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Abstract: Consider the limiting probability function of continuotisae Markov Branching Processes conditioned to be nevanaxt
Hereupon we receive a new stochastic population process@#iauous-time Markov chain called the Markov Q-Proc#gs.study
main properties of Markov Q-Process. The principal aim iswestigate asymptotic properties of Markov Q-Processintestigate
transition functions of this process and their convergdactationary measures.
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1 Introduction

Considering a population of monotype individuals we witeirested in its evolution. These individuals may be biatagi
kinds, molecules in chemical reactions etc. Suppose thelptpn size changes by random reproduction law as follgwin
Each individual existing at epodke .7 = [0; +), independently of his history and of each other for a sm@létinterval
(t; t+ ¢) transforms intoj € No\{1} individuals with probabilityaje + o(e) and, with probability 1+ a;€ + o(e) each
individual survives or makes evenly one descendant (g8); No = {0} U{N =1,2,...}. Here the number§a; } mean
the evolution intensities of individuals thaf > 0 for j € No\{1} and 0< ap < —a1 = ¥ jeng\ {1} & < ©- Appeared new
individuals undergo transformations under same way asela@ttingZ(t) be the population size at the momentwe
have the homogeneous continuous-time Markov BranchingeBso(MBP) which was first considered by Kolmogorov
and Dmitriev [L3].

The procesZ(t) is a Markov chain with the state spaceNgand transition functions

Ri(t) :==Pi{Z(t) = j} =P{Z(t+1) = j[Z(1) =i},
satisfying the branching property
Ri)= 5 Puy()-Puj,()- Py (1), (11)
it Fii=]
ProbabilitiesPy; in (1.1) are calculated using the local densiffes} by relation
Pij(e) = &j+aje+o(e), aselO, (1.2)
whereg;; is the Kronecker’s delta function. A Probability Genergtfunctions (PGF) version of the relation (1.2) is
F(g;s)=s+f(s)-e+o0(g), aselO,

forall0<s< 1, where

Fits)= S Pt)s and  f(s) = % a;s.
j€No i€Ng
Owing to Markovian property the PGF
F(ts):= S Rj)s =[F(t;9), forall ieN, (1.3)
j€Ng
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Assuminga:= f'(1) is finite and using the equation (1.4) we ha&&(t) = ¥ oy, JP;j (t) = ie®. The last formula shows
that long-term properties of MBP seem variously dependimgparameten. Hence the MBP is classified as critical if
a= 0 and sub-critical or super-critical& < 0 ora > 0 respectively. Monographg]j [5], [19 are general references for
mentioned and other classical facts on theory of MBP.

Throughout this paper we wrife{«} andE[«] instead ofP;{«} andE; ] respectively.

Let random variable” .= inf{t € 7 : Z(t) = 0} be a hitting time of the zero state of MBP. By extinction thesar
Pi {77 < o} =, whereq = limi_,. P1o(t) is an extinction probability of MBP which is the least norgagve root of
f(s) = 0. Moreover lim_, F(t;s) = g uniformly by 0< s<r < 1. Let's consider the conditioned distribution function
Pg%ﬁ(t){*} = Pi{x|t < <} Itis known that ifa < 0 theng = 1. Therefore in this caslé;%p(t){*} =Pi{x|# >t}
and

P{t<# <ow}=P{x >t} =P{Z(t) > 0}.

On the other hand in this case<OPj(t) < P{.# >t} — 0 ast — . But ratioPy;(t) /P {# >t} has a limiting finite

law. So long-term properties of non-supercritical MBP aaglitionally investigated on non-zero trajectories, tkainder
condition of evenf{# > t}. Sevastyanovl[g proved that in the sub-critical case there is a limitingtritisition law

lim_. P {Z(t) = j} if and only if Y jend;jjInj < oo, In the critical situation he also proved that i 2= (1) < oo,
thenZ(t) /bt has a limiting exponential law. In this case Chistyak8ldroved that iff(4(1) < andj /bt is bounded,

thent-P7* W {z(t) = j} = 1/b+0( Int/t) ast — o. The author §] improved this result being on the condition of
b < o only.

More interesting phenomenon arises if we observe the lifdbaditioned distributiorP; ){*} letting 7 — oo. In
discrete-time situation this limit represents a distiibbutmeasure, which defines homogeneous Markov chain céléed t
Q-process; se€| pp. 56—60]. The Q-process was considered first by LampadtNey [L4]. Some properties of it were
discussed by Pake&d], [16], [17], Imomov [7], [9], [10], [11], Formanov and Imomow]. The considerable part of the
paper of Klebaner, Rosler and Sagitd\?] is devoted to discussion of this process from the viewpofbranching
transformation called the Lamperti-Ney transformation. cdoser look shows that in MBP case the limit
M7 Pg%ﬁ(t”) {Z(t)=j} has an honest probability measur@st) = {2i;(t)} which defines the homogeneous
continuous-time stochastic process as Markov chain witesipace oiN. This process is called ir8] the Markov

Q-Process. LatV(t) to be the state size at the momert.7 in Markov Q-Process. Thew(0) gZ(O) and

H(t+T

Pi{W(t) = j} = 2 (1).
In the mentioned pape8] some asymptotic properties of distributionwft) are observed. Namely it was proved that if
the corresponding MBP is critical, thw(t) /EW(t) has a limiting Erlang’s law. In this case there is an invariapasure
if second moment of PGF(s) is finite. In the non-critical situation under at some momeortdition, there exists an
invariant distribution for the proce¥¥(t).

In Section 2 we define the Markov Q-Process and discuss giepeoncerning its construction and its transition
functionQ(t). In the Section 3 an ergodic property@ft) will be observed.

2 Construction of Markov Q-Process

In this section we will interested in the limiting interpagibn of conditioned transition functid?q%ﬁ(t”) {Z(t) = j} letting
T — oo and for all fixedt € .7. First by formula of full probability we write

Pi{ft<l <o, Z(t) = j} =P{t < <oo|Z(t) =]} -Bj(t).
Since the probability of extinction gf particles isg! then it follows that
Pi{t<# <w, Z(t)=j} =Rj(t)-q. (2.1)
Using the formula (3.1) from last relation we receive that

Pift<# <o}=S P{Zt) =], t< A <o} = Rjt)d. (2.2)
jeN jEN
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Relation (2.1) implies

Pi{Z(t) =], t+ 1< <o} =Rj(t)- ) Pj{r < <, Z(1) =k}
keN

= F’uj(t)-képjk(f)q

Therefore considering identity (2.2) we have

o PHD
PY7 T (20) = i} = Ry g j-é?ﬁiﬁy
B )

Using the ratio limit property§, Lemma 7] and after short calculation it follows that

i P (20 = 13 = 2 ey ) = 240,

where as befor@ = exp{ f'(q)}. It is easy to be convinced that0p < 1 decidedly. To wit3 = 1 if a=0 andp < 1
otherwise. Sinc&’(t;q) = B

s 2y0-3 Blm e - 509,y

t
jeN JEN IB

so we have an honest probability measQ(e) = { 2;j (t)}. This measure defines a new stochastic proggss, t € .7,
called Markov Q-Process (MQP) to be the homogeneous caniBitime Markov chain with the state spafeC N;
see B]. In consequence of the Markovian nature of this processrtmesition functions?;; (t) satisfy the Kolmogorov-
Chapman equations:
e@” (t+¢) Z k(€ e@kj (2.3)
ke&

Thus the random functiow/(t) denotes the state size at the monteat7 in MQP, so

jgi !
|Bt

Considering together equalities (1.2) and (2.4) entailftlewing important representation for transition furats
e@lj (8)2

2ij(t) =Pi{W(t) = j} = Ri(t). (24)

21j(€) = &1 +pje+o(g), aselO, (2.5)
with probability densities

pp=0, pi=ai—InB, and p=jgta>0 for je&\{1},
where{a;} are evolution intensities of MBR(t). It follows from (2.5) that PGF of intensitieSp; } has the form of

99 =3 pd =s[f'(a9 — f'(a)]. (26)
jeé&

We see thay(1) = 0, so the infinitesimal PGE(s) completely defines the proce#4t), where{p;} are intensities of
process evolution that; > 0 for j € £\{1} and

0<=P1=2 jenmPi<®

In the following theorem we discuss basic properties ofditeon matrixQ(t) {Q.J )}. Herewith we will follow
methods and facts from monograph of Anderstn [
Theorem 1. The transition matrixQ(t) of the MQP is standard and honest. Its componefitgt) are positive and
uniformly continuous functions o&t .7 for all i, j € &.
Proof. According to the branching property (1.1) for chdii), we see

Rj(e) = &j +iaj_i;1£+0(g), aselO.
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Hence seeing representation (2.4)
{ 2ii(g) = 1+ (iag—InB) e +0(¢),

o as €.0, (2.7
2ij(€) = ja''aj-i18 +0(g),

foralli,j € &. It follows from (2.7) that
Y [2i(e) - & = 2ij(e) +12i(e) - 1
je& je&\{i}
= 2ij(e)+1-Zii(¢)
je\{i}
<2|1-2i(e)|—~0, aselO.
S0.2jj(t) is standard. Easily to be convinced that a PGF version 0j (2.4

i J (F(t; !
G( —ES Za@” %[&( (th))‘| ;

je& X=0s

or more obviously that

. i—1
G-(t;s):[F(téqs)} G(t9), (2.8)
where s OF(tx)
69 = Giltig = K|
X=0s

It is known thatF (t;q) = qandF’ (t; q) Bt see L9, pp. 52-53]. In our presupposition the MBP is honest. Ttozeeit
follows from (2.8) thaty jc» Zij(t) = Gi(t;1) = 1.
A posmveness of functiongj; (t) is obvious owing to (2.7). Supposigg> 0 it follows from equation (2.3) that

Zij(t+¢&)—-2(1) kzgglk )2k (t) = 2ij (1)
= ) i(e)2qt)—2(t)-[1-Zi(e)].
ke T}

The last relation gives

—[1-2i(e)] < -2(t)-[1-Zi(e)]

< Zij(t+e) - 2i(t) < i(t) 2 (g)

keEN{i}
< ij(€)=1—e@ii(€),
keEN{i}
SO |Qij (t+¢)— 2 (t)‘ <1-— Zji(g). Similarly
| 2ij(t—¢) =2 (O] = [25 ) - 2ij(t—¢)]
<1-Zit—(t—¢))=1—Zi(e).
Therefore we obtaif2;j (t+¢€) — 2ij(t)| < 1— 2 (|¢|) for any € # 0 and for alli, j € &. The obtained relation

implies thatZ;; (t) is uniformly continuous function dfe .7 because limo Zji(¢) =1 forallie &. O
It can easily be seen that a PGF version of the relation (2.5) i

ase | Oand

G(g;s) =s+9(s)-£+0(e), forall 0<s< 1.

(2.9)
By the way according to formulas (1.3) and (2.8) one can saettie PGFG(t;s) satisfies the following functional
equation:

G(t;lf(r;s))

Gt+T1;9) = a (O;If(r;s))

G(t;59), (2.10)
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wherelf(t;s) = F(t;qs)/q is the PGF of sub-critical MBP. Using formularizations (2ahd (2.10) for the difference
A:G(t;s) = G(t—¢€;s) — G(t + ¢; 5) yields that

A:G(t;s) = [some functioh e+ 0(g), as €0,
for anyt € 7 and all 0< s< 1, which implies thaG(t;s) is differentiable. It has been shown i8] fhat
t A~
G(t;s) :sexp{/ h(F(r;s))dT}, (2.11)
0

whereh(s) = g(s) /s.

3 Classification and Ergodic behavior of transition functions

Note that evolution of MQP is ruled in essence by the posfismametef3. Afterwards we will convinced that two types
of processes will be subdivided depending on value of thiarmpater. Putting together (2.8) and (2.11) we write

Gi(t;s) = s[lf(t;s)} o exp{/ot h (If(r;s)) dr} . (3.1)

Leta :=d'(1) is finite. Direct differentiating in poing = 1, it follows from (3.1) that
EW(t) = (i — 1) B' + EW(t)

and
1+y(1-pBY, whenpB<1,
EW(t) = (3.2)
at+1 , whenp=1.
Moreover we obtain the variance structure
ly+(i-1)1+y)BI(1-pB"Y), whenp <1,
VarW(t) = (3.3)
ait , whenp=1.

Wherey = a /|In 3] andVarW(t) = Var[W(t) W(0) =i] in (3.3).
The formula (3.2) implies that whehi = 1

EiW(t) ~ at, as t— o,
andif0O<fB <1
EW() —-1+y, as t— oo,

So in the case g8 = 1 the MQP has transience property.
We classify the MQP astrictiveif 8 < 1 andexplosivef 8 = 1.
Theorem 2.The MQP is

(i) positive if it is restrictive andy := ¢/(1) is finite;
(1) nullifitis explosive.
Proof. To prove the assertion (i) from (2.11) we get

ot e B ﬁ(t;O)@ 1@
|n£211(t)_/0 h(F(r,O))dr—/o fA(X)o|x—>/o T
(

sinceF (t;0) 1 1 ast — oo, wheref (s) = f(qs) /q. Herein we used the fact that ligg [G(t; s) /8] = 211(t). The condition
a < o« implies that integral in right-hand side converges. Hemoe ., 211(t) > 0. For part (ii) we recall that in this case
g=1andh(s) = f'(s) if B = 1. Similarly

t F(t;0) h(X) 1 f’(X)
In2 t:/hFr;O dr:/ —dx—>/ d
Sothatlim_ e 211(t) =0. O
Now let’s recall the following assertion.
Lemma [6]. The following assertions are valid.
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—Leta#0. Then

OF(t;s) _ |f'(q)] .
3e = f(g Y9 B ATo), aste (34)
where ar 1 (@
o (8) = (q—s)exp{/s [m_ am } du}. (3.5)
—Let a= 0. If the second moment'f1) =: 2b is finite, then
OF(ts) _  b(1-s° (1+0(1), as t— . (3.6)

ds f(s)[bt(1—s) + 12

Putting together (3.1) and (3.4)—(3.6) and considering lihg_ If(t;s) = 1 uniformly forall 0<s<r < 1, we
obtain following theorem.
Theorem 3.Leta :=d'(1) is finite.

(i) If MQP is restrictive, then

Gi(t;s):s|:;;3|d(qs)(l+o(1)), as t— oo, (3.7
where the function? (s) has the form of (3.5).
(ii)If MQP is explosive, then
B 2
Gi(t:s) =s fz(z) : 1_(15)0{?+ 2} (1+0(1), as t—w. (38)

Since211(t) = limg o [G(t;s) /9], it follows from (3.7) and (3.8) the following local limit #orem.
Theorem 4.Leta :=d'(1) is finite.

(i) If MQP is restrictive, then
211(t) = %d(O)(H o(1)), as t— oo,

t?.21(t) = 2 <1+O (%)) , as t— oo,

apd

(ii)If MQP is explosive, then

Further we observe limit properties 6£2;j (t) } for alli, j € &. For the general MQP the following ratio limit property
holds.
Theorem 5.The limits

2t
fim I w; (3.9)
exist for all i, j € &, and these determined by the PGF
i s |h()|
Ui =S wsd :sexp{/ —dx}, 3.10
( ) J; ] 0 m(x) ( )
where H{s) = g(s) /s and nts) = sIn B + [Fh(x)dx. The limiting PGF% (s) converges for ald < s< 1.
Proof. Let's consider the PGF
2 (t) 1 ~ i-1
U (t;s) = s = Gi(t;s) = |F(t;s U (t;s), 3.11
9= 5 200 = T Fts] “zy (311)
where 0
Qlj 1) .
U (t;s) = sl
( ) J; Qll(t)
(@© 2015 NSP
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It follows from (3.11) that it suffice to consider the case 1 becaus@(t; s) 11 ast — oo uniformlyforall0<s<r < 1.

So write .
U (t;s) = sexp{/O [h (If(u; s)) —h (If(u; 0))} du} .

One can choosee .7 for any 0< s < 1 so thas= F(1;0). On the other hand we know thﬁt(t; F(t; 0)) =F(t+1,0);
[19, p. 24]. Therefore we obtain equalities

@/(t;s)_sexp{/mh(( 0)) du- / (P )du}
{ o) e

—h(x)
/ ——dXx,,
0 x)
wheref =f(q9 /q In the last step we have used the Kolmogorov backward emjuati
0Fa('i,s) =f(F(t;s), forall0<s<1,;

see [L9, pp. 27—30]. We see thals) is equal tom(s). To get to (3.10) it suffice to take limit 4s— « in obtained relation
for % (t;s) being thaf (t;s) — 1 andh(1) = 0. Assertion (3.9) follows now from continuity theorem faBP. Lastly it is
easily to be convinced th& (s) < o forall0<s<1. O

Aggregating Theorems 4 and 5, yields the following
Theorem 6.Leta :=d/(1) is finite.

(i) If MQP is restrictive, then

|
2ij(t) = wj'T—af'

2 1
tza@ij(t) = wjﬂ (1—}—0(?)) , as t— oo,

Now using the Kolmogorov-Chapmen equation (2.3) we obtaé t
2it+1) 2nt+r o L)
2ut+1)  2ut) & 2u)

On the other hand settirg= 0 in (2.10) we can see tha#1(t + 1) / 211(t) — 1 ast — . Hence we get the following
invariance equation fof cj }:

</(0)(14+0(1)), as t— oo,

(ii)IfMQP is explosive, then

ij(T).

wj = z wZj(t), forall te 7. (3.12)
ke&
The PGF version of (3.12) is R
~ F(t;s)
) — <
%(F(t,s)) G(t;s)%(s)’ for 0<s<1,

the functional equation of generalized Schroeder fortho;Et{ (A)j} to be the ergodic invariant measure for MQP.
We complete the paper stating the following limit theorem.
Theorem 7.Leta :=d/(1) is finite.

(i) If MQP is restrictive, then the variable W) tends in mean square and with probability one to the randoriaisée W
having the finite mean and variance:

EW=1+y and VarW=y.
(ii)If MQP is explosive, then for anyx 0

W(t) _2x _2x
P < =1— -2
lim { S < x} &% 2xe

For Proofsee B].
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4 Conclusion remark

The paper is devoted to research of the population proceghvgdefined as the long-living continuous-time Markov
branching process. This is the homogenous Markov chain alhedcthe Markov Q-process (MQP). In a discrete-time
situation a same process was definedZj [h our case the process was considered first by auBjok\fe see that the
structural parametg8 = f/(q) enters a role of the regulating one. In fact the long-timesars of MQP depend on this
parameter and unlike the branching process this is cladsifily two types. In research of transition functio2s (t)

we essentially use asymptotic properties of the first dévieaf PGF of Markov Branching process. Ratio limit propert
(Theorem 5) for transition functions states an existendevafriant measure for MQP without any moment assumptions.
The Theorem 7 shows the limit properties of states of prodessir subsequent researches the considered model will be
spread to the age-depended Bellman-Harris process case.
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