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Abstract: In this paper, a ratio-cum-product type estimator in case of post-stratification has been proposed. The bias and 

mean squared error of the proposed estimator are obtained up to the first degree of approximation. The mean squared error 

for the proposed estimator has been obtained and it has been shown that the proposed estimator is more efficient than the 

usual unbiased estimator and the estimators suggested by Ige and Tripathi [7]. Theoretical conditions are obtained under 

which the proposed estimator is more efficient than considered estimators. Finally, in order to find the merits of the proposed 

estimator an empirical study has been carried out. 
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1 Introduction  

Singh [14] used information on population mean of two 

auxiliary variates and proposed ratio-cum-product type 

estimator for population mean in simple random sampling.  

Motivated by Singh [14], Tailor et al. [16] studied the 

properties of Singh (1967) estimator in stratified random 

sampling. Ige and Tripathi [7] studied classical ratio and 

product estimators given by Cochran [3] and Robson [13] in 

case of post-stratification. Recently Lone and Tailor [10] and 

Lone and Tailor ([11], [12]) proposed ratio and product 

exponential type estimators in case of post-stratification. 

Initially, Hansen et al. [5] discussed the problem of post-

stratification. Later many authors  Fuller [4], Jagers [8], Holt 

and Smith [6], Jagers et al. [9], Ige and Tripathi [7] and 

Agrawal and Pandey [1] contributed significantly in this area 

of research. 

Let  NUUUU ,...,, 21  be a finite population of size N

. Using simple random sampling without replacement, a 

sample of size n  is drawn from population U . After 

selecting the sample, it is observed that which units belong 

to 
thh  stratum. Let  hn

 
 be the size of the sample falling in 

thh  stratum such that nn
L

h

h 
1

. Here it is assumed that  n  

is so large that possibility of hn
 
being zero is very small.  

 

 

 

 

 

Let hix be the observation on thi  unit that fall in  thh  

stratum for auxiliary variate x
 
and hiy be the observation on 

thi unit that fall in  
thh  stratum for study variate y, then 
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2 Various Estimators 

We considered the following estimators. The expressions

(.)V , (.)M
 
and (.)B denoted the variance, mean squared 

error and bias of the considered estimators.
 

(i)  Usual unbiased estimator    





L

h

hhPS yWy
1

,

 

         (2.1) 

 

Where   
N

N
W h

h 
 

is the weight of the 
thh  stratum and 





hn

i

hi

h

h y
n

y
1

1 is sample mean of hn sample units that fall 

in the  
thh  stratum. 

Using the results from Stephen [15] the variance of PSy  to 

the first degree of approximation is obtained as 
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Where 
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(ii) Ige and Tripathi [7] estimators 

Ige and Tripathi [7] introduced the following estimators 


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And 
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Where   



L

h

hhPS xWx
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and 



L

h

hhPS zWz
1

. 

The biases and mean squared errors of Ige and Tripathi [7] 

estimators 
R

PSŶ
 
and 

P

PSŶ are obtained as 
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Where   
X

Y
R 1

  and    
Z

Y
R 2

. 

3 Proposed Estimator 

Singh [14] proposed a ratio-cum-product estimator in simple 

random sampling using two auxiliary variates as 

.
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Tailor et al. [16] defined Singh [14] estimator in stratified 

random sampling as 
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Following Singh [14], we propose Tailor et al. [16] estimator 

in case of post- stratification as  
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Where Psy  , Psx  and Psz  are unbiased estimators of 

population meanY , X  and Z respectively. 

To obtain the bias and mean squared error of the proposed 

estimator, we write 
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Expressing (3.3) in terms of ,' seih  we have  
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Now taking expectation of both sides of (2.4), the bias of the 

suggested estimator to the first degree of approximation is 

obtained as 
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Similarly the mean squared error of the suggested estimator 

up to the first degree of approximation are obtained as  
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4 Efficiency Comparisons  

From (2.2), (2.7), (2.8) and (3.6), it is observed that the 

proposed estimator 
Ps

RPŶ  would be more efficient than  

(i) Usual unbiased estimator PSy  i.e 

 Ps

RPYM
ˆ   0 PSyV   if 

 yxhzhxh

L

h

h SRSRSRW 1

22

2

22

1

1

2


 

             02 221  yzhxzh SRSRR            (4.1) 

 (ii) Ige and Tripathi [7] ratio estimator  
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(iii) Ige and Tripathi [7] product estimator  
P

PSŶ   i.e 
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5 Empirical Study 

To show the performance of the proposed estimator in 

comparison to other considered estimators, we use a 

population data set. The description of population is given 

below. 

Population I- [Source: Chouhan [2]]  

y : Productivity (MT/Hectare) 

x : Production in ‘000 Tons   and 

z : Area in ‘000 Hectare 

1N =10 2N =10
 1n =4 1n =4 

1Y =1.70 2Y =3.67 1X
=10.41 

2X
=289.14 

1Z =6.32 2Z =80.67 1yS =0.50 
2yS =1.41 

1xS

=3.53 

2xS

=111.61 
1zS =1.19 2zS =10.82 

1yxS

=1.60 

2yxS

=144.87 

1yzS =-

0.05 
2yzS =-7.04 

1xzS

=1.38 

2xzS =-

92.02 

Table 5.1 Percent relative Efficiencies of
PSy , R

PSŶ ,  P

PSŶ
 

and Ps

RPŶ    with respect to 
PSy

 
Estimator Percent Relative Efficiency 

PSy
 

100.00 

R

PSŶ
 

270.00 

P

PSŶ
 

149.00 

Ps

RPŶ
 

348.19 

6 Conclusion 

Section 4 provides the conditions under which the proposed 

estimators 
Ps

RPŶ   has less mean squared error in comparison 

to usual unbiased estimator PSy  , Ige and Tripathi [7] 
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estimators 
R

PSŶ and  
P

PSŶ .Table 5.1 exhibits that the 

proposed estimators 
Ps

RPŶ   has highest percent relative 

efficiency in comparison to
 

other considered estimators 

.Hence, it can be concluded that the proposed estimator  is 

recommended for use in practice if the conditions defined in 

section 4 are satisfied .  
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