelihood Function

Suppose there arep predictors in a logistic regression model,X1, · · · ,Xp. Let X∗ be a subset of(X1, · · · ,Xp) and denote
R2

Y ·X∗ as any form of the threeR2 analogues ofY andX∗. Let∆R2
Y ·Xi|X∗ = R2

Y ·(Xi,X∗)−R2
Y ·X∗ be the increase inR2 analogues

by addingXi to the subset model withX∗. Here, the model withX∗ is considered as the baseline reference model. The
predictorXi is said to dominate or ”win”X j if ∆R2

Y ·Xi|X∗ > ∆R2
Y ·X j |X∗ , that is addingXi to a model leads to a greater

increase inR2 analogues than would be obtained by addingX j to the model with the same subsets of other variables.
In a model withp predictors,Xi andX j are compared amongst all possible 2p−2 subset reference models. LetWi j be

the number of times the predictorXi dominatingX j, andθi j be the probability of the predictorXi dominatingX j, then
Wi j has a binomial distribution with parameters(2p−2,θi j). The Bradley-Terry model is based on the assumption that
θi j = ξi/(ξi + ξ j), whereξi represents the intrinsic dominance ability of predictorXi. Let di = ln(ξi), thendi can be
interpreted as the dominance ability of predictorXi on the logarithm scale. Based upon this reparameterization, we have
logit(θi j) = di − d j, or θi j = exp(di − d j)/(1+exp(di − d j)), which means that the dominance probability depends only
on the difference of dominance indices. Therefore, the Bradley-Terry model assumes the probability that one predictor
prevails over another is a logit function (the link function) of the difference in dominance indices between these two
predictors. The likelihood function of the results of paired comparisons of the predictors can be written as follows.

∏
i< j

C
wi j

2p−2θ wi j
i j (1−θi j)

2p−2−wi j (1)

Wang and Yao (2014) points out that the number of times that the predictorXi andX j encounter each other depends
on the size of the baseline reference model. For a logistic model with p predictors, based on the baseline reference model
with k predictors, the number of times that the predictorXi andX j encounter isCk

p−2. For example, whenp = 4 andk = 0,

X1 andX2 only meet once, that isR2
Y ·X1

andR2
Y ·X2

; whenk = 1, X1 andX2 are compared under two baseline reference
models, that is∆R2

Y ·X1|X3
vs ∆R2

Y ·X2|X3
, and∆R2

Y ·X1|X4
vs ∆R2

Y ·X2|X4
; and whenk = 2, X1 andX2 only meet once with the

same baseline reference model with two predictorsX3 andX4. Taking this fact into consideration, the weighted Bradley-
Terry model is proposed withCk

p−2/2p−2 as the weight. Letwi j·k be the number of times that the predictorXi outweighs
X j with baseline reference model of sizek. The likelihood function of the weighted Bradley-Terry model is

p−2

∑
k=0

Ck
p−2

2p−2 ∏
i< j

(

Ck
p−2

wi j·k

)

θ wi j·k
i j (1−θi j)

Ck
p−2−wi j·k (2)

Both weighted and unweighted likelihood functions are based on the number of time one predictor dominating the
other. Azen and Traxel (2009) provided an algebraic proof showing that if one measure of theR2 produces a given
dominance relationship, the other two measures will necessarily also produce the same direction of dominance. Hence,
the threeR2 analogues will yield the same paired comparison results andthe same likelihood function.
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3.2 Link Functions

The two most commonly used link functions are the logit link,as assumed by the Bradley-Terry model, and the probit
link, which assumesθi j = Φ(di − d j) with Φ being the cumulative function of the standard normal distribution. Wang et
al. (2013) concludes that the results from the two link functions are consistent with each other. A more general approach
is to assume thatθi j = H(di − d j), where H is a link function, which maps the difference in the dominance indices to a
probability that lies between 0 and 1, inclusively. Also, the link function should have the following characteristics:(1) the
larger the difference, the larger the value ofθi j ; that is, the more likely one predictor will dominate the other; (2) when
two dominance indices are equal,θi j equals 0.5; that is, each predictor has a 50% chance of prevailing whendominance
indices of two predictors are the same.

Since the paired comparisons of predictors are based upon the additionalR2, which is between 0 and 1. It would
be ideal if the returning value ofdi is also within 0 and 1 so thatdi can be considered as an indicator of the additional
R2 associated withXi in the population in the presence of other predictors. vanDorp and Kotz (2002) provide a four-
parameter two-sided power (TSP) distribution with the cumulative distribution function that satisfies those characters. This
link function is not only sufficiently rich from the mathematical perspective but also allows efficient implementationsin
practice. The four-parameter TSP distribution is described by parameters denoting the minimum value,a, the maximum
value,b, the mode or most likely value,c, and a fourth parameter,η , describing the curvature of the distribution. The
parameterη requires some evidence for the relative importance of the most likely value relative to distribution bounds a
and b. That is, ifη = 2, c is equally important asa andb; if η > 2, c has more weight than the bounds; ifη < 2, c is given
less emphasis relative to the bounds. The probability density function ofT SP(a,b,c,η) is demonstrated in equation (3).

f (x) =







η
b−a(

x−a
c−a )

η−1 if a < x ≤ c
η

b−a(
b−x
b−c )

η−1 if c < x ≤ b
0 otherwise

(3)

The expected value of a TSP distribution is

E(X) =
a+(η −1)c+ b

η +1

The cumulative distribution function follows from the expression as equation (4)

F(x) =

{ c−a
b−a(

x−a
c−a )

η if a < x ≤ c
1− b−c

b−a(
b−x
b−c )

η if c < x ≤ b
(4)

Wang (2015) stated that it is reasonable to choosea = −1 andb = 1 because the desired relative importance index is
between 0 and 1. There is no preference regarding the possible value ofdi’s. It is reasonable to usec = (a+b)/2= 0 and
η = 2. The probability density function of this particular TSP distribution has a triangular shape with expected value of 0.
Wang (2015) compares the performance between the logit and the TSP link functions under both weighted and unweighted
likelihood functions, and concludes that the TSP link function provides similar results as the logit link function witha
more efficient computational procedure in a multiple regression setting. In this paper, we would like to ascertain if the
same conclusion can be extended to a logistic regression setting.

4 Bayesian Dominance Inference

Algorithms used to produce maximum likelihood estimates ofdominance abilities under the Bradley-Terry model fail
to converge to finite values, and so cannot be used for many data sets with zero counts. Davidson and Solomon (1973)
and Leonard (1977) describe Bayesian versions of the methodof paired comparisons. The major benefit of the Bayesian
approach is that prior information can be incorporated intothe analysis so that the resulting estimates of dominance index
are always finite (Leonard 1977).

4.1 Prior Distribution

The prior distribution plays a key role of Bayesian inference. It represents the information about an uncertain parameter
and is combined with the probability distribution of observed data to yield the posterior distribution, which in turn, is used
for future inferences and decisions. In practice, often there is no or very limited prior information about the dominance
ability of predictors. Hierarchical (multilevel) prior and vague prior models are central to the modern Bayesian statistics
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for both conceptual and practical reasons. On the theoretical side, those prior models allow a more ”objective” approach
rather than requiring them to be specified using subjective information (see James and Stein, 1960, Efron and Morris,
1975, and Morris, 1983). At a practical level, they are flexible tools for aggregating information and partial pooling of
inferences (see, for example, Kreft and De Leeuw, 1998, Snijders and Bosker, 1999, Carlin and Louis, 2001, Raudenbush
and Bryk, 2002, Gelman et al., 2003).

When the parameter varies from−∞ to +∞, the normal distribution is the most commonly used prior distribution
because it corresponds to the prior belief that modest values of the parameter are nearly equally likely, and that very large
values are somewhat less probable. For the logit link, the values ofdi’s range from−∞ to+∞, and it is also reasonable to
assume that there is the same symmetrical prior probabilitydistribution for each predictor’s dominance index. Therefore,
without loss of generality, we assume thatdi ∼ N(µi,σ2).

The second stage of the hierarchical prior assume that another normal distribution is applied to the mean of the prior
normal distribution, i.e.µi ∼ N(ν,τ2), and an Inverse-Gamma distribution is applied to the variance of the prior normal
distribution; i.e.,σ2 ∼ IG(a,a). Here,ν, τ anda are predetermined hyper-parameters, which are chosen using vague
information as follows. When the values ofdi vary between−l andl, by applying the 3σ or empirical rule, the expected
value of the standard deviation ofdi is aroundl/3, namely the expected value ofσ2 is aboutl2/9. On the other hand,σ2

is assumed to have anIG(a,a), which has a mean value ofa/(a−1). By letting a/(a−1) = l2/9 and solving fora, we
can get the hyper-parametera = l2/(l2−9). When the values ofdi are in(−4,4), the values ofdi − d j are in(−8,8). As
a result, the values ofθi j = exp(di − d j)/(1+exp(di − d j)) vary from 0.0003 to 0.9997, which is sufficiently wide for
practical purposes. Therefore, it is adequate to presume that di’s range between±4, and choose the value ofa to be 2. In
addition, it is also reasonable to assume the meanµi has a standard normal distribution withν = 0 andτ = 1.

For the TSP link function, we assume thatdi’s range from 0 to 1, and we do not have any preference towards any
particular value. It is reasonable to apply the(0,1) Uniform distribution as the prior distribution to eachdi. Therefore, the
TSP link function bears a simpler prior distribution.

4.2 Bayesian Computation

Under the square error loss function, the posterior mean is the Bayesian estimator. However, the closed form expressions
of the posterior distribution ofdi’s are not easy to achieve. Therefore, we use Markov chain Monte Carlo (MCMC)
methods to obtain numerical results. In order to implement the MCMC procedure, it is necessary to have the full
conditional posterior distributions, which are the conditional distributions of one parameter given all the other unknown
parameters and data. In this paper, let ddd= (d1, · · · ,dp), ddd[− j] = (d1, · · · ,d j−1,d j+1, · · · ,dp), µµµ = (µ1, · · · ,µp),
µµµ[− j] = (µ1, · · · ,µ j−1,µ j+1, · · · ,µp), φ(·|µ ,σ2) be the probability density function ofN(µ ,σ2), H1(·) be the logit link
function, andH2(·) be the TSP link function. Also, let(·| ) denote the conditional distribution and[·| ] denote the
conditional density function.

Proposition 4.2.1.The full conditional posterior distributions of(d1, · · ·dp,µ1, · · · ,µp,σ2) given data XXX under the model
with unweighted likelihood and the logit link function, Model I, are as follows.

–For i = 1, · · · , p,

[di | ddd[−i],µµµ ,σ2,XXX ] ∝ ∏
i< j

C
wi j

2p−2H1(di − d j)
wi j (1−H1(di − d j))

2p−2−wi j φ(di|µi,σ2)

–For i = 1, · · · , p, (µi | ddd,µµµ [−i],σ2,XXX )∼ N
(

diτ2+σ2ν
τ2+σ2 , σ2τ2

τ2+σ2

)

–(σ2 | ddd,µµµ,XXX )∼ IG

(

p
2 + a,

k
∑

i=1

(di−µi)
2

2 + a

)

,

Proposition 4.2.2.The full conditional posterior distributions of(d1, · · ·dp,µ1, · · · ,µp,σ2) given data XXX, under the model
with weighted likelihood and the logit link function, ModelII, are as follows.

–For i = 1, · · · , p,

[di | ddd[−i],µµµ ,σ2,XXX ] ∝
p−2

∑
k=0

Ck
p−2

2p−2 ∏
i6= j

(

Ck
p−2

wi j·k

)

H1(di − d j)
wi j.k (1−H1(di − d j))

Ck
p−2−wi j.k φ(di|µi,σ2)

–For i = 1, · · · , p, (µi | ddd,µµµ [−i],σ2,XXX )∼ N
(

diτ2+σ2ν
τ2+σ2 , σ2τ2

τ2+σ2

)

–(σ2 | ddd,µµµ,XXX )∼ IG

(

p
2 + a,

k
∑

i=1

(di−µi)
2

2 + a

)

,
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Proposition 4.2.3. The full conditional posterior distributions of(d1, · · ·dp,) given data XXX under the model with
unweighted likelihood and the TSP link function, Model III,are as follows.

[di | ddd[−i],µµµ,σ2,XXX ] ∝ ∏
i< j

C
wi j

2p−2H2(di − d j)
wi j (1−H2(di − d j))

2p−2−wi j ,

for i = 1, · · · , p.

Proposition 4.2.4.The full conditional posterior distributions of(d1, · · ·dp) given data XXX under the model with weighted
likelihood and the TSP link function, Model IV, are as follows.

[di | ddd[−i],µµµ,σ2,XXX ] ∝
p−2

∑
k=0

Ck
p−2

2p−2 ∏
i6= j

(

Ck
p−2

wi j·k

)

H2(di − d j)
wi j.k (1−H2(di − d j))

Ck
p−2−wi j.k ,

for i = 1, · · · , p.
Comparing the full conditional distributions, one can observe that the TSP link function simplifies the computational

procedure with simpler full conditional posterior distributions.
The Bayesian dominance method provides prosperous information about the relative importance of predictors via

posterior distributions of dominance indicesdi’s. First of all, the posterior mean of the dominance indexdi can be applied
as an overall measure of relative importance/dominance ability of the predictorXi. Secondly, the posterior distribution of
dominance probabilityθi j can be obtained by applying the corresponding link functionto the MCMC chain ofdi’s, and
the posterior mean ofθi j can be applied as an estimate of the dominance probability toreveal the conclusion of paired
comparisons among predictors in a probabilistic manner. Moreover, the lower and upper 2.5th percentiles of the posterior
distributions ofdi can be used to construct 95% confidence intervals ofdi. Last but not least, the posterior probability of
one particular order of dominance can be estimated by the proportion of steps occurred in the MCMC chain that is in the
same order. Hence, we can obtain the most likely order of dominance directly from the MCMC chain.

5 Simulations

Simulation studies are based on a generated population of size (N = 500,000) with correlation matrices as displayed in
Table??. First, the correlation matrix is used to solve for a vector of the log odds of the dependent variable for logistic
regression (Y vlaues) and the matrix containing predictor values from the multivariate normal population. Second, a
dichotomous response variable (Y* values) is generated to be used in the logistic regression analysis by rearranging the
logistic transformationπ(y) = exp(y)/(1+ exp(y)), which is then compared to random values drawn from a uniform
distribution (with a range of 0 to 1), such that if the random value is less thanπ(y) theny∗= 1 and otherwisey∗= 0. We
believe that a random sample of size 500,000 is large enough to stand for a population. The general Dominance Analysis
indices and the Bayesian dominance indices for all four models, as listed in Table3, indicate that the population order of
dominance isX2 > X3 > X4 > X1.

To better evaluate the performance of the proposed Bayesianapproaches in logistic regression settings, one thousand
simple random samples of sizen = 500 are selected from the previously generated population,and the estimated
dominance indices based on different models are computed for each sample. The average and standard deviation of the
1,000 estimated dominance index values are calculated for each model. Because the magnitude of population dominance
indices from different approaches are quite different, relative bias and relative standard deviation are proposed to better
measure the accuracy and reliability of the estimates, as are presented in Table4. In probability theory and statistics, the
relative bias is a commonly used measure of accuracy, and is defined as the ratio of the bias to the population value,
where the bias is defined as the the difference between the average of the estimates and the population value. The
coefficient of variation (CV) is a standardized measure of dispersion, which is defined as the ratio of the standard
deviation to the population value. The absolute value of theCV is sometimes known as relative standard deviation, which
is expressed as a percentage.

The Dominance Analysis methods produces the estimated dominance indices with the largest relative biases as far as
2622.34% and the largest relative standard deviation of 3717.91%. Estimates using logit link functions bear less relative
biases and relative standard deviations than those from theDominance Analysis methods but greater than those from the
TSP link functions, with the exception ofX4. In the Model III, the dominance index ofX4 has a relative bias 123.96%
and relative standard deviation 138.16%, which are greaterthan those from the other three Bayesian models but are still
less than that from the Dominance Analysis. Overall, the Model IV produces the smallest relative biases and relative
standard deviation. Thus, we conclude that it is the most accurate and reliable model to determine the relative importance
of predictors.
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6 Example

Dhillon et. al. (1987) provides an interesting data to explain the choice by home buyers of fixed versus adjustable rate
mortgages. They use 78 observations from a bank in Baton Rouge, Louisiana, taken over the period January, 1983 to
February 1984. There are 6 explanatory variables used to predict whether an adjustable rate mortgage was chosenY = 1:

–X1: FIXRATE: fixed interest rate in whole numbers;
–X2: MARGIN: the variable rate minus the fixed rate;
–X3: YIELD: The 10-year Treasury rate less the 1-year rate;
–X4: MATURITY: ratio of maturities on adjustable to fixed rates;
–X5: POINTS: ratio of points paid or an adjustable mortgage to those paid on a fixed rate mortgage;
–X6: NETWORTH: borrower’s net worth

The sample correlation matrix of the variables is displayedin Table??. There exist minor correlation amongst the
explanatory variables such as the sample correlation betweenX1 andX2 is about 0.468. Paired comparisons of predictors
based on the additional increase inR2 are conducted among 26−2 = 16 possible subset regression models. The total
numbers of times that the variableXi prevails overX j in all possible subset reference models are presented in Table 6.
PredictorsX1, X2 andX6 completely dominateX4 andX5; X3 prevails overX5 in all subset models except whenk = 1,
and prevailsX4 most of the time (12 out of 16);X4 prevails overX5 most of the time (13 out of 16 times);X1 prevails
overX2 andX3 most of the time (12 out of 16 times);X2 prevails overX3 most of the time (13 out of 16 times); andX6
prevails overX1, X2, X3 a majority of the time (10, 12, 9 out of 16 times, respectively). In summary, the observed order
of dominance from paired comparison isX6 > X1 > X2 > X3 > X4 > X5. The results of Dominance Analysis based on the
general dominance indices show that the hierarchical orderof dominance isX1 >X6 >X2 >X3 >X4 >X5, see Table7. The
dominance indices ofX1 andX6 are very close to each other. The Bayesian point estimates and 95% confidence intervals
of dominance indicesdi’s under four different models are listed in Table7. The resulting order of dominance indices from
both un-weighted models isX1 > X6 > X2 > X3 > X4 > X5, which is the same as the results from the Dominance Analysis,
and the order from both weighted models isX2 > X6 > X3 > X1 > X4 > X5.

All models putX4 (Maturity) andX5 (Points) at the bottom of the hierarchy when predicting whether an adjustable
rate mortgage will be used or not. All models agree thatX2 (Margin) is more important thanX3 (Yield); andX6 (Net
Worth) is more important thanX3 (Yield). There exists discrepancy regarding the order of dominance amongX2, X6,
andX1. From theoretical point of view, there exists Simpson’s paradox in the paired comparison results in Table6. The
Simpson’s’s paradox often occurs when subgroups are combined together, and the data are examined in aggregate form,
the conclusion made from the subgroups may reverse itself when using the combined group. For example, the total paired
comparison table shows thatX1 prevailsX2 12 out of 16 times (75%), which implies thatX1 dominatesX2. However, when
investigating the subgroups, we notice that 5 of the 12 ”winning” occur whenk = 1 whereX1 andX2 are compared total of
6 times. In the subgroups, wherek = 4,X2 prevails overX1 (100%) but they are only compared once. Wang and Yao (2014)
states that the results from the unweighted model is less accurate than the weighted mode because the former one does
not take into account the possible number of times that predictors encountering under different size of baseline reference
models. From practical point of view, when two subjects are compared, generally speaking, the difference between the two
subjects would carry more weights than the actual value of the subjects. Also when examine the data, we found that there is
very less variation inX1 with an average of 13.25%. Therefore, the margin between variable rate and fixed rate (X2) would
matter more when one determines if an adjustable rate will beused or not, and the actual fixed interest is a less important
factor. As a summary, we conclude that, for the given data set, the order of dominanceX2 > X6 > X3 > X1 > X4 > X5 is
more reasonable from both practical and theoretical perspective.

When using the lower and upper 2.5th percentiles of the MCMC chain, the 95% confidence intervals of dominance
indices are obtained and are shown in Table7. Because the 95% confidence intervals of dominance indices overlap each
other, it is challenging to determine which predictor definitely dominates the other predictors. Fortunately, the Bayesian
approach provides a probabilistic solution to this difficulty. By applying the link functions to the dominance indices within
the MCMC, we obtain the estimate of dominance probabilities, θi, j ’s, which are listed in Table8, with i < j. For i > j,
θi, j = 1−θ j,i. The results are consistent with the order of dominance indices in Table7, correspondingly and respectively.
For example, both weighted models haveθ2,3, θ2,4, θ2,5, θ2,6 greater than 0.5 andθ1,2 less than 0.5, which implies that
predictorX2 has more chance to dominate the other predictors. Arrangingthe dominance probabilities from smallest to
largest, one can obtainθ2,6 < θ2,3 < θ2,1 < θ2,4 < θ2,5, which indicate the order of dominance isX2 > X6 > X3 > X1 >
X4 > X5.

The posterior probability of a particular order of the dominance ranking is estimated by the proportion of this order
occurring in the MCMC steps. Among the 720 possible of ranking orders, the order rankingX1 > X6 > X2 > X3 > X4 > X5
receives the highest probability under both un-weighted models, and the order rankingX2 > X6 > X3 > X1 > X4 > X5
receives the highest probability under both weighted models; Once again, the results are consistent with previous findings
using dominance indexes and probabilities within each model.
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It is worth mentioning that the MCMC chain produced by the TSPlink function converges faster and is less correlated
than those by the logit link function. The trace plots of the MCMC chains of the four models, Figure2, Figure3, Figure
4 and Figure5, show that the MCMC chains produced by the TSP link function mixed better and converge faster than
those by the logit link function. Moreover, autocorrelation functions of the four models, as presenting in Figure6, Figure
7, Figure8 and Figure9, show that the MCMC chains produced by the TSP link function die down faster than those from
the logit link function, which means the former ones are lesscorrelated and more stationary than the latter ones. Thus we
conclude that the TSP link provides more reliable results than the logit link function.

As a summary, the most probable order of dominance is consistent among the results from the estimated dominant
index, dominant probability within each case, respectively. Although there exist discrepancies between weighted and
unweighted models, we believe that the orderX2 > X6 > X3 > X1 > X4 > X5 is the most preferable from both practical
and theoretical perspective.

7 Summary and Concluding Remarks

Relative importance analyses permit a greater understanding of the particular role played by variables in a logistic
regression analysis. Crucially, these analyses can revealthe underlying impact of a particular predictor more accurately
than standardized regression coefficients or simple correlations. This paper extends the current Baysian approach of
measuring the relative importance of predictors in linear regression models (Wang 2015) to a logistic regression scenario
by applying the generalizedR2 measures.

The advantage of the Bayesian approach is that it allows the use of genuine prior information in addition to the
information that is available in the observed data to produce better results. In general, Bayesian methods provide a better
approximation to the level of uncertainty than other approaches which use only information provided by the model and
the observed data. In addition to providing useful statistics, such as, the mean and percentiles of the posterior distribution
of the unknown parameters, Bayesian methods give more reliable results for small samples (Dunson 2000; Lee and Song
2004; Scheines, Hoijtink and Boomsma 1999).

The Bayesian approach offers several advantages over the current methods in determining the relative importance
of predictors in a linear regression model. First, this probabilistic model based approach provides more comprehensive
inference about the population relative dominance abilityof predictors than the current Dominance Analysis. Secondly, the
Bayesian approach provides more information about the relative importance of the predictor by making straightforward
statements about the dominance ability of the predictors, the dominance probability of each possible pair of predictors,
and the probability of each possible order of dominance. Thirdly, the main advantage of the TSP link function over the
logit link function is that the TSP link function is more flexible in modelling the results of paired comparisons based
on indices, which are between 0 and 1. As a result, the TSP linkprovides more useful and meaningful estimation of
the dominance index between 0 and 1, which can be treated as a measure of association between the predictor and the
response variable in the presence of other predictors. Moreto point that the TSP link function simplifies the Bayesian
computational process. Last but not least, the Bayesian method is not limited to a simple model, but offers a rich potential
to incorporate more complex models. Both simulation studies and empirical example support that these benefits extend
very well into the logistic regression setting. The model with weighted likelihood function and the TSP link function
provides the most accurate estimate with the smallest relative bias and standard deviation.

One of the central questions in a multivariate analysis of variance (MANOVA) considers identifying the dependent
variables that are driving the significant multivariate F-test. Unfortunately, the correlations among the various dependent
variables often make it difficult to accurately identify therole being played by the various dependent variables. Although
both Dominance Analysis and Bayesian approach are developed for use with OLS regression, Azen et.al. (2006) presented
modifications of these respective analysis to the multivariate regression models. Thus, we will continue our work about
questions of the relative contribution of each of the variables in terms of predicting the multivariate predictors, andhow
the proposed method can be examined in this context as well.

c© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett.3, No. 2, 53-69 (2016) /www.naturalspublishing.com/Journals.asp 61

Table 1: Summary of Properties ofR2 Analogues for Logistic Regression Model
Boundedness Invariance Monotonicity Interpretability

R2
M Yes Yes Yes Yes

R2
N Yes Yes Yes No

R2
E Yes Yes Yes Yes

Table 2: Population Correlation Matrix for Simulation
Simulation I

Y X1 X2 X3 X4
Y 1 0.06 -0.42 0.19 -0.02
X1 0.06 1 0.01 -0.01 0.07
X2 -0.42 0.01 1 -0.13 0.11
X3 0.19 -0.01 -0.13 1 0.01
X4 -0.02 0.07 0.11 0.01 1

Table 3: Population Dominance Indices of Predictors
Model I Model II Model III Model IV DA

X1 -1.00424 -0.45630 0.34411 0.41491 0.00045
X2 3.08734 1.63116 0.87559 0.73775 0.02095
X3 0.91236 0.71019 0.66948 0.59835 0.00322
X4 -3.06442 -1.49385 0.12919 0.26067 0.00006

Table 4: Relative Biases and Standard Deviations of Dominance Indices Estimates
Model I Model II Model III Model IV DA

X1 40.98% ( 155.70% ) 69.46% ( 184.31% ) -9.51% ( 56.56% ) -7.16% ( 30.23% ) 327.54% ( 612.71% )
X2 -3.60% ( 22.86% ) 0.41% ( 21.54% ) -1.72% ( 5.57% ) 0.15% ( 4.93% ) 6.00% ( 52.48% )
X3 -103.42% ( 162.52% ) -103.98% ( 118.11% ) -25.93% ( 31.47% ) -16.26% ( 21.22% ) 43.68% ( 138.06% )
X4 -49.59% ( 47.29% ) -43.33% ( 52.32% ) 123.96% ( 138.16% ) 42.72% ( 44.13% ) 2622.34% ( 3717.91% )

Table 5: Sample Correlation Matrix in Example
Y X1 X2 X3 X4 X5 X6

Y 1.000 −0.213 −0.069 0.076 0.265 0.381 0.399
X1 −0.213 1.000 −0.468 0.277 −0.271 0.093 −0.236
X2 −0.069 −0.468 1.000 −0.405 −0.011 −0.254 −0.176
X3 0.076 0.277 −0.405 1.000 0.005 0.285 −0.011
X4 0.265 −0.271 −0.011 0.005 1.000 0.022 0.135
X5 0.381 0.093 −0.254 0.285 0.022 1.000 0.365
X6 0.399 −0.236 −0.176 −0.011 0.135 0.365 1.000
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Table 6: Paired Comparisons of Predictors in the Example

Null k=0
X1 X2 X3 X4 X5 X6

X1 0 1 1 1 1 1
X2 0 0 1 1 1 0
X3 0 0 0 1 1 0
X4 0 0 0 0 0 0
X5 0 0 0 1 0 0
X6 0 1 1 1 1 0

k=1
X1 X2 X3 X4 X5 X6

X1 0 4 4 4 4 3
X2 0 0 4 4 4 1
X3 0 0 0 3 3 0
X4 0 0 1 0 2 0
X5 0 0 1 2 0 0
X6 1 3 4 4 4 0

k=2
X1 X2 X3 X4 X5 X6

X1 0 5 5 6 6 2
X2 1 0 4 6 6 2
X3 1 2 0 4 6 1
X4 0 0 2 0 6 0
X5 0 0 0 0 0 0
X6 4 4 5 6 6 0

k=3
X1 X2 X3 X4 X5 X6

X1 0 2 2 4 4 1
X2 2 0 3 4 4 2
X3 2 1 0 3 4 2
X4 0 0 1 0 4 0
X5 0 0 0 0 0 0
X6 3 2 2 4 4 0

k=4
X1 X2 X3 X4 X5 X6

X1 0 0 0 1 1 0
X2 1 0 1 1 1 1
X3 1 0 0 1 1 1
X4 0 0 0 0 1 0
X5 0 0 0 0 0 0
X6 1 0 0 1 1 0

Total
X1 X2 X3 X4 X5 X6

X1 0 12 12 16 16 7
X2 4 0 13 16 16 6
X3 4 3 0 12 15 4
X4 0 0 4 0 13 0
X5 0 0 1 3 0 0
X6 9 10 12 16 16 0

Table 7: Summary of Posterior Statistics of Dominance Index of Predictors in Example
Model I Model II Model III Model IV DA

X1 1.3160 ( -0.0170 , 2.9450 ) 1.0182 ( -2.0485 , 5.0925 ) 0.9307 ( 0.8136 , 0.9966 ) 0.5705 ( 0.0683 , 0.9800 ) 0.0784
X2 0.8112 ( -0.6637 , 2.3337 ) 2.2989 ( -0.5725 , 6.0324 ) 0.8380 ( 0.6793 , 0.9749 ) 0.7041 ( 0.1832 , 0.9861 ) 0.0540
X3 -0.3221 ( -1.7305 , 1.1992 ) 1.3224 ( -1.5519 , 4.5752 ) 0.5833 ( 0.4290 , 0.7345 ) 0.6031 ( 0.0986 , 0.9721 ) 0.0384
X4 -1.9394 ( -3.3713 , -0.4106 ) -0.9500 ( -3.9111 , 1.5068 ) 0.1996 ( 0.0449 , 0.3683 ) 0.2377 ( 0.0135 , 0.6506 ) 0.0091
X5 -3.2350 ( -4.8809 , -1.6467 ) -1.7622 ( -5.2753 , 0.9015 ) 0.0473 ( 0.0014 , 0.1555 ) 0.2230 ( 0.0116 , 0.6173 ) 0.0051
X6 1.2831 ( -0.0961 , 2.9226 ) 1.4435 ( -0.6937 , 4.5667 ) 0.9252 ( 0.7877 , 0.9939 ) 0.6190 ( 0.1356 , 0.9690 ) 0.0758

Table 8: Summary of Posterior Statistics of Dominance Probability of Predictors in Example
Model I Model II Model III Model IV

θ1,2 0.6201 0.3387 0.5856 0.4074
θ1,3 0.8307 0.4324 0.7839 0.4742
θ1,4 0.9583 0.7280 0.9601 0.7254
θ1,5 0.9874 0.8584 0.9912 0.7495
θ1,6 0.5079 0.4272 0.5052 0.4633
θ2,3 0.7499 0.6638 0.7183 0.5791
θ2,4 0.9337 0.9108 0.9304 0.8270
θ2,5 0.9796 0.9223 0.9748 0.8284
θ2,6 0.3879 0.6276 0.4194 0.5639
θ3,4 0.8253 0.8318 0.8063 0.7666
θ3,5 0.9414 0.8677 0.8889 0.7669
θ3,6 0.1742 0.5008 0.2200 0.4903
θ4,5 0.7741 0.6276 0.6371 0.5118
θ4,6 0.0432 0.1763 0.0414 0.2301
θ5,6 0.0131 0.0940 0.0096 0.2137
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Fig. 2: MCMC Trace Plots of Model I
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Fig. 6: ACF Plots of Model I
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Fig. 8: ACF Plots of Model III
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Fig. 9: ACF Plots of Model IV
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