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Abstract: In this paper, we consider estimation of unknown parametetise '’ Frechet distributions using the generalized Type |l
censoring scheme. We obtain maximum likelihood estimatidrdghe unknown parameters. As Likelihood equations are not
mathematical tractable we use iterative procedure to wwhbestimate of parameters and demonstrate their performasice
Monte-Carlo simulation. Further, likelihood ratio testiiscussed to test homogeneity of several scale parameters
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1 Introduction

In reliability and life testing experiments, items are kejrnultaneously on experiment and observed the specified
number of failures, such scheme is known as Type Il censaiigme. The purpose of this scheme is to study the
performance of any non living product through their surliirme, consistency with respect to operating conditionietc
minimum experimental time and budget. In literature, salvauthors 1,3,4,5,6,7] have studied Type Il censoring with
various lifetime distributions such as normal, exponéniiéebull, gamma and Frechet. In the era of globalization,
several manufacturing industries are producing same Kipdanluct for specific operations. Therefore, it is necestar
produce and deliver reliable product to customers for ranmaibusiness. For establishing such high standards, the
problem of comparing effectiveness of products is impdrtemthis situation, after placing several independentdam
of units manufactured by the several processes, the rigljadmgineer would like to make early and efficient decistmn
the effectiveness of the products under the life test in sesfrstandard hazard rate function. The extensive studyhéor t
problem of comparing two populations in terms of stochastitering is discussed ir2]. The distribution free test for
comparison of hazard rates of two distributions under Tyjgemhsoring is given in11]. The study of inferential problem
about homogeneity of several systems under generalizedt@d/ family of distributions and generalized exponential
distribution respectively when observations are subjetiié generalized Type Il censoring discussed®jd(]. Further,
they have studied the cost effectiveness of experimerndsigfir simulation.

Due to the extreme events happening in manufacturing indssand nature, recently, researchers have focused on
study of extreme value distributions for better planninggmse. The Frechet (extreme value type 1) distributiomis of
the probability distributions used to model extreme evdihtsas many applications like in earthquakes, flood, quaues
supermarkets; wind speeds etc. For more detail One can[Bfer

In this paper, we discuss inferential problem about homeigwnf several systems under Frechet distribution when
observations are subject to generalized Type Il censoréduather, study the reliability characteristics of dibtriions.
We now consider a design, where we put types of systems simultaneously on test in which for eagle tgf systems
we start with U’ units and continue the experiment " failures are observed i.e. the total numbers of units puesh t
are 'mu’ and the total number of failures we observe at the end of exyant are G = mG*.” Assuming that the lifetime
distribution of unit for each type of systems to be Freché¢hwhape parameter and scale parametefgi = 1,2,...,m.
In the experiment after each failure the failure time is obsé, and denoted it bl;g=1,2,,G*;i = 1,2,...,m. At the
end of experiments, we have d&taG,tg;9=1,2,...,G*;i = 1,2,...,m). The organization of whole paper is as below.
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In Section 2 we give the probability density function, thevéal function and the hazard rate of the Frechet
distribution and develop the likelihood for generalizeg@&\ll censored sampling design under generalized exp@henti
distribution. In Section 3 we derive the expressions for imaxn likelihood estimators of parameters and their
asymptotic variance-covariance matrix when shape pamnoétthe distribution is known and when it is unknown.
Section 4 discusses iterative procedure for estimatioh®fparameters through Newton-Raphson method. Further, the
tables of ML estimates and their asymptotic standard erestmate of reliability and hazard rates and their mean
square error at fixed time point are given which are simuléttealigh Monte-Carlo simulation technique for the case of
known shape parameter. In Section 5 we discuss likelihotid test for simultaneous testing of homogeneity of scale
parameters when the shape parameter is known. The cut-aftspfor the test statistics are obtained through
Monte-Carlo simulation. Some concluding remarks are ginedection 6.

2 Frechet Distribution and Likelihood Function for the Generalized Type Il Censoring Design

Consider an item whose life time is denotedbyThe random variabl& is assumed to have Frechet distribution with
distribution function

a
Ftap)=exi-() | t>0a>08>0) @
The corresponding density function is given by
a a+1 o
o p) - 55 e8] @
Herea is a shape parametéd,is a scale parameter. Then the reliability function is
- B a
F(t)=P(T >t):1—exﬁ—(T) ] 3)
and the hazard function is f(t)
hit) = —=
(t) G
a+1 a
2 (&) exp—(8)]
h(t) = o (4)
1-exd—(¢) |
If Z follows Frechet(a, 1), then the correspondirigth raw moment, is given by
k
me=r(1--) (5)
Therefore, the mean and varianceZas
1 1.2
E(Z):F(l—a)andvar(Z):l'(l—2/a)—(l'(1—a)) . (6)

If Z follows Frechet(a,1) andT = %Z thenT follows Frechet(a, ). Therefore, the mean and variancelof given by

2
E(T) =BT (1~ ) andvar (T) = B{ (1 2/ar) — (M (1-2)) } ™)

The likelihood function for Type Il censoring design feth type of systems observir@g* failures fromu units given in

literature as ul . B
Li = m nszlfi (t) ()]~ (8)

Therefore, the likelihood for whole experiments
[
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Substitute the equationg)((3) in equations®) we have, the likelihood function
u! m o m CY BI la B
= e ] MG g e e

tg| tgi
M2 expie (2 yae-e (10)

teHi

3 Maximum Likelihood Estimation

In this section we obtain maximum likelihood estimatesoof3i(i = 1,2, ...,m), reliability function, hazard rate and
observed information matrix under the design. The logiliie@d equation ofX0) would be

I:mln(%)+mG*lna+G*azinlllnBi (@+1)Y ",y o inlty)
" Bi o
DI tg| (u=G) 3 2 In1—expi—(;—) ) (11)
Differentiate (1) with respect tax andfi(i = 1,2, ...,m) we have
[9' mG* % m m *
G- o t6 zi=1|nﬁi—zizlz§=1|n(tgi)
o B em (E9oIn(E ) expi—(£-)°]
-G . ' 12
Z' 129 ! tgl gl) =6 1—expg— (tG*) ] -
o Ga B, Ja 1, 1, au-6) (tfi )*texd— (tc;* )%]
B B Zg L tg| gi N tei 1—expg— (tc;*) ] 13)

The estimates of parametgdsre obtained in two cases when (i) shape paranseteknown and (i) shape parameter
a is unknown. a

3.1 Maximum Likelihood Estimation When Shape Parameter is Known

The solution of equationd §) can be evaluated numerically by some suitable iterativeguture such as Newton-Raphson
method, for given values du,G,tg;0=1,2,...,G%i =1,2,...,m). The MLE of 8 = (B1, B2, ..., Bm) are obtained ag
from equations13). The MLEs of reliability(F (t;);i = 1,2, ...,m) and hazard ratéh;(t;);i = 1,2, ...,m) can be evaluated
using invariance property of MLEs as

) =1-exi—(2)1) (1)
and the hazard function is N -
SR ed- ()]
hi(t) = SR — (15)
1-exd—(2) ]

3.1.1 Observed Fisher Information Matrix Under Design

To obtain Fisher information matrix we take derivatives gfiations {3) with respect tq5;;i = 1,2, ....,m. Therefore, we
have,

2 Ga o L, au=G)(E ) 2exp—(£-)9]
gt B g 1tg. tgi o2
(a—1)[1—exd—(E-)7] - (t%)
s s . 16
T ea @ e
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As rate of failures of systems are independent of each typgsiems, derivatives of equatioris3( with respect to
Bi;j#i=12,.. mare
22l
9BioB;
We know that variance of Frechet distribution exists when 2.Therefore, we have the following results.
Theorem 3.1.Fora > 2 andG kept constant the maximum likelihood est|matcﬁs3f B are consistent estimators, and

=0.Vj£i=12,..m (17)

Vu (E — B) is asymptoticallym-variate normal with mean @nd variance covariance matiNk 1, whereV is expected
value of negative of second derivative matrix of log likeldd with respect t@.

Note: Since evaluation of expected value is cumbersome we willsaseple information matri¥/which, under usual
regularity conditions, converges asymptotically to Fish&rmation matrix.

3.2 Maximum Likelihood Estimation When Shape Parameter is Unknown

The solution of equationsl@),(13) can be evaluated numerically by some suitable iteratioeguture such as Newton-
Raphson method, for given values @f G,t;9=1,2,..,G";i = 1,2,...,m). The MLE of (a, ) are obtained a&d, B)
from equations 12),(13). The MLEs of reliability (F(t;);i = 1,2,...,m) and hazard ratéh;(t;);i = 1,2,...,m) can be
evaluated using invariance property of MLEs as

) = 1-ex— (2] (18
and the hazard function is .t .
AR e (]) ]
hi(ti) = = —5 (19)
1—exi—(f) |

3.2.1 Observed Fisher Information Matrix Under Design

To obtain Fisher information matrix we take derivatives gliations {2) and (L3) with respect toa, §i;i = 1,2,....,m
Therefore, we have,

92 mG B .
da2 - Z' lZg 1 tG* tG* o) TU-6)
2, Bi B gl (tG* )% — exp— (te* )4]
ok 1|ntG* tG*) (i) [1—exi—(2) )2 ; )
22 G* ¢ 1, Big B u-G69) B \a
dadp ~ B 2oy tg.) 1+ (tgl)]“L ot Lexp— (tG*) ]
X{[l—exq—@) N2+ aln( o)) —a(E)e In(tf—p}. o
[1—expl—(£-)7])2

Derivatives of equationl@) with respect to5;;i = 1,2,....mandf;j;j #i = 1,2,...,m are given in equationslf) and
(17) respectively. Therefore, we have the following result: .
Theorem 3.2.For a > 2 and % kept constant the maximum likelihood estimattmsf3) of (a,B) are consistent

estimators, and/u(@ — a, é — B) is asymptotically(m+ 1)-variate normal with meag0,0) and variance covariance
matrix W1, whereW is expected value of negative of second derivative matrlegfikelinood with respect toa, B).
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4 Algorithm, Numerical Exploration and Conclusions

In this Section, a Monte-Carlo simulation study is condd¢tecompare the performance of the estimates developed in
the previous sections. Maximum likelihood estimates araiobd for observations generated through the generalized
Type Il censoring design when numbers of systems to be cadpaand 3 for known shape parameter having failure
distribution is the Frechédr, §i);i = 1,2,...,m. All calculations are performed on thielanguage versioR.3.1.2. The
simulation study is conducted for only known shape paramieéte simulation purpose we consider two sets of parameter
valuesm=2a =25, =153 =13 and form=3,a =2.5,3; = 1.5,3, = 1.3,33 = 1.4 to carry out simulation
study. Further, the simulation is carried out for differeatues ofu and G*. Here we kept total number of failures in
whole experimenG = uG* fixed. We simulate 1000 samples for each case using the #iigodiscussed in9,10] by
considering Frechet distribution. The simulated resuktssammarized in Table 1 and Table 2.

Table 1: Maximum Likelihood Estimate of Parameters, Reliabilitgdtazard Rates and their Efficiency Measures 2,a =2.5, 3, =

15,8, = 1.3,t = (1.34031.1616), F () = (0.73420.7342), h(t) = (0.79940.9244)

u |G B B2 Fit) | Fatz) | ha(ta) | hotp)
12 | 06 EV 1.5366 | 1.3304| 0.7432| 0.7424 | 0.7782| 0.9001
MSE | 0.0354 | 0.0262| 0.0096 | 0.0094 | 0.0764 | 0.09836
SE 0.1852 | 0.1603 - - - -

24 | 12 EV 1.516 1.3219| 0.7378| 0.7423| 0.7912| 0.8989
MSE | 0.0161 | 0.0141| 0.0048 | 0.0055| 0.037 | 0.0564
SE 0.1284 | 0.112 - - - -

36 | 16 EV 1.5085 | 1.3083| 0.7354| 0.7363 | 0.7973| 0.9172
MSE | 0.01059| 0.0074| 0.0034 | 0.0032| 0.0256| 0.0322
SE 0.1041 | 0.0903 - - - -

48 | 24 EV 1.5098 | 1.3076| 0.737 | 0.7366 | 0.7927| 0.916
MSE | 0.0083 | 0.0057| 0.0026 | 0.0025| 0.0199| 0.0251
SE 0.0916 | 0.0781 - - - -
60 | 30 EV 1.5058 | 1.3047| 0.7353| 0.7353| 0.7972 0.92
MSE | 0.0064 | 0.0046| 0.0021| 0.002 | 0.016 0.0205
SE 0.0804 | 0.0696 - - - -
72| 36 EV 1.5036 | 1.3032| 0.7346| 0.7347| 0.7992| 0.9217
MSE 0.005 | 0.0036| 0.0016| 0.0016| 0.0125| 0.0162
SE 0.0732 | 0.0635 - - - -
84 | 42 EV 1.503 | 1.3033| 0.7345| 0.7349| 0.7993| 0.9208
MSE | 0.0043 | 0.0032| 0.0014| 0.0014 | 0.0107| 0.0144
SE 0.0677 | 0.0587 - - - -
96 | 48 EV 1.506 | 1.3022| 0.7361| 0.7344| 0.7947| 0.9223
MSE | 0.0042 | 0.003 | 0.0014| 0.0013| 0.0107| 0.0126
SE 0.0635 | 0.0549 - - - -

From Table 1 and Table 2 we observed that means of MLEs foe szalameter§;;i = 1,2,....,m, the reliability
characteristics and hazard rates are very close to theinlues. At average mean square errors are relatively .small
Further we observe that the estimates and standard/meanesguor are decreasing functions of numbesf each
systems put on test.

5 Testing of Hypotheses

In this section we test the hypothesis of homogeneitysf/stems. To achieve this objective we test
Ho : B1= B> =... = Bm= B against; : B # B; for at least one paifi, j),i # j (22)

As we are considering maximum likelihood estimation, theafdikelihood ratio test is much convenient. The test stati
is
maxy gL(t. B, a)

)\ =
R rnaXG,EL(Lﬁaa)
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Table 2: Maximum Likelihood Estimate of Parameters, Reliabilitylafazard Rates and their Efficiency Measures 3,a =2.5, 31 =
153, =13,63=14t=(1.34021.16161.2509,F (t) = (0.73420.73420.7342),h(t) = (0.7994 0.9224 0.8565

u |G By B2 B3 Fi(ty) | Fa(t) | Fs(ts) | ha(ta) | ho(t2) | hs(ts)
24 | 08 EV 1.5175| 1.3178| 1.4125| 0.738 0.74 0.7363| 0.7911| 0.9061 | 0.8525
MSE | 0.0182| 0.0131| 0.0142 | 0.0055| 0.0052 | 0.0051| 0.0426| 0.0537| 0.0453
SE | 0.1273| 0.1106| 0.1186 - - - - - -
36 | 12 EV 1.5133| 1.3059| 1.4101| 0.738 | 0.7345| 0.7367 | 0.7904 | 0.923 | 0.8507
MSE | 0.0113| 0.0078 | 0.0095| 0.0035| 0.0034 | 0.0035| 0.0268| 0.034 | 0.0304
SE 0.1034| 0.0892| 0.0964 - - - - - -
48 | 16 EV 1.5113| 1.3101| 1.4084 | 0.7379| 0.738 | 0.7364 | 0.7902 | 0.9117| 0.8512
MSE | 0.0018| 0.0065| 0.0078| 0.0026 | 0.0027 | 0.0028 | 0.0198 | 0.0276| 0.0243
SE 0.0893| 0.0774| 0.0832 - - - - - -
60 | 20 EV 1.5065| 1.3053 | 1.4097 | 0.7357 | 0.7354 | 0.7377| 0.7962 | 0.9196| 0.8472
MSE | 0.0066| 0.005 | 0.0064 | 0.0021| 0.0022 | 0.0024 | 0.0162 | 0.0221| 0.0204
SE 0.0795| 0.0689| 0.0744 - - - - - -
72| 24 EV 1.505 | 1.3072| 1.4059| 0.7353| 0.7347| 0.736 | 0.7972| 0.9219| 0.8519
MSE | 0.0053| 0.0044 | 0.0047| 0.0018| 0.0019| 0.0018| 0.0134| 0.0193| 0.0153
SE 0.0725| 0.0628 | 0.0677 - - - - - -
84 | 28 EV 1.5078 | 1.3066 | 1.4037 | 0.7371| 0.7371| 0.7346| 0.7924 | 0.9143| 0.8561
MSE | 0.0051| 0.0036| 0.0047| 0.0017| 0.0016 | 0.0018| 0.0126| 0.0157| 0.0154
SE 0.0672| 0.0582| 0.0626 - - - - - -
96 | 32 EV 1.5016| 1.3042 | 1.4055| 0.7338| 0.7356 | 0.7362| 0.801 | 0.9188| 0.8511
MSE | 0.0038| 0.0031| 0.0035| 0.0013| 0.0014 | 0.0013| 0.0098| 0.014 | 0.0115
SE 0.0626 | 0.0543| 0.0586 - - - - - -

The test based on2In(A R) rejectsHgp in support ofH; if it is larger than uppec -th cut of poit of chi-square distribution
(m—1) degrees of freedom.

5.1 Computation of Likelihood Under Hp

The log likelihood nLG under null hypothesis from equatiohl) we have,

I:mln(( —G*) )+mG*Ina +mG*alnB — (a +1) Z 129 JIn(tg)
-3l =G 3 Inft— e (1), @)
Differentiate @3) with respect tqa, ) andf respectively, we have
- mG* .
da +G'InB — Zu 129 1In(tgi) ZI lZg 1 tg| Z)
m () I expl—(£)°]
+U-G"%,_,—= < : (24)
2T e (2
7] 1
ﬁ zg 1 tgl tgi)
m ()" tex— () ] &
au-G"Hy,_,— G (25)
2ivt 1—exp[—<te*i> ]
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Differentiate @4) and @5) with respect tq a, ) andf respectively, we have

22 mG* )@
902 a2 Z 129 1 ti. in L;)]
m(t/i) (t*)exp[( -)“]
S L s , (26)
(U )Z 1 [1 exq (tG*) ]]2
02| rnG* « 1 a
AN Z| 125 i tZ 1(1+a|n(%))
(U G*)ZI 1tG*| (t(i )G_lexq—(%)a]
o B \a B
(LM aln(ep)] — o) InGgD) (27)
[1—exp— (tG*) I1?
92l mG*a 1
0—322—7 ZI 129 1 tg, tz-)
) 1. B
+a (U G)Z| 1(t2 )(E) exq (tG*) ]

<a—1>[1—exp[—<—>“n—a(t‘?yf
X Gl ) 28
{ [1—exd—(£-)a])2 } @9

tG*

The likelihood equation2b) is not mathematically tractable for known as well as unknelape parameter we use
the Newton-Rapshon method to obtain the estimate of paeafieHere we deal with only known shape parameter. We
demonstrate the test procedure foe= 2 andm = 3. We generate data under our design for the parameter vahaes
Hi:a =258 =15 =13 andH; : a = 25,6, = 1.9,3, = 1.5,83 = 1 respectively. Then carry out the test
procedure as suggested above. The procedure is repeatbd ftifferent choices af andG*. The results are produced
in the Table 3 and Table 4 respectively.

Table 3: Likelihood Ratio Test for Testinblg : 1 = B2 =B vsH1 : B1 # B whena =25, =153, =13
u |G| B B B LLp, LLp, x> | p—value
12| 6 | 1.4044| 1.3488| 1.4661| 5.7962 5.9237 0.255 0.6135
24 | 12 | 1.5611| 1.6222 | 1.5072| 39.9983 | 40.1956 | 0.3945 0.5289
36 | 18 | 1.5061 | 1.6191 | 1.4154| 67.5572 | 68.5469 | 1.9791 | 0.01594
48 | 24 | 1.3307| 1.4394 | 1.2457| 110.2069| 111.7471| 3.0803 0.0792
60 | 30 | 1.4023| 1.5245| 1.3081| 149.345 151.48 4,267 0.0387
72 | 36 | 1.3859 | 1.5216 | 1.2834| 194.396 | 197.5705| 6.3489 0.0117
84 | 42 | 1.3947| 1.5386 | 1.2891| 236.7859| 240.783 | 7.9943 0.0047
96 | 48 | 1.3787 | 1.5849 | 1.2414| 290.6936| 299.3099| 17.2325| 3.31E-05
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Table 4: Likelihood Ratio Test for Testinblg: B1 =B =B =B VvsH1: B #Bj(i # | =1,2,3) whena =2.5,8; =153, =14, =
13

u |G B B1 Bz B3 LLH, LLp, X? p—value
24 | 8 | 1.4444| 1.7201| 1.3474| 1.3519| 28.231 30.8357 | 5.2094 0.0739
36 | 12 | 1.4008| 1.5351| 1.4901| 1.2366| 74.5913 | 77.5738 | 5.9049 0.0522
48 | 16 | 1.3137| 1.4892| 1.3113| 1.1943| 107.0447| 110.4224| 6.7554 0.0341
60 | 20 | 1.4301| 1.5311| 1.5389| 1.2696 | 145.9008| 150.2344| 8.6672 0.0131
72 | 24 | 1.4033| 1.5696 | 1.437 | 1.2577| 187.0187| 192.2813| 10.5252| 0.0052
84 | 28 1.349 | 1.4937 | 1.4007 | 1.2052| 248.443 | 254.4792| 12.0725| 0.0024
96 | 32 | 1.4014| 1.5836| 1.4313| 1.249 | 270.0367| 278.0853| 16.0973| 0.00031

From the Table 3 and Table 4 we observe that as sample sizeases, the Likelihood Ratio Test converges for
identifying its true alternative. Therefore we can say it test is powerful to identify heteroscedasticity of sale
systems.

6 Concluding Remarks

In this article, we have studied fitting of Frechet distribatfor several systems when sample observations are drasatb

on the generalized Type Il censoring scheme. Further, wésdasut simulation study to demonstrate the performance of
the estimators in terms of their MSE and SE. Finally, we ptedilikelihood ratio test for homogeneity of lifetimes of
several of systems.
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