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Abstract: In this paper we introduce the idea of relative NevanlinnaL∗ -order and relative NevanlinnaL∗ -lower order of an analytic
function with respect to an entire function in the unit discU = {z : |z|< 1}. Hence we study some comparative growth properties of
composition of two analytic functions in the unit discU on the basis of their relative NevanlinnaL∗ -orders and relative NevanlinnaL∗

-lower orders.
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1 Introduction, Definitions and Notations

A function f , analytic in the unit discU = {z : |z|< 1} ,
is said to be of finite Nevanlinna order [2] if there exist a
numberµ such that the Nevanlinna characteristic function

T (r, f ) =
1

2π

2π
∫

0

log+
∣

∣

∣
f
(

reiθ
)∣

∣

∣
dθ

satisfiesT (r, f )< (1− r)−µ for all r in 0< r0 (µ)< r < 1.
The greatest lower bound of all such numbersµ is called
the Nevanlinna order off . Thus the Nevanlinna orderρ f
of f is given by

ρ f = limsup
r→1

logT (r, f )
− log(1− r)

.

Similarly, Nevanlinna lower orderλ f of f is given by

λ f = lim inf
r→1

logT (r, f )
− log(1− r)

.

Datta et. al. [1] introduced the notion of
NevanlinnaL-order for an analytic functionf in the unit

disc U = {z : |z|< 1} where L = L
( 1

1−r

)

is a positive
continuous function in the unit discU increasing slowly
i.e., L

(

a
1−r

)

∼ L
(

1
1−r

)

as r → 1, for every positive
constant ‘a’, in the following manner:

Definition 1.If f be analytic in U, then the Nevanlinna L-
order ρL

f and the Nevanlinna L-lower orderλ L
f of f are

defined as
ρL

f = limsup
r→1

logT(r, f )

log

(

L( 1
1−r )

(1−r)

) and λ f = lim inf
r→1

logT(r, f )

log

(

L( 1
1−r )

(1−r)

) .

Now we introduce the concepts of relative
NevanlinnaL∗-order and relative NevanlinnaL∗-lower
order of an analytic functionf with respect to another
analytic function g in the unit discU which are as
follows:

Definition 2.If f be analytic in U and g be entire, then
the relative Nevanlinna L∗-order of f with respect to g,
denoted byρL∗

g ( f ) is defined by

ρL
f = inf{µ > 0 : Tf (r) < Tg

[

exp{L( 1
1−r )}

(1−r)

]µ
for all 0 <

r0 (µ)< r < 1} .
Similarly, relative Nevanlinna L∗-order of f with respect
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to g denoted byλ L∗
g ( f ) is given by

λ L∗
g ( f ) = lim inf

r→1

logT−1
g Tf (r)

log

(

exp{L( 1
1−r )}

(1−r)

) .

When g(z) = expz, the definition coincides with the
definition of the NevanlinnaL∗-order and the Nevanlinna
L∗-lower order.

In this paper we study some growth properties of
composition of two analytic functions in the unit discU =
{z : |z|< 1} on the basis of their relative NevanlinnaL∗-
orders (relative NevanlinnaL∗-lower orders). We do not
explain the standard definitions and notations in the theory
of entire functions as those are available in [3].

2 Theorems

In this section we present the main results of the paper.

Theorem 1.Let f , g be any two analytic functions in U
and h be an entire function such that
0 < λ L∗

h ( f ◦g) ≤ ρL∗
h ( f ◦g) < ∞ and

0 < λ L∗
h ( f ) ≤ ρL∗

h ( f ) < ∞ . If
L
(

1
1−r

)

= o
{

logT−1
h Tf (r)

}

as r → 1

then
λ L∗

h ( f◦g)

ρL∗
h ( f )

≤ lim inf
r→1

logT−1
h Tf◦g(r)

logT−1
h Tf (r)+L( 1

1−r )
≤

λ L∗
h ( f◦g)

λ L∗
h ( f )

≤

limsup
r→1

logT−1
h Tf◦g(r)

logT−1
h Tf (r)+L( 1

1−r )
≤

ρL∗
h ( f◦g)

λ L∗
h ( f )

.

Proof.From the definition of relative NevanlinnaL∗-order
and relative NevanlinnaL∗-lower order of an analytic
function in the unit discU we have for arbitrary positiveε
and for all sufficiently large values of

(

1
1−r

)

that

logT−1
h Tf◦g (r)≥

(

λ L∗
h ( f ◦g)− ε

)

log

(

exp
{

L
( 1

1−r

)}

(1− r)

)

i.e.,

logT−1
h Tf◦g (r) ≥

(

λ L∗
h ( f ◦g)− ε

)

{

log

(

1
1− r

)

+L

(

1
1− r

)}

(1)

and

logT−1
h Tf (r)≤

(

ρL∗
h ( f )+ ε

)

log

(

exp
{

L
( 1

1−r

)}

(1− r)

)

i.e.,

logT−1
h Tf (r) ≤

(

ρL∗
h ( f )+ ε

)

{

log

(

1
1− r

)

+L

(

1
1− r

)}

i.e.,

logT−1
h Tf (r)

(

ρL∗
h ( f )+ ε

) ≤ log

(

1
1− r

)

+L

(

1
1− r

)

. (2)

Now from (1) and(2) , it follows for all sufficiently large
values of

( 1
1−r

)

that

logT−1
h Tf◦g (r)≥

(

λ L∗
h ( f ◦g)− ε

)

(

ρL∗
h ( f )+ ε

) logT−1
h Tf (r)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

)

≥

(

λ L∗
h ( f ◦g)− ε

)

(

ρL∗
h ( f )+ ε

) ·
logT−1

h Tf (r)

logT−1
h Tf (r)+L

( 1
1−r

)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≥

(

λ L∗
h ( f◦g)−ε

)

(ρL∗
h ( f )+ε)

1+
L( 1

1−r )
logT−1

h Tf (r)

. (3)

Since L
(

1
1−r

)

= o
{

logT−1
h Tf (r)

}

as r → 1, it follows
from (3) that

liminf
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≥

(

λ L∗
h ( f ◦g)− ε

)

(

ρL∗
h ( f )+ ε

) . (4)

As ε (> 0) is arbitrary, we get from(4) that

liminf
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≥
λ L∗

h ( f ◦g)

ρL∗
h ( f )

. (5)

Again for a sequence of values of
( 1

1−r

)

tending to infinity,

logT−1
h Tf◦g (r)≤

(

λ L∗
h ( f ◦g)+ ε

)

log

(

exp
{

L
( 1

1−r

)}

(1− r)

)

i.e.,

logT−1
h Tf◦g (r) ≤

(

λ L∗
h ( f ◦g)+ ε

)

{

log

(

1
1− r

)

+L

(

1
1− r

)}

(6)

and for all sufficiently large values of
(

1
1−r

)

,

logT−1
h Tf (r)≥

(

λ L∗
h ( f )− ε

)

log

(

exp
{

L
(

1
1−r

)}

(1− r)

)
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i.e.,

logT−1
h Tf (r) ≥

(

λ L∗
h ( f )− ε

)

{

log

(

1
1− r

)

+L

(

1
1− r

)}

i.e.,

logT−1
h Tf (r)

(

λ L∗
h ( f )− ε

) ≥ log

(

1
1− r

)

+L

(

1
1− r

)

. (7)

Combining(6) and(7) , we get for a sequence of values of
( 1

1−r

)

tending to infinity that

logT−1
h Tf◦g (r)≤

(

λ L∗
h ( f ◦g)+ ε

)

(

λ L∗
h ( f )− ε

) logT−1
h Tf (r)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

( 1
1−r

)

≤

(

λ L∗
h ( f ◦g)+ ε

)

(

λ L∗
h ( f )− ε

) ·
logT−1

h Tf (r)

logT−1
h Tf (r)+L

(

1
1−r

)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

( 1
1−r

) ≤

(

λ L∗
h ( f◦g)+ε

)

(λ L∗
h ( f )−ε)

1+
L( 1

1−r )
logT−1

h Tf (r)

. (8)

As L
(

1
1−r

)

= o
{

logT−1
h Tf (r)

}

asr → 1 we get from(8)
that

liminf
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

( 1
1−r

) ≤
λ L∗

h ( f ◦g)+ ε
λ L∗

h ( f )− ε
. (9)

Sinceε (> 0) is arbitrary, it follows from(9) that

liminf
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≤
λ L∗

h ( f ◦g)

λ L∗
h ( f )

. (10)

Also for a sequence of values of
(

1
1−r

)

tending to infinity,

logT−1
h Tf (r)≤

(

λ L∗
h ( f )+ ε

)

log

(

exp
{

L
( 1

1−r

)}

(1− r)

)

i.e.,

logT−1
h Tf (r) ≤

(

λ L∗
h ( f )+ ε

)

{

log

(

1
1− r

)

+L

(

1
1− r

)}

i.e.,

logT−1
h Tf (r)

(

λ L∗
h ( f )+ ε

) ≤

{

log

(

1
1− r

)

+L

(

1
1− r

)}

. (11)

Now from(1) and(11) ,we obtain for a sequence of values
of
( 1

1−r

)

tending to infinity that

logT−1
h Tf◦g (r)≥

(

λ L∗
h ( f ◦g)− ε

)

(

λ L∗
h ( f )+ ε

) logT−1
h Tf (r)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

)

≥

(

λ L∗
h ( f ◦g)− ε

)

(

λ L∗
h ( f )+ ε

) ·
logT−1

h Tf (r)

logT−1
h Tf (r)+L

( 1
1−r

)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

( 1
1−r

) ≥

(

λ L∗
h ( f◦g)−ε

)

(λ L∗
h ( f )+ε)

1+
L( 1

1−r )
logT−1

h Tf (r)

. (12)

In view of the conditionL
(

1
1−r

)

= o
{

logT−1
h Tf (r)

}

as
r → 1, we obtain from(12) that

limsup
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

( 1
1−r

) ≥
λ L∗

h ( f ◦g)− ε
λ L∗

h ( f )+ ε
. (13)

Sinceε (> 0) is arbitrary, it follows from(13) that

limsup
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

( 1
1−r

) ≥
λ L∗

h ( f ◦g)

λ L∗
h ( f )

. (14)

Also for all sufficiently large values of
(

1
1−r

)

,

logT−1
h Tf◦g (r)≤

(

ρL∗
h ( f ◦g)+ ε

)

log

(

exp
{

L
(

1
1−r

)}

(1− r)

)

i.e.,

logT−1
h Tf◦g (r) ≤

(

ρL∗
h ( f ◦g)+ ε

)

{

log

(

1
1− r

)

+L

(

1
1− r

)}

. (15)

So from(7) and(15) , it follows for all sufficiently large
values of

( 1
1−r

)

that

logT−1
h Tf◦g (r)≤

(

ρL∗
h ( f ◦g)+ ε

)

(

λ L∗
h ( f )− ε

) logT−1
h Tf (r)
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i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

( 1
1−r

)

≤

(

ρL∗
h ( f ◦g)+ ε

)

(

λ L∗
h ( f )− ε

) ·
logT−1

h Tf (r)

logT−1
h Tf (r)+L

(

1
1−r

)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≤

(

ρL∗
h ( f◦g)+ε

)

(λ L∗
h ( f )−ε)

1+
L( 1

1−r )
logT−1

h Tf (r)

. (16)

Using L
(

1
1−r

)

= o
{

logT−1
h Tf (r)

}

as r → 1, we obtain
from (16) that

limsup
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

( 1
1−r

) ≤

(

ρL∗
h ( f ◦g)+ ε

)

(

λ L∗
h ( f )− ε

) .

(17)
As ε (> 0) is arbitrary, it follows from(17) that

limsup
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≤
ρL∗

h ( f ◦g)

λ L∗
h ( f )

. (18)

Thus the theorem follows from(5) ,(10) ,(14) and(18) .

Similarly in view of Theorem1 , we may state the
following theorem without its proof for the right factorg
of the composite functionf ◦g :

Theorem 2.Let f , g be any two analytic functions in U
and h be an entire function with
0 < λ L∗

h ( f ◦g) ≤ ρL∗
h ( f ◦g) < ∞ and

0 < λ L∗
h (g) ≤ ρL∗

h (g) < ∞ . If
L
( 1

1−r

)

= o
{

logT−1
h Tg (r)

}

as r→ 1 then
λ L∗

h ( f◦g)

ρL∗
h (g)

≤ lim inf
r→1

logT−1
h Tf◦g(r)

logT−1
h Tg(r)+L( 1

1−r )
≤

λ L∗
h ( f◦g)

λ L∗
h (g)

≤

limsup
r→1

logT−1
h Tf◦g(r)

logT−1
h Tg(r)+L( 1

1−r )
≤

ρL∗
h ( f◦g)

λ L∗
h (g)

.

Theorem 3.Let f , g be any two analytic functions in U
and h be an entire function such that0< ρL∗

h ( f ◦g)< ∞
and 0 < ρL∗

h ( f ) < ∞ . If L
( 1

1−r

)

= o
{

logT−1
h Tf (r)

}

as
r → 1 then

lim inf
r→1

logT−1
h Tf◦g(r)

logT−1
h Tf (r)+L( 1

1−r )
≤

ρL∗
h ( f◦g)

ρL∗
h ( f )

≤

limsup
r→1

logT−1
h Tf◦g(r)

logT−1
h Tf (r)+L( 1

1−r )
.

Proof.From the definition of ρL∗
h ( f ) , the relative

NevanlinnaL∗-order of an analytic functionf in the unit
disc U with respect to an entire functionh we get for a
sequence of values of

(

1
1−r

)

tending to infinity that

logT−1
h Tf (r)≥

(

ρL∗
h ( f )− ε

)

log

(

exp
{

L
(

1
1−r

)}

(1− r)

)

i.e.,

logT−1
h Tf (r) ≥

(

ρL∗
h ( f )− ε

)

{

log

(

1
1− r

)

+L

(

1
1− r

)}

i.e.,

logT−1
h Tf (r)

(

ρL∗
h ( f )− ε

) ≥ log

(

1
1− r

)

+L

(

1
1− r

)

. (19)

Now from (15) and (19) , it follows for a sequence of
values of

(

1
1−r

)

tending to infinity that

logT−1
h Tf◦g (r)≤

(

ρL∗
h ( f ◦g)+ ε

)

(

ρL∗
h ( f )− ε

) logT−1
h Tf (r)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

)

≤

(

ρL∗
h ( f ◦g)+ ε

)

(

ρL∗
h ( f )− ε

) ·
logT−1

h Tf (r)

logT−1
h Tf (r)+L

( 1
1−r

)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

( 1
1−r

) ≤

(

ρL∗
h ( f◦g)+ε

)

(ρL∗
h ( f )−ε)

1+
L( 1

1−r )
logT−1

h Tf (r)

. (20)

Using L
(

1
1−r

)

= o
{

logT−1
h Tf (r)

}

as r → 1, we obtain
from (20) that

liminf
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≤
ρL∗

h ( f ◦g)+ ε
ρL∗

h ( f )− ε
. (21)

As ε (> 0) is arbitrary, it follows from(21) that

liminf
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≤
ρL∗

h ( f ◦g)

ρL∗
h ( f )

. (22)

Again for a sequence of values of
(

1
1−r

)

tending to infinity,

logT−1
h Tf◦g (r)≥

(

ρL∗
h ( f ◦g)− ε

)

log

(

exp
{

L
(

1
1−r

)}

(1− r)

)

i.e.,

logT−1
h Tf◦g (r) ≥

(

ρL∗
h ( f ◦g)− ε

)

{

log

(

1
1− r

)

+L

(

1
1− r

)}

. (23)
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So combining(2) and (23) , we get for a sequence of
values of

( 1
1−r

)

tending to infinity that

logT−1
h Tf◦g (r)≥

(

ρL∗
h ( f ◦g)− ε

)

(

ρL∗
h ( f )+ ε

) logT−1
h Tf (r)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

)

≥

(

ρL∗
h ( f ◦g)− ε

)

(

ρL∗
h ( f )+ ε

) ·
logT−1

h Tf (r)

logT−1
h Tf (r)+L

( 1
1−r

)

i.e.,

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≥

(

ρL∗
h ( f◦g)−ε

)

(ρL∗
h ( f )+ε)

1+
L( 1

1−r )
logT−1

h Tf (r)

. (24)

Since L
(

1
1−r

)

= o
{

logT−1
h Tf (r)

}

as r → 1, it follows
from (24) that

limsup
r→∞

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≥
ρL∗

h ( f ◦g)− ε
ρL∗

h ( f )+ ε
. (25)

As ε (> 0) is arbitrary, we get from(25) that

limsup
r→∞

logT−1
h Tf◦g (r)

logT−1
h Tf (r)+L

(

1
1−r

) ≥
ρL∗

h ( f ◦g)

ρL∗
h ( f )

. (26)

Thus the theorem follows from(22) and(26) .

Theorem 4.Let f , g be any two analytic functions in U
and h be an entire function with0 < ρL∗

h ( f ◦g) < ∞ and
0< ρL∗

h (g)< ∞ . If L
( 1

1−r

)

= o
{

logT−1
h Tg (r)

}

as r→ 1
then

lim inf
r→1

logT−1
h Tf◦g(r)

logT−1
h Tg(r)+L( 1

1−r )
≤

ρL∗
h ( f◦g)

ρL∗
h (g)

≤

limsup
r→1

logT−1
h Tf◦g(r)

logT−1
h Tg(r)+L( 1

1−r )
.

The proof is omitted .
The following theorem is a natural consequence

of Theorem1 and Theorem3:

Theorem 5.Let f , g be any two analytic functions in U
and h be an entire function such that
0 < λ L∗

h ( f ◦g) ≤ ρL∗
h ( f ◦g) < ∞ and

0 < λ L∗
h ( f ) ≤ ρL∗

h ( f ) < ∞ . If
L
( 1

1−r

)

= o
{

logT−1
h Tf (r)

}

as r→ 1 then

lim inf
r→1

logT−1
h Tf◦g(r)

logT−1
h Tf (r)+L( 1

1−r )
≤ min

{

λ L∗
h ( f◦g)

λ L∗
h ( f )

,
ρL∗

h ( f◦g)

ρL∗
h ( f )

}

≤

max

{

λ L∗
h ( f◦g)

λ L∗
h ( f )

,
ρL∗

h ( f◦g)

ρL∗
h ( f )

}

≤ limsup
r→1

logT−1
h Tf◦g(r)

logT−1
h Tf (r)+L( 1

1−r )
.

The proof is omitted.
Combining Theorem2 and Theorem4, we may

state the following theorem:

Theorem 6.Let f , g be any two analytic functions in U
and h be an entire function with
0 < λ L∗

h ( f ◦g) ≤ ρL∗
h ( f ◦g) < ∞ and

0 < λ L∗
h (g) ≤ ρL∗

h (g) < ∞ . If
L
(

1
1−r

)

= o
{

logT−1
h Tg (r)

}

as r→ 1 then

lim inf
r→1

logT−1
h Tf◦g(r)

logT−1
h Tg(r)+L( 1

1−r )
≤ min

{

λ L∗
h ( f◦g)

λ L∗
h (g)

,
ρL∗

h ( f◦g)

ρL∗
h (g)

}

≤

max

{

λ L∗
h ( f◦g)

λ L∗
h (g)

,
ρL∗

h ( f◦g)

ρL∗
h (g)

}

≤ limsup
r→1

logT−1
h Tf◦g(r)

logT−1
h Tg(r)+L( 1

1−r )
.

Theorem 7.Let f be an analytic function in U and h be
entire such thatρL∗

h ( f )< ∞. Also let g be analytic in U. If
λ L∗

h ( f ◦g) = ∞ then

lim
r→1

logT−1
h Tf◦g (r)

logT−1
h Tf (r)

= ∞.

Proof.Let us suppose that the conclusion of the theorem do
not hold.Then we can find a constantβ > 0 such that for a
sequence of values of

( 1
1−r

)

tending to infinity

logT−1
h Tf◦g (r)≤ β logT−1

h Tf (r) . (27)

Again from the definition ofρL∗
h ( f ) , it follows that for all

sufficiently large values of
( 1

1−r

)

that

logT−1
h Tf (r)≤

(

ρL∗
h ( f )+ ε

)

log

(

exp
{

L
(

1
1−r

)}

(1− r)

)

.

(28)
Thus from(27) and(28) , we have for a sequence of values
of
(

1
1−r

)

tending to infinity that

logT−1
h Tf◦g (r)≤ β

(

ρL∗
h ( f )+ ε

)

log

(

exp
{

L
( 1

1−r

)}

(1− r)

)

i.e.,

logT−1
h Tf◦g (r)

log

(

exp{L( 1
1−r )}

(1−r)

) ≤

β
(

ρL∗
h ( f )+ ε

)

log

(

exp{L( 1
1−r )}

(1−r)

)

log

(

exp{L( 1
1−r )}

(1−r)

)

lim inf
r→1

logT−1
h Tf◦g (r)

log

(

exp{L( 1
1−r )}

(1−r)

) = λ L∗
h ( f ◦g)< ∞ .

This is a contradiction.
This proves the theorem.

Remark.Theorem7 is also valid with “limit superior”
instead of “limit” if λ L∗

h ( f ◦g) = ∞ is replaced by
ρL∗

h ( f ◦g) = ∞ and the other conditions remaining the
same.
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Corollary 1.Under the assumptions of Theorem7 or
Remark2,

limsup
r→1

T−1
h Tf◦g(r)

T−1
h Tf (r)

= ∞ .

Proof.From Theorem7 or Remark2, we obtain for all
sufficiently large values of

( 1
1−r

)

and forK > 1 that

logT−1
h Tf◦g (r)> K logT−1

h Tf (r)

i.e.,

T−1
h Tf◦g (r)>

{

T−1
h Tf (r)

}K
,

from which the corollary follows.

Theorem 8.Let f , g be any two analytic functions in U
and h be any entire function such thatρL∗

h (g) < ∞ and
λ L∗

h ( f ◦g) = ∞. Then

lim
r→1

logT−1
h Tf◦g(r)

logT−1
h Tg(r)

= ∞ .

We omit the proof of Theorem8 because it can be
carried out in the line of Theorem7.

Remark.Theorem8 is also valid with “limit superior”
instead of “limit” if λ L∗

h ( f ◦g) = ∞ is replaced by
ρL∗

h ( f ◦g) = ∞ and the other conditions remaining the
same.

In the line of Corollary1, we may easily verify the
following:

Corollary 2.Under the assumptions of Theorem8 or
Remark2,

limsup
r→1

T−1
h Tf◦g(r)

T−1
h Tg(r)

= ∞ .

3 Conclusion

The main aim of this paper is to extend the notion of
Nevanlinna order to relative NevanlinnaL∗-order in case
of the growth properties of functions analytic in unit disc.
In fact, the relative NevanlinnaL∗-order of growth gives
a quantitative assessment of how different functions scale
each other and until what extent they are self-similar in
growth. Actually, in this paper we have established some
theorems in this connection. Here, we are trying to extend
the notion of the growth properties of functions analytic in
unit disc on the basis of the relative NevanlinnaL∗-order
and the relative NevanlinnaL∗-lower order. But still there
are some problems to be investigated further. One of such
problems is the study of the growth properties of the same
in some poly disc. These type of studies can be regarded
as open problems for the future workers in this branch.
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