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Abstract: The goal of determining the relative importance of preditis to expose the individual contribution of the predictor
in the presence of other predictors within a selected mddepractice, it is often desired to understand the extent hiclveach
predictor variable drives the response variable The parpdshis article is to expand the current research practicevaluate the
relative importance of each predictor in a logistic regi@ssetting by developing a statistical model-based amrdathe Bayesian
framework. Results from extended simulation studies ssigipat the proposed weighted paired comparison model héthvio sided
power (TSP) link function provides the most effective anlthi#e measure of the relative importance of predictors.
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1 Introduction

Regression analysis is one of the most important tools ugeedearchers and practitioners in determining the relahip
between aresponse variable and its predictor variablésn®fmes there is a desire to further analyze the selecteleitm
determine which predictor or predictors are considereceritoportant the others. Analysis of this type is referredstthe
relative importance analysis, and serves as an importaptesment to traditional regression analysis. For casesathe
predictor variables are uncorrelated, zero-order caiogl@nd regression coefficients nicely provide the ansiteetisese
questions. The problem arises when the predictor variaskesorrelated with each other. Past research has docuinente
how commonly used indices fail to appropriately answer dhisstion when predictors are correlated (Darlington 1968)

Over the years, researchers have suggested various métnadsasuring the relative importance of predictors in
various subjects such as, statistics, psychology, paliteconomy, organizational research, and medicine; for a
comprehensive review see Johnson and LeBreton (2004¢nstats have been confused, because there has been a lack
of agreement on the definition of the relative importance pfeictor. In an effort to circumvent this issue, the coricep
of predictor "dominance” was proposed by Budescu (1993)@@maway to compare predictors in a multiple regression
context. Dominance Analysis (Budescu 1993) approacheprtiteem of relative importance by examining the change
in R? resulting from adding a predictor to all possible subsetassjon models. Azen and Traxel (2009) introduces and
extends the Dominance Analysis in logistic regression risodehe novelty of the approach is that predictors are
compared in a pairwise fashion based on a common subseemegemodel across all possible subset models, and a
hierarchy of levels of dominance is establishéd, complete dominance, conditional dominance and general
dominance. Nevertheless, critics have disapproved of Dande Analysis on the grounds that such analysis is
atheoretic. Moreover, the general dominance weight isutatled based on average of conditional dominance weights
over difference sizes of subset models, which introducas ioi the aggregation because the additional contribufian o
predictor is more substantial in subset models with fewenloer of predictors. As the number of predictors increases,
the additional contribution of the predictor gets less,detailed explanation. Wang and Yao (2014) mentions that the
value of the general dominance index is influenced to a greatent by the conditional dominance of the subset model
with a smaller number of predictors.
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With regards to these issues, Wang et. al. (2013) proposedexential approach to discover the intrinsic dominance
ability of predictors from a behavioral study point of view the Bayesian framework using the Bradley-Terry paired
comparison model. Results show that, in most cases, caoontiBom the Bayesian approach are consistent with those
from the Dominance Analysis methods. However, the basidlByaTerry model is weak in identifying the suppressor
variable, that is, a predictor that is uncorrelated with tesponse variable but whose presence improves prediction
because of its correlation with other predictors. As a remééhng and Yao (2014) proposed a weighted Bradley-Terry
model, which is more efficient and accurate than the basieveighted Bradley-Terry model and the Dominance
Analysis method. One weak point of those methods is thatdiffult to apply practical meaningful interpretation to
the resulting dominance index, which varies fren» to «. The dominance ability is compared based on the additional
R?, which varies between 0 and 1. It would be desirable to haweartance index on the 0-1 scale. Wang (2015) applies
the cumulative distribution function of the two-sided pow@SP) distribution as the link function in the paired
comparison model to ensure the resulting dominance indexhetween 0 and 1. The results show that the TSP link
function provides similar conclusions as the logit link étipn but it is more computational efficient.

Linear regression is used to determine the scalar reldtipio$ observed data and its corresponding predicted Variab
Logistic regression models are used to predict binary anésoand the probability of an event occurring (as opposed to
not occurring) from a set of predictors. In this article, weead the current research of Bayesian analysis of pradicto
relative importance (Wang et. al, 2013; Wang and Yao 201419/2015), which initially developed for linear regression,
to the logistic regression setting to determine the dontadrnierarchy of the predictors. In secti@nwe discuss the
measures of model adequacy in the logistic regressiomgetin section3, we formulate paired comparison models
based on logit and TSP link functions with weighted and umgivied likelihood functions. In sectiofy we introduce the
Bayesian inference and the computation procedure. Inssestiwe perform simulation studies to evaluate the accuracy
of the proposed methods using simple random samples fronowrkpopulation. In sectioB, we report an empirical
example of choosing between fixed and adjustable rate ngagg#&inally, we discuss potential future research avenues
regarding the relative importance of predictors.

2 Model Adequacy Measures

In linear regression, the measure of goodness-of-fit is déf@s the proportion of variation in the response accouwted f
by the predictors, or the squared correlation between teerebd and the predicted responses. This measure is cognmonl
referred ag®. In logistic regression, howeverRg analogues goodness-of-fit measure is required becausasisecalR?
measure does not extend to the non-linear case. To exteddthieance analysis to the logistic regression, it is neagss
to define what is meant by the additional contribution of admt®r to the prediction model and how to measure this
contribution.

Reviews of measures of fit proposed for logistic regressiam loe found in Amemiya (1981), Menard (2000),
Mittlbock and Schemper (1996), and Zheng and Agresti (2000 following criteria are typically applied for defining
appropriateR? analogues (Kvalseth, 1985; Vanden Burg and Lewis, 1988nArne Traxel, 2009):

—Boundedness: The measure should vary between a minimunnayfizdicating complete lack of fit, and a maximum
of one, indicating perfect fit.

—Linear invariance: The measure should be invariant to riogugar linear transformations of the variables (Y’s and
X’s).

—Monotonicity: The measure should not decrease with thetiatddf a predictor.

—Intuitive interpret-ability: The measure of fit is intuigly interpretable, in that it agrees with the scale of thedin
case for intermediate values.
Based on these criteria, the following thrB8 analogues were chosen that satisfied at least three of thase f

properties.

—McFadden’s (1974) measure is defined as
RS, — In(Lo) — In(Lm)
In(Lo)
—Nagelkerke’s (1991) measure is defined as
1—(Lo/Lm)?"
R Lol /2/n>
1-1,
—Estrella’s (1998) measure is defined as
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For these measurds; represents the likelihood of the null (intercept-only) rebandLy, represents the likelihood of the
fitted (intercept and predictors) model. A summary of theperties satisfied by all three measures offt énalogues) is
presented in Tabl. Using each of these thré&® analogues, the additional contribution of a given preditia specific
logistic model can be measured as the change (i.e., indrieetse R? analogue when the predictor is added to the model.
Azen and Traxel (2009) provided an algebraic proof showlirag &ll three of these measures will produce the same order
of dominance analysis results but the magnitude of thessunesare different. In this paper, we will show that, appdyi

the proposed Bayesian approach, all these three measungcprthe same index of relative importance.

3 Paired Comparison Models

Statistical methods of determining relative dominancétas based on paired comparisons have long history datekl b

to Bradley and Terry (1952) in the context of chess tournamand have been broadly applied in many fields such as
statistics, psychometrics, marketing research, preterereasurement, sports competition, behavioural studgatidn,
machine learning, and many others. In this paper, we deterthie intrinsic dominance ability of predictors by apptyin
the statistical method of paired comparisons based on tiiti@uhl increase oR? analogues amongst all possible subset
models.

3.1 Likelihood Function

Suppose there ane predictors in a logistic regression modxg, - - - , Xp. Let X* be a subset ofXy, - - -, Xp) and denote
RZ - as any form of the thre? analogues of andX*. LetA R%Xi X = Rﬁ.m x+) ~ RZ . be the increase iR? analogues

by addingX; to the subset model witk*. Here, the model witkK* is considered as the baseline reference model. The
predictorX; is said to dominate or "win’X; if ARwZ(-xi\x* > ARwZ(.xj\x*- that is addingX; to a model leads to a greater

increase irR? analogues than would be obtained by add¥pgo the model with the same subsets of other variables.

In a model withp predictorsX; andX; are compared amongst all possibRe2subset reference models. M be
the number of times the predict¥ dominatingX;, and8; be the probability of the predictot dominatingX;, then
W has a binomial distribution with parametg@—2, 8;). The Bradley-Terry model is based on the assumption that
6 =& /(& + &), whereé; represents the intrinsic dominance ability of predictarLet d; = In(&;), thend; can be
interpreted as the dominance ability of predickpon the logarithm scale. Based upon this reparameterizatieave
logit(6j) = di —dj, or 6 = exp(di — dj)/(1+exp(d; —dj)), which means that the dominance probability depends only
on the difference of dominance indices. Therefore, the Byadierry model assumes the probability that one predictor
prevails over another is a logit function (the link functjaf the difference in dominance indices between these two
predictors. The likelihood function of the results of pdimparisons of the predictors can be written as follows.

|_IcwIJ 6wIJ 1_ elj)zp—z_wij (1)

2p-2
i<]

Wang and Yao (2014) points out that the number of times treptidictorX; andX; encounter each other depends
on the size of the baseline reference model. For a logistibenaith p predictors, based on the baseline reference model
with k predictors, the number of times that the predi¢toandX; encounter ig;ka—z- For example, whep = 4 andk =0,

X1 andX; only meet once, that iE?,,Xl and R?,,Xz; whenk = 1, X; andX, are compared under two baseline reference
models, tha.t isﬂF?%Xl‘X3 VSAR?xz\x_y andAR?X;W vsARﬁ,XZW;. and \./vherk.: 2, Xy apdxz iny meet once with the
same baseline reference model with two predickarandXs. Taking this fact into consideration, the weighted Braeley
Terry model is proposed witﬁ'lc‘,fz/Zp‘2 as the weight. Letvij.«x be the number of times that the predick¥routweighs

Xj with baseline reference model of sikeThe likelihood function of the weighted Bradley-Terry nabds

p—2Ck k
p-2 (sz) Q_Wijk(l 6 ) p 2 Wijk (2)
kZO 2p-2 IE! Wij-k 1

Both weighted and unweighted likelihood functions are dase the number of time one predictor dominating the
other. Azen and Traxel (2009) provided an algebraic proofxshg that if one measure of the? produces a given
dominance relationship, the other two measures will necggslso produce the same direction of dominance. Hence,
the threeR? analogues will yield the same paired comparison resultdtamdame likelihood function.
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3.2 Link Functions

The two most commonly used link functions are the logit link,assumed by the Bradley-Terry model, and the probit
link, which assume$}j = @(d; — d;j) with @ being the cumulative function of the standard normal distion. Wang et

al. (2013) concludes that the results from the two link fiond are consistent with each other. A more general approach
is to assume thalj = H(d; —d;), where H is a link function, which maps the difference in tleenihance indices to a
probability that lies between 0 and 1, inclusively. Alsce timk function should have the following characteristigs: the
larger the difference, the larger the valuegyf, that is, the more likely one predictor will dominate the &th(2) when

two dominance indices are equél;, equals (6; that is, each predictor has a 50% chance of prevailing wloemnance
indices of two predictors are the same.

Since the paired comparisons of predictors are based upoadtitionalR?, which is between 0 and 1. It would
be ideal if the returning value af is also within 0 and 1 so thak can be considered as an indicator of the additional
R? associated withX; in the population in the presence of other predictors. vapmd Kotz (2002) provide a four-
parameter two-sided power (TSP) distribution with the clative distribution function that satisfies those charet€his
link function is not only sufficiently rich from the mathenel perspective but also allows efficient implementations
practice. The four-parameter TSP distribution is descritpe parameters denoting the minimum valagthe maximum
value,b, the mode or most likely value, and a fourth parameten, describing the curvature of the distribution. The
parameten requires some evidence for the relative importance of thstfilely value relative to distribution bounds a
and b. That s, ify = 2, cis equally important ag andb; if n > 2, ¢ has more weight than the boundspik 2, cis given
less emphasis relative to the bounds. The probability tiefigiction of TSP(a, b, c, ) is demonstrated in equatio8)(

L (8-t jfa<x<c
f) =< pL(EX)nt ifc<x<b ®)
0 otherwise

The expected value of a TSP distribution is

a+(n—1)c+b
EX)=—————F———
) n—+1
The cumulative distribution function follows from the ergsion as equatiod)
c-a x-ayn if <
B —a(3=2) ifa<x<c
F(X)—{ 1- (b0 jfe<x<b @

Wang (2015) stated that it is reasonable to ch@ose-1 andb = 1 because the desired relative importance index is
between 0 and 1. There is no preference regarding the pessilie ofd;’s. It is reasonable to use= (a+b)/2=0and
n = 2. The probability density function of this particular TSBtdbution has a triangular shape with expected value of 0.
Wang (2015) compares the performance between the logit@iB3P link functions under both weighted and unweighted
likelihood functions, and concludes that the TSP link fimetprovides similar results as the logit link function with
more efficient computational procedure in a multiple regi@s setting. In this paper, we would like to ascertain if the
same conclusion can be extended to a logistic regressitmgset

4 Bayesian Dominance Inference

Algorithms used to produce maximum likelihood estimatesl@iinance abilities under the Bradley-Terry model fail
to converge to finite values, and so cannot be used for maaysgas with zero counts. Davidson and Solomon (1973)
and Leonard (1977) describe Bayesian versions of the methpaired comparisons. The major benefit of the Bayesian
approach is that prior information can be incorporated fh&analysis so that the resulting estimates of dominarexin
are always finite (Leonard 1977).

4.1 Prior Distribution

The prior distribution plays a key role of Bayesian inferenit represents the information about an uncertain pamet
and is combined with the probability distribution of obsethdata to yield the posterior distribution, which in tusused
for future inferences and decisions. In practice, oftemetti® no or very limited prior information about the dominanc
ability of predictors. Hierarchical (multilevel) prior drvague prior models are central to the modern Bayesiarstitati
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for both conceptual and practical reasons. On the theateside, those prior models allow a more "objective” apploac
rather than requiring them to be specified using subjectif@rmation (see James and Stein, 1960, Efron and Morris,
1975, and Morris, 1983). At a practical level, they are fléxitools for aggregating information and partial pooling of
inferences (see, for example, Kreft and De Leeuw, 1998d8rsjand Bosker, 1999, Carlin and Louis, 2001, Raudenbush
and Bryk, 2002, Gelman et al., 2003).

When the parameter varies fromro to +o, the normal distribution is the most commonly used priotriistion
because it corresponds to the prior belief that modest saifithe parameter are nearly equally likely, and that veigda
values are somewhat less probable. For the logit link, theegaofd;’'s range from—o to 4o, and it is also reasonable to
assume that there is the same symmetrical prior probabibtyibution for each predictor's dominance index. Theref
without loss of generality, we assume tllat- N (i, 2).

The second stage of the hierarchical prior assume that @anetimal distribution is applied to the mean of the prior
normal distribution, i.ep; ~ N(v, 12), and an Inverse-Gamma distribution is applied to the vagaf the prior normal
distribution; i.e.,a% ~ 1G(a,a). Here,v, T anda are predetermined hyper-parameters, which are choseg uague
information as follows. When the valuesdfvary between-1 andl, by applying the & or empirical rule, the expected
value of the standard deviation dfis around /3, namely the expected value @f is about?/9. On the other hands?
is assumed to have d(a,a), which has a mean value af (a— 1). By lettinga/(a— 1) = 12/9 and solving fora, we
can get the hyper-parametes= 12/(12 — 9). When the values af; are in(—4,4), the values ofl, — d; are in(—8,8). As
a result, the values & = exp(d; — d;j)/(1+exp(di — d;)) vary from Q0003 to 09997, which is sufficiently wide for
practical purposes. Therefore, it is adequate to presuatel.th range betweer-4, and choose the value ato be 2. In
addition, it is also reasonable to assume the medmas a standard normal distribution with= 0 andt = 1

For the TSP link function, we assume tltis range from 0 to 1, and we do not have any preference towanygls a
particular value. It is reasonable to apply {i@el) Uniform distribution as the prior distribution to eadh Therefore, the
TSP link function bears a simpler prior distribution.

4.2 Bayesian Computation

Under the square error loss function, the posterior medrei8ayesian estimator. However, the closed form expression
of the posterior distribution ofli’s are not easy to achieve. Therefore, we use Markov chaint®Garlo (MCMC)
methods to obtain numerical results. In order to implembéet MCMC procedure, it is necessary to have the full
conditional posterior distributions, which are the coiugtiil distributions of one parameter given all the othernown
parameters and data. In this paper, let=dldy,---,dp), d—j] = (di,---,dj_1,dj41,---,dp), H = (M1, ,Up),
H[—j] = (M1, Hj—1, Hj 11, » Hp), @(-|14,02) be the probability density function &f(u, a2), Hi(-) be the logit link
function, andH(-) be the TSP link function. Also, let| ) denote the conditional distribution arid ] denote the
conditional density function.

Proposition 4.2.1.The full conditional posterior distributions dly, - - - dp, U1, - - - , Up, 0?) given data X under the model
with unweighted likelihood and the logit link function, Med!, are as follows.

—Fori=1,---,p,
o | @y, 1,02, X] O[] Copl (0 — o)™ (1= Ha(dh — )" " (|, 07)

2p-2
<]

] 124 g2 2,2
—Fori=1,---,p, (i | d p[—i ]UZX) N(%’ rngTaZ)

—(02|du,X)~IG< +a, § +a>

Proposition 4.2.2.The full conditional posterior distributions 6y, - - - dp, ti1, - - , Up, 02) given data X, under the model
with weighted likelihood and the logit link function, Modi] are as follows.

—Fori=1,---,p,

k
ck . K
[di | ), p,0%X] O Z 2p n( p_2>Hl(di—dj)w"‘k(l—Hl(di—dj))cp2 "k (ch |, 0%)
i£]

. .2 2 2:2
—Fori=1,.p, (i | dp[—i ]UZX) ~N (ALY, )

—(02|du,X)~IG< +a, Z +a>
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Proposition 4.2.3. The full conditional posterior distributions ofdy,---dp,) given data X under the model with
unweighted likelihood and the TSP link function, Model Hfe as follows.
o | dh_i), i, 0% X] O[] oyl oHa(dh — )" (1~ Ha(d —d;))> %,

2p-2
i<]

fori=1,---,p.

Proposition 4.2.4.The full conditional posterior distributions ¢fly, - - - dp) given data X under the model with weighted
likelihood and the TSP link function, Model 1V, are as follew

-2k

d . 2 £ ZCP*Z Clp(yfz d —diWik(1—Ho(di — d; Cl_o—Wijk

[ i |q—|]7”70 7X] O op-2 |_I HZ( i J) (1 HZ( i J)) P )
o i)

fori=1,---.p.

Comparing the full conditional distributions, one can alisghat the TSP link function simplifies the computational
procedure with simpler full conditional posterior distritons.

The Bayesian dominance method provides prosperous infanmabout the relative importance of predictors via
posterior distributions of dominance indio&%. First of all, the posterior mean of the dominance indesan be applied
as an overall measure of relative importance/dominandigyati the predictorX;. Secondly, the posterior distribution of
dominance probability; can be obtained by applying the corresponding link functiothe MCMC chain ofd;’s, and
the posterior mean ot can be applied as an estimate of the dominance probabiligvieal the conclusion of paired
comparisons among predictors in a probabilistic mannereleer, the lower and upper3®" percentiles of the posterior
distributions ofd; can be used to construct 95% confidence intervath.dfast but not least, the posterior probability of
one particular order of dominance can be estimated by thgoption of steps occurred in the MCMC chain that is in the
same order. Hence, we can obtain the most likely order of dange directly from the MCMC chain.

5 Simulations

Simulation studies are based on a generated populatiozefi$i= 500, 000) with correlation matrices as displayed in
Table??. First, the correlation matrix is used to solve for a vectothe log odds of the dependent variable for logistic
regression (Y vlaues) and the matrix containing predictdues from the multivariate normal population. Second, a
dichotomous response variable (Y* values) is generate@ tasied in the logistic regression analysis by rearrangiag th
logistic transformatiorr(y) = exp(y)/(1+ exp(y)), which is then compared to random values drawn from a uniform
distribution (with a range of 0 to 1), such that if the randaaiue is less tham(y) thenyx = 1 and otherwisgx = 0. We
believe that a random sample of size 500 is large enough to stand for a population. The generalibame Analysis
indices and the Bayesian dominance indices for all four Hsds listed in Tabl&, indicate that the population order of
dominance isXo > X3 > X3 > X;.

To better evaluate the performance of the proposed Bayapigmaches in logistic regression settings, one thousand
simple random samples of size= 500 are selected from the previously generated populatiod, the estimated
dominance indices based on different models are computeshfth sample. The average and standard deviation of the
1,000 estimated dominance index values are calculatechfdr model. Because the magnitude of population dominance
indices from different approaches are quite differentatieé bias and relative standard deviation are proposeeétterb
measure the accuracy and reliability of the estimates,eprasented in Tabl In probability theory and statistics, the
relative bias is a commonly used measure of accuracy, anefised as the ratio of the bias to the population value,
where the bias is defined as the the difference between thraga/@f the estimates and the population value. The
coefficient of variation (CV) is a standardized measure gpeision, which is defined as the ratio of the standard
deviation to the population value. The absolute value ofilas sometimes known as relative standard deviation, which
is expressed as a percentage.

The Dominance Analysis methods produces the estimatedndmueé indices with the largest relative biases as far as
2622.34% and the largest relative standard deviation o7 3P6. Estimates using logit link functions bear less nadat
biases and relative standard deviations than those froddhgnance Analysis methods but greater than those from the
TSP link functions, with the exception &%. In the Model I, the dominance index & has a relative bias 123.96%
and relative standard deviation 138.16%, which are grelger those from the other three Bayesian models but are still
less than that from the Dominance Analysis. Overall, the 8ld¥ produces the smallest relative biases and relative
standard deviation. Thus, we conclude that it is the mosirate and reliable model to determine the relative impaean
of predictors.
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6 Example

Dhillon et. al. (1987) provides an interesting data to expthe choice by home buyers of fixed versus adjustable rate
mortgages. They use 78 observations from a bank in Baton é&kdugisiana, taken over the period January, 1983 to
February 1984. There are 6 explanatory variables used thgbrehether an adjustable rate mortgage was chygseri.:

—X1: FIXRATE: fixed interest rate in whole numbers;

—X2: MARGIN: the variable rate minus the fixed rate;

—X3: YIELD: The 10-year Treasury rate less the 1-year rate;

—X4: MATURITY: ratio of maturities on adjustable to fixed rates;

—X5: POINTS: ratio of points paid or an adjustable mortgage tsé¢hpaid on a fixed rate mortgage;
—Xs: NETWORTH: borrower’s net worth

The sample correlation matrix of the variables is displayed@iable ??. There exist minor correlation amongst the
explanatory variables such as the sample correlation leet{eandX; is about 0468. Paired comparisons of predictors
based on the additional increaseRA are conducted amond2 = 16 possible subset regression models. The total
numbers of times that the variab¥ prevails overX; in all possible subset reference models are presented ie Gab
PredictorsX;, X, andXg completely dominate&y andXs; X3 prevails overXs in all subset models except whén= 1,
and prevailsXy most of the time (12 out of 164 prevails overXs most of the time (13 out of 16 timesX; prevails
over X, andX3 most of the time (12 out of 16 times¥, prevails overtXs most of the time (13 out of 16 times); axg
prevails oveiXy, X, X3 a majority of the time (10, 12, 9 out of 16 times, respectiyely summary, the observed order
of dominance from paired comparisords > X; > X, > X3 > X4 > Xs. The results of Dominance Analysis based on the
general dominance indices show that the hierarchical aftyminance i; > Xg > X2 > X3 > X4 > X5, see Tabld. The
dominance indices 0f; andXg are very close to each other. The Bayesian point estimate8%# confidence intervals
of dominance indiced;’s under four different models are listed in TaleThe resulting order of dominance indices from
both un-weighted models }§ > Xg > Xz > X3 > X4 > X5, which is the same as the results from the Dominance Analysis
and the order from both weighted modelsis> Xg > X3 > X3 > X4 > Xs.

All models putX, (Maturity) andXs (Points) at the bottom of the hierarchy when predicting Wweetin adjustable
rate mortgage will be used or not. All models agree #afMargin) is more important thaX (Yield); and Xg (Net
Worth) is more important thaiz (Yield). There exists discrepancy regarding the order aghi@ance among<s, Xg,
andX;. From theoretical point of view, there exists Simpson’saplaix in the paired comparison results in TaBl& he
Simpson’s’s paradox often occurs when subgroups are cadloygether, and the data are examined in aggregate form,
the conclusion made from the subgroups may reverse itselhwking the combined group. For example, the total paired
comparison table shows théf prevailsX, 12 out of 16 times (75%), which implies thét dominates<;. However, when
investigating the subgroups, we notice that 5 of the 12 "wighoccur wherk = 1 whereX; andX; are compared total of
6 times. In the subgroups, wheke- 4, X, prevails ovelX; (100%) but they are only compared once. Wang and Yao (2014)
states that the results from the unweighted model is lesgraiecthan the weighted mode because the former one does
not take into account the possible number of times that pteid encountering under different size of baseline refeze
models. From practical point of view, when two subjects ampared, generally speaking, the difference between the tw
subjects would carry more weights than the actual valueso$tibjects. Also when examine the data, we found that there is
very less variation irX; with an average of 13.25%. Therefore, the margin betweaahlarrate and fixed ratex¢) would
matter more when one determines if an adjustable rate willSeel or not, and the actual fixed interest is a less important
factor. As a summary, we conclude that, for the given datatlsetorder of dominanc¥, > Xg > Xz > X1 > X3 > Xg is
more reasonable from both practical and theoretical petisge

When using the lower and uppessd' percentiles of the MCMC chain, the 95% confidence intervaidominance
indices are obtained and are shown in TablBecause the 95% confidence intervals of dominance indiverdap each
other, it is challenging to determine which predictor de€lyi dominates the other predictors. Fortunately, the Biaye
approach provides a probabilistic solution to this diffiguBy applying the link functions to the dominance indicatin
the MCMC, we obtain the estimate of dominance probabilifegs, which are listed in Tabl®, with i < j. Fori > j,

6,j = 1—6;. The results are consistent with the order of dominanceéawdin Tabl&, correspondingly and respectively.
For example, both weighted models ha&, 624, 825, 626 greater than 0.5 anél » less than 0.5, which implies that
predictorX, has more chance to dominate the other predictors. Arrarthggominance probabilities from smallest to
largest, one can obtaifps < 823 < 821 < 624 < 625, which indicate the order of dominanceXs > Xg > Xz > X >

X4 > Xs.

The posterior probability of a particular order of the doamne ranking is estimated by the proportion of this order
occurring in the MCMC steps. Among the 720 possible of ragkirders, the order rankingg > Xg > Xo > X3 > X4 > X5
receives the highest probability under both un-weightediet®y and the order ranking > Xg > X3 > Xg > Xg4 > X5
receives the highest probability under both weighted nmd&hce again, the results are consistent with previousiiysdi
using dominance indexes and probabilities within each mode
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It is worth mentioning that the MCMC chain produced by the Ti8Rfunction converges faster and is less correlated
than those by the logit link function. The trace plots of th€MC chains of the four models, Figuge Figure3, Figure
4 and Figureb, show that the MCMC chains produced by the TSP link functioxech better and converge faster than
those by the logit link function. Moreover, autocorrelatfonctions of the four models, as presenting in FighrEigure
7, Figure8 and Figure9, show that the MCMC chains produced by the TSP link functieddwn faster than those from
the logit link function, which means the former ones are Esselated and more stationary than the latter ones. Thus we
conclude that the TSP link provides more reliable resubis tihe logit link function.

As a summary, the most probable order of dominance is cemsiamong the results from the estimated dominant
index, dominant probability within each case, respecjivAlthough there exist discrepancies between weighted and
unweighted models, we believe that the ordlgr> Xs > X3 > X1 > X4 > X5 is the most preferable from both practical
and theoretical perspective.

7 Summary and Concluding Remarks

Relative importance analyses permit a greater understgrafi the particular role played by variables in a logistic
regression analysis. Crucially, these analyses can réwveainderlying impact of a particular predictor more actelya
than standardized regression coefficients or simple @iioels. This paper extends the current Baysian approach of
measuring the relative importance of predictors in linegression models (Wang 2015) to a logistic regression sicena
by applying the generalize®? measures.

The advantage of the Bayesian approach is that it allows $keeofi genuine prior information in addition to the
information that is available in the observed data to precstter results. In general, Bayesian methods providetarbet
approximation to the level of uncertainty than other apphes which use only information provided by the model and
the observed data. In addition to providing useful stastuch as, the mean and percentiles of the posterioihdittmn
of the unknown parameters, Bayesian methods give mordleliasults for small samples (Dunson 2000; Lee and Song
2004; Scheines, Hoijtink and Boomsma 1999).

The Bayesian approach offers several advantages over thentmethods in determining the relative importance
of predictors in a linear regression model. First, this jatahbstic model based approach provides more comprehensiv
inference about the population relative dominance alofifyredictors than the current Dominance Analysis. Seggtiu
Bayesian approach provides more information about théivelamportance of the predictor by making straightforward
statements about the dominance ability of the predictbesdbminance probability of each possible pair of predgtor
and the probability of each possible order of dominancerdiithe main advantage of the TSP link function over the
logit link function is that the TSP link function is more fléké in modelling the results of paired comparisons based
on indices, which are between 0 and 1. As a result, the TSPpliokides more useful and meaningful estimation of
the dominance index between 0 and 1, which can be treated asasune of association between the predictor and the
response variable in the presence of other predictors. Mop®int that the TSP link function simplifies the Bayesian
computational process. Last but not least, the Bayesiahadés$ not limited to a simple model, but offers a rich potanti
to incorporate more complex models. Both simulation steidied empirical example support that these benefits extend
very well into the logistic regression setting. The modefhwiveighted likelihood function and the TSP link function
provides the most accurate estimate with the smallesivelaias and standard deviation.

One of the central questions in a multivariate analysis ofavae (MANOVA) considers identifying the dependent
variables that are driving the significant multivariategistt Unfortunately, the correlations among the variougddpnt
variables often make it difficult to accurately identify ttede being played by the various dependent variables. Aljho
both Dominance Analysis and Bayesian approach are dew&fopase with OLS regression, Azen et.al. (2006) presented
modifications of these respective analysis to the multtarregression models. Thus, we will continue our work about
guestions of the relative contribution of each of the vdaalin terms of predicting the multivariate predictors, &g
the proposed method can be examined in this context as well.
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Table 1: Summary of Properties ¥ Analogues for Logistic Regression Model
Boundedness Invariance | Monotonicity | Interpretability
R, Yes Yes Yes Yes
RS Yes Yes Yes No
RE Yes Yes Yes Yes
Table 2: Population Correlation Matrix for Simulation
Simulation |
Y X1 X2 X3 X4
Y 1 0.06 | -0.42| 0.19 | -0.02
X1 | 0.06 1 0.01 | -0.01| 0.07
X, | -0.42| 0.01 1 -0.13| 0.11
X3 | 0.19 | -0.01 | -0.13 1 0.01
X4 | -0.02| 0.07 | 0.11 | 0.01 1
Table 3: Population Dominance Indices of Predictors
Model I | Model Il | Model Il | Model IV DA
X1 | -1.00424 | -0.45630| 0.34411 | 0.41491 | 0.00045
Xo | 3.08734 | 1.63116 | 0.87559 | 0.73775 | 0.02095
X3 | 0.91236 | 0.71019 | 0.66948 | 0.59835 | 0.00322
X4 | -3.06442| -1.49385| 0.12919 | 0.26067 | 0.00006
Table 4: Relative Biases and Standard Deviations of Dominance ésditstimates
Model | Model Il Model |1l Model IV DA
X1 40.98% ( 155.70% ) 69.46% ( 184.31%)) 29.51% (56.56% ) 7.16% (30.23%) 327.54% (612.71%))
Xo -3.60% (22.86% ) 0.41% (21.54% ) “1.72% (5.57% ) 0.15% (4.93% ) 6.00% (52.48% )
X3 -103.42% (162.52%) | -103.98% (118.11% )| -25.93% (31.47% ) -16.26% (21.22%) 43.68% (138.06% )
X4 ~49.59% (47.29% ) ~43.33% (52.32% ) 123.96% ( 138.16%) | 42.72% (44.13%) | 2622.34% (3717.91%)
Table 5: Sample Correlation Matrix in Example
Y X Xa X3 Xa Xs Xe
Y | 1000 | —0213 | —0.069 | 0.076 | 0265 | 0381 | 0.399
X1 | —0213 | 1000 | —0468 | 0277 | —0271 | 0093 | —0.236
X | —0069 | —0.468 | 1000 | —0.405 | —0011 | —0.254 | —0.176
Xs | 0076 | 0277 | —0405 | 1000 | 0005 | 0285 | —0011
X, | 0265 | —0271 | —0.011 | 0.005 | 1.000 | 0022 | 0135
Xs | 0381 | 0093 | —0254 | 0285 | 0022 | 1000 | 0.365
Xe | 0399 | —0236 | —0176 | 0011 | 0.135 | 0.365 | 1.000
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Table 6: Paired Comparisons of Predictors in the Example
Null k=0 k=1 k=2
Xt | X | X3 | X | X5 | Xe Xt | X | X3 | X | X5 | X6 Xt | X | X3 | X | X5 | X6
Xt ] 0 | 1] 1| 1] 1] 1 X1 | 0 | 4 | 4| 4] 4| 3 X. ] 0 | 5| 5] 6| 6| 2
X2 ] 0| 0] 1] 1] 1]O0 X2 ] 0| 0] 4| 4| 4 | 1 X | 1 | 0| 4| 6| 6| 2
X2 ] 0| 0] 0] 1] 1]O0 Xs ] 0| 0] 0| 3] 3]0 Xs | 1 | 2 | 0| 4| 6 | 1
X, ] 0] 0] 0] 0]O0]O X, ] 0] 0| 1] 0]2]0]| [X%|]O0]O0O]2]O0]6]O0
Xs | 0 | 0 | 0] 1 ]0]O Xs | 0 | 0 | 1| 2] 0] 0 Xs | 0 | 0] 0] 0] 0] O
Xe | 0 | 1 | 1 | 1] 1] 0 X | 1 | 3 | 4 | 4| 4] 0| [ X | 4| 4| 5] 6] 60
Total
k=3 k=4
X X [ X [ X [ % [ % X X [ % [ X [ % [ % XX 1 X LKL X L%
X0 221441 X To oo | 1|1 o] ] 0 12]12[16}16] 7
% 2 0 3 4| 42 X% 1[0 1T 1 1 [1] (e 4]|0]15/16]16]6
% 2 | 1] 03| 42 X% 1[0 o T 1 1] 4138 ]0J12]15]4
= = Xs | 0| 0| 4] 0][13] 0
X, [OJO[T]O0[ 4]0 [X%[O0[0]O0[0[IT[0] - +—+st+7+zT5T0
Xs | 0 | 0 ] 0] 0] 0] 0 Xs | 0 ] 0 | 0] 0] 0] 0 X29101216160
X | 3| 2| 2 | 4| 4]0 X | 1 | 0] 0 1] 1]O0
Table 7: Summary of Posterior Statistics of Dominance Index of Riteds in Example
Model | Model Il Model Il Model IV DA
X1 | 1.3160 (-0.0170,2.9450)| 1.0182 (-2.0485,5.0925) 0.9307 (0.8136,0.9966) 0.5705 (0.0683,0.9800) 0.0784
X, | 0.8112 (-0.6637,2.3337)| 2.2989 (-0.5725,6.0324) 0.8380 (0.6793,0.9749) 0.7041(0.1832,0.9861) 0.0540
Xs | -0.3221 (-1.7305,1.1992)] 1.3224 (-1.5519,4.5752) 0.5833 (0.4290,0.7345) 0.6031 (0.0986,0.9721) 0.0384
X, | -1.9394 (-3.3713, -0.4106 ] -0.9500 (-3.9111, 1.5068 ) 0.1996 ( 0.0449,0.3683 ) 0.2377 (0.0135,0.6506) 0.0091
Xs | -3.2350 (-4.8809, -1.6467 | -1.7622 (-5.2753,0.9015) 0.0473 (0.0014,0.1555) 0.2230 (0.0116,0.6173) 0.0051
Xo | 1.2831 (-0.0061,2.9226)| 1.4435(-0.6937,4.5667) 0.9252(0.7877,0.9939) 0.6190 (0.1356,0.9690) 0.0758
Table 8: Summary of Posterior Statistics of Dominance ProbabilitiPi@dictors in Example
Modell | Modelll | Model Il Model IV
B, | 06201 | 0.3387 | 05856 0.4074
013 | 0.8307 | 04324 | 0.7839 0.4742
014 | 09583 | 0.7280 | 0.9601 0.7254
0.5 | 09874 | 0.8584 | 0.9912 0.7495
06 | 05079 | 04272 | 05052 0.4633
6,5 | 0.7499 | 06638 | 0.7183 0.5791
6,4 | 09337 | 09108 | 09304 0.8270
6,5 | 09796 | 0.9223 | 0.9748 0.8284
G5 | 0.3879 | 06276 | 04194 0.5639
64 | 0.8253 | 0.8318 | 0.8063 0.7666
G5 | 09414 | 0.8677 | 0.8889 0.7669
G5 | 0.1742 | 05008 | 0.2200 0.4903
O,5 | 0.7741 | 06276 | 0.6371 0.5118
G5 | 0.0432 | 0.1763 | 0.0414 0.2301
Gs | 00131 | 0.0940 | 0.0096 0.2137
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Fig. 5: MCMC Trace Plots of Model IV
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