
J. Stat. Appl. Pro.4, No. 2, 231-238 (2015) 231

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.12785/jsap/040205

Some Discussion on Behaviors of Markov Q-Process
Azam Abdurakhimovich IMOMOV∗

State Testing Center, Karshi State University, Uzbekistan

Received: 5 Feb. 2015, Revised: 14 Jun. 2015, Accepted: 16 Jun. 2015
Published online: 1 Jul. 2015

Abstract: Consider the limiting probability function of continuous-time Markov Branching Processes conditioned to be never extinct.
Hereupon we receive a new stochastic population process as acontinuous-time Markov chain called the Markov Q-Process.We study
main properties of Markov Q-Process. The principal aim is toinvestigate asymptotic properties of Markov Q-Process. Weinvestigate
transition functions of this process and their convergenceto stationary measures.

Keywords: Markov Branching Process; Markov Q-process; transition function; invariant measures; ergodic chain.
AMS Subject Classification(2000): 60J80; 60J85.

1 Introduction

Considering a population of monotype individuals we will interested in its evolution. These individuals may be biological
kinds, molecules in chemical reactions etc. Suppose the population size changes by random reproduction law as following.
Each individual existing at epocht ∈T = [0;+∞), independently of his history and of each other for a small time interval
(t; t + ε) transforms intoj ∈ N0\{1} individuals with probabilitya jε +o(ε) and, with probability 1+a1ε +o(ε) each
individual survives or makes evenly one descendant (asε ↓ 0); N0 = {0}∪{N= 1,2, . . .}. Here the numbers

{
a j
}

mean
the evolution intensities of individuals thata j ≥ 0 for j ∈ N0\{1} and 0< a0 < −a1 = ∑ j∈N0\{1}a j < ∞. Appeared new
individuals undergo transformations under same way as above. LettingZ(t) be the population size at the momentt, we
have the homogeneous continuous-time Markov Branching Process (MBP) which was first considered by Kolmogorov
and Dmitriev [13].

The processZ(t) is a Markov chain with the state space onN0 and transition functions

Pi j (t) := Pi {Z(t) = j}= P{Z(t + τ) = j |Z(τ) = i } ,

satisfying the branching property
Pi j (t) = ∑

j1+···+ j i= j
P1 j1(t) ·P1 j2(t) · · ·P1 j i (t). (1.1)

ProbabilitiesP1 j in (1.1) are calculated using the local densities
{

a j
}

by relation

P1 j(ε) = δ1 j +a jε +o(ε), as ε ↓ 0, (1.2)

whereδi j is the Kronecker’s delta function. A Probability Generating Functions (PGF) version of the relation (1.2) is

F(ε;s) = s+ f (s) · ε +o(ε), as ε ↓ 0,

for all 0≤ s< 1, where
F(t;s) = ∑

j∈N0

P1 j(t)s
j and f(s) = ∑

j∈N0

a js
j .

Owing to Markovian property the PGF

Fi(t;s) := ∑
j∈N0

Pi j (t)s
j = [F(t;s)]i , for all i ∈N. (1.3)
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Assuminga := f ′(1) is finite and using the equation (1.4) we haveEiZ(t) = ∑ j∈N0
jPi j (t) = ieat. The last formula shows

that long-term properties of MBP seem variously depending on parametera. Hence the MBP is classified as critical if
a= 0 and sub-critical or super-critical ifa< 0 ora> 0 respectively. Monographs [2], [5], [19] are general references for
mentioned and other classical facts on theory of MBP.

Throughout this paper we writeP{∗} andE[∗] instead ofP1{∗} andE1[∗] respectively.
Let random variableH := inf {t ∈ T : Z(t) = 0} be a hitting time of the zero state of MBP. By extinction theorem

Pi {H < ∞} = qi, whereq = limt→∞ P10(t) is an extinction probability of MBP which is the least non-negative root of
f (s) = 0. Moreover limt→∞ F(t;s) = q uniformly by 0≤ s≤ r < 1. Let’s consider the conditioned distribution function

PH (t)
i {∗} := Pi {∗|t < H < ∞}. It is known that ifa≤ 0 thenq= 1. Therefore in this casePH (t)

i {∗}= Pi {∗|H > t }
and

P{t < H < ∞}= P{H > t} ≡ P{Z(t)> 0} .

On the other hand in this case 0≤ P1 j(t) ≤ P{H > t} → 0 ast → ∞. But ratioP1 j(t)
/

P{H > t} has a limiting finite
law. So long-term properties of non-supercritical MBP are traditionally investigated on non-zero trajectories, thatis under
condition of event{H > t}. Sevastyanov [18] proved that in the sub-critical case there is a limiting distribution law
limt→∞ PH (t) {Z(t) = j} if and only if ∑ j∈Na j j ln j < ∞. In the critical situation he also proved that if 2b := f ′′(1)< ∞,

thenZ(t)
/

bt has a limiting exponential law. In this case Chistyakov [3] proved that if f (4)(1) < ∞ and j
/

bt is bounded,

thent ·PH (t) {Z(t) = j} = 1/b+O
(√

ln t
/
t
)

ast → ∞. The author [6] improved this result being on the condition of

b< ∞ only.

More interesting phenomenon arises if we observe the limit of conditioned distributionPH (t+τ)
i {∗} letting τ → ∞. In

discrete-time situation this limit represents a distribution measure, which defines homogeneous Markov chain called the
Q-process; see [2, pp. 56–60]. The Q-process was considered first by Lamperti and Ney [14]. Some properties of it were
discussed by Pakes [15], [16], [17], Imomov [7], [9], [10], [11], Formanov and Imomov [4]. The considerable part of the
paper of Klebaner, Rösler and Sagitov [12] is devoted to discussion of this process from the viewpointof branching
transformation called the Lamperti-Ney transformation. Acloser look shows that in MBP case the limit

limτ→∞ PH (t+τ)
i {Z(t) = j} has an honest probability measuresQ(t) =

{
Qi j (t)

}
which defines the homogeneous

continuous-time stochastic process as Markov chain with state space onN. This process is called in [8] the Markov

Q-Process. LetW(t) to be the state size at the momentt ∈ T in Markov Q-Process. ThenW(0)
d
=Z(0) and

Pi {W(t) = j}= Qi j (t).

In the mentioned paper [8] some asymptotic properties of distribution ofW(t) are observed. Namely it was proved that if
the corresponding MBP is critical, thenW(t)

/
EW(t) has a limiting Erlang’s law. In this case there is an invariant measure

if second moment of PGFf (s) is finite. In the non-critical situation under at some momentcondition, there exists an
invariant distribution for the processW(t).

In Section 2 we define the Markov Q-Process and discuss properties concerning its construction and its transition
functionQ(t). In the Section 3 an ergodic property ofQ(t) will be observed.

2 Construction of Markov Q-Process

In this section we will interested in the limiting interpretation of conditioned transition functionPH (t+τ)
i {Z(t) = j} letting

τ → ∞ and for all fixedt ∈ T . First by formula of full probability we write

Pi {t < H < ∞, Z(t) = j}= P{t < H < ∞ |Z(t) = j } ·Pi j (t).

Since the probability of extinction ofj particles isq j then it follows that

Pi {t < H < ∞, Z(t) = j}= Pi j (t) ·q
j . (2.1)

Using the formula (3.1) from last relation we receive that

Pi {t < H < ∞}= ∑
j∈N

Pi {Z(t) = j , t < H < ∞}= ∑
j∈N

Pi j (t)q
j . (2.2)
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Relation (2.1) implies

Pi {Z(t) = j, t + τ < H < ∞} = Pi j (t) · ∑
k∈N

P j {τ < H < ∞, Z(τ) = k}

= Pi j (t) · ∑
k∈N

Pjk(τ)qk.

Therefore considering identity (2.2) we have

PH (t+τ)
i {Z(t) = j}= Pi j (t) ·

∑k∈N

Pjk(τ)
P11(τ)

qk

∑ j∈N

Pi j (t + τ)
P11(t + τ)

q j
·

P11(τ)
P11(t + τ)

.

Using the ratio limit property [6, Lemma 7] and after short calculation it follows that

lim
τ→∞

PH (t+τ)
i {Z(t) = j}=

jq j−i

iβ t Pi j (t) =: Qi j (t),

where as beforeβ = exp{ f ′(q)}. It is easy to be convinced that 0< β ≤ 1 decidedly. To witβ = 1 if a= 0 andβ < 1
otherwise. SinceF ′(t;q) = β t

∑
j∈N

Qi j (t) = ∑
j∈N

jq j−i

iβ t Pi j (t) =
F ′

i (t;q)
iqi−1β t = 1,

so we have an honest probability measureQ(t) =
{
Qi j (t)

}
. This measure defines a new stochastic processW(t), t ∈ T ,

called Markov Q-Process (MQP) to be the homogeneous continuous-time Markov chain with the state spaceE ⊆ N;
see [8]. In consequence of the Markovian nature of this process thetransition functionsQi j (t) satisfy the Kolmogorov-
Chapman equations:

Qi j (t + ε) = ∑
k∈E

Qik(ε)Qk j(t). (2.3)

Thus the random functionW(t) denotes the state size at the momentt ∈ T in MQP, so

Qi j (t) = Pi {W(t) = j}=
jq j−i

iβ t Pi j (t). (2.4)

Considering together equalities (1.2) and (2.4) entail thefollowing important representation for transition functions
Q1 j(ε):

Q1 j(ε) = δ1 j + p jε +o(ε), as ε ↓ 0, (2.5)

with probability densities

p0 = 0, p1 = a1− lnβ , and pj = jq j−1a j ≥ 0 for j ∈ E \{1},

where
{

a j
}

are evolution intensities of MBPZ(t). It follows from (2.5) that PGF of intensities
{

p j
}

has the form of

g(s) := ∑
j∈E

p js
j = s

[
f ′(qs)− f ′(q)

]
. (2.6)

We see thatg(1) = 0, so the infinitesimal PGFg(s) completely defines the processW(t), where
{

p j
}

are intensities of
process evolution thatp j > 0 for j ∈ E \{1} and

0<−p1 = ∑ j∈E \{1} p j < ∞.

In the following theorem we discuss basic properties of transition matrixQ(t) =
{
Qi j (t)

}
. Herewith we will follow

methods and facts from monograph of Anderson [1].
Theorem 1. The transition matrixQ(t) of the MQP is standard and honest. Its componentsQi j (t) are positive and
uniformly continuous functions of t∈ T for all i , j ∈ E .
Proof. According to the branching property (1.1) for chainZ(t), we see

Pi j (ε) = δi j + ia j−i+1ε +o(ε), as ε ↓ 0.
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Hence seeing representation (2.4)




Qii (ε) = 1+(ia1− lnβ )ε +o(ε),

Qi j (ε) = jq j−ia j−i+1ε +o(ε),
as ε ↓ 0, (2.7)

for all i, j ∈ E . It follows from (2.7) that

∑
j∈E

∣∣Qi j (ε)− δi j
∣∣ = ∑

j∈E \{i}

Qi j (ε)+ |Qii (ε)−1|

= ∑
j∈E \{i}

Qi j (ε)+1−Qii(ε)

≤ 2|1−Qii(ε)| → 0, as ε ↓ 0.

SoQi j (t) is standard. Easily to be convinced that a PGF version of (2.4) is

Gi(t;s) := Eis
W(t) = ∑

j∈E

Qi j (t)s
j =

qs
iβ t

[
∂
∂x

(
F(t;x)

q

)i
]

x=qs

,

or more obviously that

Gi(t;s) =

[
F(t;qs)

q

]i−1

G(t;s), (2.8)

where

G(t;s) := G1(t;s) =
s

β t

∂F(t;x)
∂x

∣∣∣∣
x=qs

.

It is known thatF (t;q) = q andF ′ (t;q) = β t ; see [19, pp. 52–53]. In our presupposition the MBP is honest. Therefore it
follows from (2.8) that∑ j∈E Qi j (t) = Gi(t;1) = 1.

A positiveness of functionsQi j (t) is obvious owing to (2.7). Supposingε > 0 it follows from equation (2.3) that

Qi j (t + ε)−Qi j (t) = ∑
k∈E

Qik(ε)Qk j(t)−Qi j (t)

= ∑
k∈E \{i}

Qik(ε)Qk j(t)−Qi j (t) · [1−Qii (ε)] .

The last relation gives

− [1−Qii(ε)] ≤ −Qi j (t) · [1−Qii (ε)]
≤ Qi j (t + ε)−Qi j (t)≤ ∑

k∈E \{i}

Qik(t)Qk j(ε)

≤ ∑
k∈E \{i}

Qk j(ε) = 1−Qii(ε),

so
∣∣Qi j (t + ε)−Qi j (t)

∣∣≤ 1−Qii (ε). Similarly
∣∣Qi j (t − ε)−Qi j (t)

∣∣ =
∣∣Qi j (t)−Qi j (t − ε)

∣∣
≤ 1−Qii (t − (t− ε)) = 1−Qii(ε).

Therefore we obtain
∣∣Qi j (t + ε)−Qi j (t)

∣∣ ≤ 1−Qii (|ε|) for any ε 6= 0 and for all i, j ∈ E . The obtained relation
implies thatQi j (t) is uniformly continuous function oft ∈ T because limε↓0Qii (ε) = 1 for all i ∈ E . ⊓⊔

It can easily be seen that a PGF version of the relation (2.5) is

G(ε;s) = s+g(s) · ε +o(ε), asε ↓ 0 and
for all 0≤ s< 1. (2.9)

By the way according to formulas (1.3) and (2.8) one can see that the PGFG(t;s) satisfies the following functional
equation:

G(t + τ;s) =
G
(

t; F̂(τ;s)
)

G
(

0;F̂(τ;s)
) G(τ;s), (2.10)

c© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.4, No. 2, 231-238 (2015) /www.naturalspublishing.com/Journals.asp 235

whereF̂(t;s) = F(t;qs)
/

q is the PGF of sub-critical MBP. Using formularizations (2.9) and (2.10) for the difference
∆εG(t;s) = G(t − ε;s)−G(t+ ε;s) yields that

∆εG(t;s) = [some f unction] · ε +o(ε), as ε ↓ 0,

for anyt ∈ T and all 0≤ s< 1, which implies thatG(t;s) is differentiable. It has been shown in [8] that

G(t;s) = sexp

{∫ t

0
h
(

F̂(τ;s)
)

dτ
}
, (2.11)

whereh(s) = g(s)
/

s.

3 Classification and Ergodic behavior of transition functions

Note that evolution of MQP is ruled in essence by the positiveparameterβ . Afterwards we will convinced that two types
of processes will be subdivided depending on value of this parameter. Putting together (2.8) and (2.11) we write

Gi(t;s) = s
[
F̂(t;s)

]i−1
exp

{∫ t

0
h
(

F̂(τ;s)
)

dτ
}
. (3.1)

Let α := g′(1) is finite. Direct differentiating in points= 1, it follows from (3.1) that

EiW(t) = (i −1)β t +EW(t)

and

EW(t) =





1+ γ (1−β t) , when β < 1,

αt +1 , when β = 1.
(3.2)

Moreover we obtain the variance structure

VariW(t) =





[γ +(i −1) (1+ γ)β t ] (1−β t) , when β < 1,

α it , when β = 1.
(3.3)

Whereγ = α
/
|lnβ | andVariW(t) = Var [W(t) |W(0) = i ] in (3.3).

The formula (3.2) implies that whenβ = 1

EiW(t)∼ αt, as t→ ∞,

and if 0< β < 1
EiW(t)→ 1+ γ, as t→ ∞.

So in the case ofβ = 1 the MQP has transience property.
We classify the MQP asrestrictiveif β < 1 andexplosiveif β = 1.

Theorem 2.The MQP is

(i)positive if it is restrictive andα := g′(1) is finite;
(ii)null if it is explosive.

Proof.To prove the assertion (i) from (2.11) we get

lnQ11(t) =
∫ t

0
h
(

F̂(τ;0)
)

dτ =

∫ F̂(t;0)

0

h(x)

f̂ (x)
dx→

∫ 1

0

h(x)

f̂ (x)
dx,

sinceF̂(t;0) ↑ 1 ast → ∞, where f̂ (s) = f (qs)
/

q. Herein we used the fact that lims↓0
[
G(t;s)

/
s
]
= Q11(t). The condition

α < ∞ implies that integral in right-hand side converges. Hence limt→∞ Q11(t)> 0. For part (ii) we recall that in this case
q= 1 andh(s) = f ′(s) if β = 1. Similarly

lnQ11(t) =
∫ t

0
h(F(τ;0))dτ =

∫ F(t;0)

0

h(x)
f (x)

dx→
∫ 1

0

f ′(x)
f (x)

dx=−∞.

So that limt→∞ Q11(t) = 0. ⊓⊔
Now let’s recall the following assertion.

Lemma [6]. The following assertions are valid.
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–Let a 6= 0. Then
∂F(t;s)

∂s
=

| f ′(q)|
f (s)

A (s) ·β t (1+o(1)) , as t→ ∞, (3.4)

where

A (s) = (q− s)exp

{∫ q

s

[
1

u−q
−

f ′(q)
f (u)

]
du

}
. (3.5)

–Let a= 0. If the second moment f′′(1) =: 2b is finite, then

∂F(t;s)
∂s

=
b(1− s)2

f (s) [bt(1− s)+1]2
(1+o(1)) , as t→ ∞. (3.6)

Putting together (3.1) and (3.4)–(3.6) and considering that limt→∞ F̂(t;s) = 1 uniformly for all 0≤ s≤ r < 1, we
obtain following theorem.
Theorem 3.Let α := g′(1) is finite.

(i)If MQP is restrictive, then

Gi(t;s) = s
| f ′(q)|
f (qs)

A (qs)(1+o(1)) , as t→ ∞, (3.7)

where the functionA (s) has the form of (3.5).
(ii)If MQP is explosive, then

Gi(t;s) = s
2α
f (s)

[
(1− s)

(1− s)αt +2

]2

(1+o(1)) , as t→ ∞. (3.8)

SinceQ11(t) = lims↓0
[
G(t;s)

/
s
]
, it follows from (3.7) and (3.8) the following local limit theorem.

Theorem 4.Let α := g′(1) is finite.

(i)If MQP is restrictive, then

Q11(t) =
|lnβ |

a0
A (0)(1+o(1)) , as t→ ∞,

(ii)If MQP is explosive, then

t2
Q11(t) =

2
a0α

(
1+O

(
1
t

))
, as t→ ∞.

Further we observe limit properties of
{
Qi j (t)

}
for all i, j ∈ E . For the general MQP the following ratio limit property

holds.
Theorem 5.The limits

lim
t→∞

Qi j (t)

Q11(t)
= ω j (3.9)

exist for all i, j ∈ E , and these determined by the PGF

U (s) = ∑
j∈E

ω js
j = sexp

{∫ s

0

|h(x)|
m(x)

dx

}
, (3.10)

where h(s) = g(s)
/

s and m(s) = slnβ +
∫ s

0 h(x)dx. The limiting PGFU (s) converges for all0≤ s< 1.
Proof.Let’s consider the PGF

Ui(t;s) = ∑
j∈E

Qi j (t)

Q11(t)
sj =

1
Q11(t)

Gi(t;s) =
[
F̂(t;s)

]i−1
U (t;s), (3.11)

where

U (t;s) = ∑
j∈E

Q1 j(t)

Q11(t)
sj .

c© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.4, No. 2, 231-238 (2015) /www.naturalspublishing.com/Journals.asp 237

It follows from (3.11) that it suffice to consider the casei = 1 becausêF(t;s) ↑ 1 ast → ∞ uniformly for all 0≤ s≤ r < 1.
So write

U (t;s) = sexp

{∫ t

0

[
h
(

F̂(u;s)
)
−h

(
F̂(u;0)

)]
du

}
.

One can chooseτ ∈T for any 0≤ s< 1 so thats= F̂(τ;0). On the other hand we know thatF̂
(

t; F̂(τ;0)
)
= F̂(t+τ;0);

[19, p. 24]. Therefore we obtain equalities

U (t;s) = sexp

{∫ t+τ

τ
h
(

F̂(u;0)
)

du−
∫ t

0
h
(

F̂(u;0)
)

du

}

= sexp

{∫ τ

0

[
h
(

F̂(t; F̂(u;0))
)
−h

(
F̂(u;0)

)]
du

}

= sexp





∫ s

0

h
(

F̂(t;x)
)
−h(x)

f̂ (x)
dx



 ,

where f̂ (s) := f (qs)
/

q. In the last step we have used the Kolmogorov backward equation

∂F(t;s)
∂ t

= f (F(t;s)) , for all 0< s< 1;

see [19, pp. 27–30]. We see that̂f (s) is equal tom(s). To get to (3.10) it suffice to take limit ast → ∞ in obtained relation
for U (t;s) being thatF̂(t;s)→ 1 andh(1) = 0. Assertion (3.9) follows now from continuity theorem for PGF. Lastly it is
easily to be convinced thatU (s)< ∞ for all 0≤ s< 1. ⊓⊔

Aggregating Theorems 4 and 5, yields the following
Theorem 6.Let α := g′(1) is finite.

(i)If MQP is restrictive, then

Qi j (t) = ω j
|lnβ |

a0
A (0)(1+o(1)) , as t→ ∞.

(ii)If MQP is explosive, then

t2
Qi j (t) = ω j

2
a0α

(
1+O

(
1
t

))
, as t→ ∞.

Now using the Kolmogorov-Chapmen equation (2.3) we obtain that

Qi j (t + τ)
Q11(t + τ)

·
Q11(t + τ)

Q11(t)
= ∑

k∈E

Qik(t)
Q11(t)

Qk j(τ).

On the other hand settings= 0 in (2.10) we can see thatQ11(t + τ)
/
Q11(t)→ 1 ast → ∞. Hence we get the following

invariance equation for
{

ω j
}

:
ω j = ∑

k∈E

ωkQk j(t), for all t ∈ T . (3.12)

The PGF version of (3.12) is

U

(
F̂(t;s)

)
=

F̂(t;s)
G(t;s)

U (s), for 0≤ s< 1,

the functional equation of generalized Schroeder form. So the set
{

ω j
}

to be the ergodic invariant measure for MQP.
We complete the paper stating the following limit theorem.

Theorem 7.Let α := g′(1) is finite.

(i)If MQP is restrictive, then the variable W(t) tends in mean square and with probability one to the random variable W
having the finite mean and variance:

EW = 1+ γ and VarW = γ.

(ii)If MQP is explosive, then for any x> 0

lim
t→∞

P
{

W(t)
EW(t)

≤ x

}
= 1−e−2x−2xe−2x.

ForProofsee [8].
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4 Conclusion remark

The paper is devoted to research of the population process which is defined as the long-living continuous-time Markov
branching process. This is the homogenous Markov chain and called the Markov Q-process (MQP). In a discrete-time
situation a same process was defined in [2]. In our case the process was considered first by author [8]. We see that the
structural parameterβ = f ′(q) enters a role of the regulating one. In fact the long-time behaviors of MQP depend on this
parameter and unlike the branching process this is classified only two types. In research of transition functionsQi j (t)
we essentially use asymptotic properties of the first derivative of PGF of Markov Branching process. Ratio limit property
(Theorem 5) for transition functions states an existence ofinvariant measure for MQP without any moment assumptions.
The Theorem 7 shows the limit properties of states of process. In our subsequent researches the considered model will be
spread to the age-depended Bellman-Harris process case.
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