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Abstract: Eslamian and Abkarg] introduced fixed point of the weal, a, 3) contractive mappings in complete metric space (also
see P]). In this paper we established a generalized concept oidek{, a, 3) contractive condition depended on another mapping.
Thus, we obtained a new generalization of Banach fixed poatrem, Kannan fixed point theorem and Chatterjea fixed podarem.
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1 Introduction and Preliminaries such that ke [0,3) and xy € X, then T has a unique fixed
point. The mappings satisfyin@)(are called Chatterjea

Banach contraction principle is one of the most importanttype mapping.

result in mathematics. Due to the importance, . ]

generalizations of Banach fixed point theorem have been In 2011, Moradi and Davoodd] introduced a new

investigated broadly by many mathematicians. extension of Kannan type contractive mapping depended
A mapping T: X — X where(X,d) is a metric space, 0N another func_tlonT which is continuous, one to one

is said to be a contraction if there existsK0, 1) suchthat ~ and subsequentially convergent.

forallx,y € X, Definition 1. [4] Let (X, d) be a metric space.

SSC) A mapping TX — X is said to be sequentially

d(TxTy) <kd . 1

(Tx Ty) < kd(xy) @ convergentif we have, for every sequefigg, if {Tyn}is
In [1], Banach proved that a contraction mapping hasconvergence th?ﬁ)’n} also IS convergence. _

a unique fixed point in complete metric space. SC) Amapping TX — X is said to be subsequentially

Kannan P], established the following result. convergentif we have, for every sequefig, if {Tyn} is
convergence thefy,} has a convergent subsequence.
Theorem 1.[2] If a mapping T: X — X where(X,d) is

a complete metric space, satisfies the inequality Theorem 3.[4] Let (X, d) be a complete metric space and
T,S: X — X be mappings such that T is continuous, one
d(TxTy) <a[d(x,Tx) +d(y,Ty)] (2)  to one and subsequentially convergent I€ [0, 1) and

X,y € X, S satisfying
where ac [O, %) and xy € X, then T has a unique fixed
point. The mappings satisfying)(are called Kannan type d(TSXxTSY <A[d(TxTSY+d(Ty,TSy] (4)

Mappings. then, S has a unique fixed point. Also if T is sequentially

A similar contractive condition has been introduced by convergent then for everyyx X the sequence of iterates

Chatterjea 3] as following: {S%p} converges to this fixed point.
Theorem 2.[3] If a mapping T: X — X where(X,d) is a In 2013, Razani and Parvaneh, generating result of
complete metric space, satisfies the inequality Moradi and Davood, gave fixed point theorems for
weakly T-Chatterjea and weaklyf -Kannan-contractive
d(TxTy) <b[d(x,Ty)+d(y,TX)] 3) mappings in complete metric spacég]| Also, Eslamian
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and Abkar introduced the fixed point theorem of the Letting n— o in (8), we obtain thaty (r) < o (r) — B (r).
(g, a,B)—weak contractive mappings in complete metric From (7), we have r= 0. Now, we prove tha{T x,} is a

space 8],[9].

In this paper, a generalized weéla,()

Cauchy sequence. If possible, I6tx,} be not a Cahucy
sequence. Then, there exists- 0 for which we can find

contractive condition is considered for Banach fixed pointsubsequence§ T Xy} and {Txy} of {Tx} with
theorem, Kannan fixed point theorem and Chatterjea fixeth (k) > m(k) > k such that
point theorem. Therefore we obtain some results which

are more general than the result of Razani and Parvaneh

[13], Eslamian and Abkarq].

2 Main Results

We denote by the set of functiongp : [0,00) — [0, )

satisfying the properties) y is continuous and monotone

nondecreasindy) ¢ (t) =0ifand only if t = 0.

We denote by® the set of functions : [0,c0) — [0, )
satisfying the propertiest) a is continuousb) a (t) =0
if and only ift = 0.

We donete by set of the functior8 : [0,00) — [0, )
satisfying the properties) 3 is lower semi-continuous,
b) B (t) = 0if and only ift = 0.

We denote by I, the set of functions
B: [0,00)2 — [0,00) satisfying the properties a) 8 is
continuousp) B (a,b) =0 ifand only ifa=b=0.

Also, we denote by5SQX) the set of all mappings

T : X — X such thatT is one to one , continuous and

subsequentially convergent, b$C(X) the set of all
mappingsT : X — X such thatT is one to one ,
continuous and sequentially convergent.

Theorem 4.Let (X,d) be a complete metric space and f
X — X be a mapping. Let E SSQX) and f satisfying
the inequality

PA(TEXTfy) <a(d(TxTy)-B(d(TxTy) (5)
such that fory e W, a € @, € I we have
Y () <af(tp),impliest <t, (6)
and for all
t>0,Yt)—a()+pB(t)>0. (7)

Then, f has a unique fixed point.

Proof. Let x be an arbitrary point in X. We define the

iterative sequencex,} by X1 = fxq
xn=f"%),n=12,... From (5), we have

(equivelently,

Y(d(Tx, Txae)) = a(d(T X1, T 1))
< a(d(TX-1,T%)) = B(A(TX-1, X)) (8)
< a(d(Tx-1,Tx))- 9)

The inequality 9) implies that {d (Tx,, TX+1)} is a

monotone decreasing sequence and consequently, thefe Thus,{Tx.} is a Cauchy sequence in complete metric

exists r> 0 such that

d(TX, TXyp1) = as n— oo,

d (TXn(i)> TXn(i)) > €. (10)
Further, corresponding to 1tk), we can choose (k) in
such a way that it is the smallest integer wittkih > m(k)
and

d (Txm(k)aTXn(k)—l) < E. (11)
Also, using 10) we have
& < d (TxXm T
< d (T Xmii> THao—1) + 9 (T X, Tlagg—1) (12)
letting kK— o in (12),
lim d (T Xn, TXak)) = €- (13)

k—o0

From triangle inequality,

d (TXng> Tk 1) < d (T, Toagky) + 0 (T T 1)

(14)

letting k— o in (14)

I!imod (TXm» Tha—1) = - (15)
Again,
d (T Xmg—1: TXatk) < A (T X915 T X)) A (T X T
letting k— o in (16) o

I!imod (TXmiig—1> T X)) = - a7
For the last,

d (T2 Txagg—1) < A (TXig -1, T+ (T, T 1)
letting k— o0 in (18) (9
Ilmd (TXm—1: TXa—1) = &-

Now, consider thel(0) with (5)
w(e) < @ (d (T, THue))
< 0 (d (T2, Txaig-1)) = B (A (ToXmig -1, T -1) ) (19)

and letting k— oo in (19), we havap (¢) < a () — B (€).
From (7), we gete = 0. But this case is in conflict with >

space X. Hence, there issvX such that

imTx, =V

n—oo

(20)
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Note that T is a subsequentially convergep;} has a
convergent subsequence. Thus, there is X and a
subsequencéx, } such that

Ilmxn(k> = Uu. (21)
Also, T is continous and,x, — u, therefore
rl]l_r;flcT)%(k) =Tu. (22)

Note that{T X, } is a subsequence ¢fT x,}, so Tu=v.
Now, we show that g X is fixed of f

P (d(Txog2, T FU)) = @ (d (T Pxoge, T fu))

< a (d(Txg. Tu)) =B (d (Txge, Tu)) (23)
letting k— o0 in (23)
W (d(Tu,T fu)) <O0. (24)

This impliesthat Te=T fu. Since T is one -to-one so #u
u. This shows & X is a fixed of f

Corollary 2. Let (X,d) be a complete metric space and
f : X — X be mapping.

Yd(fx fy)) <a(d(xy) - B(d(xy)

such that .

(26)

Y(t1) <a(tp),impliest <t (27)

andforallt>0
Yt)—at)+B(t)>0.
Then, f has a unique fixed point.

If we takea (t) = ¢ (t) andTx= X, then we obtain
the following result given by Dutta and Choudhury 8}.]

Corollary 3. Let(X,d) be a complete metric space and let
f : X — X be a self-mapping satisfying the inequality

wd(fx fy)) <@ (d(xy)—edxy) (28)

where ¢, : [0,00) — [0,00) are both continuous and

To prove the uniqueness of the fixed point, if possiblemonotone nondecreasing functions wilit) = 0= @(t)

let u and U be two fixed points of .fWe have fii=u’ and

Y(d(TuTd)) =@ (d(TfuTfu))
<a(d(TuTu))—B(d(TuTu)).(25)

Inequality @5) is in conflict with the T) unless

d(Tu,Tu) = 0. This implies that Tu= TU. Since T is
one -to-one, we get# U'. Thus, the fixed point is unique.

Remark. In Theorem, if T is sequentially convergent (
T € SC(X) ), by replacing{n} with {n(k)} we obtain that

lim x, = u.

n—oo
This implies thaf x, } converges to the fixed point of f

In Theoremy, if we takef (t) =0 anda (t) =kF (t) =
ky (t) then we obtain fixed point ofg — type contractive
mappings given by Moradi and Beiranvand #.[

Corollary 1. Let(X,d) be a complete metric space and f
X — X be a mapping. If for kc [0,1) and for all xy € X,

FA(TfxTTfy) <kF(d(TxTy))
where

1) F: [0,0) — [0,0), F is nondecreasing continuous
from the right and F1(0) = {0}.

if and only if t=0.
Then f has a unique fixed point.

If we takey (t) =t, B (t)=0,a (t)=¢ (t)t andTx=
X, then we obtain the following result given by Geraghty
in [10].

Corollary 4. Let(X,d) be a complete metric space and let
f : X — X be a self-mapping satisfying the inequality

d(fx, fy) < ¢ (d(xy)d(xy)
such thatp : [0,) — [0,1) and
¢ (tn) — Limpliest, — 0.
Then f has a unique fixed point

If we takey (s) = [S¢ (t)dt,a (t) =k (t), ke (0,1)
and B (t) = O,then, we obtain the following result that
more general than the result of Brancidri].

Corollary 5. Let (X,d) be a complete metric spaces. Let
f : X — X be a mapping and E SSC such that for each
x,y € X,ke (0,1)

d(T T fy) d(TxTy)
/ ¢(t)dt§k/ ¢ (t)dt
0 0

where ¢ : [0,0) — [0,0) is a Lebesgue-integrable

2) T is one to one and graph closed ( or mapping which summeble ( i.e., with finite integral ) on

subsequentially convergent and continuous )

each compact subset [fif, ), nonnegative, and such that

Then, f has a unique fixed point. Also, if T is for eache >0, [5 ¢ (t)dt > 0; then f has a unique fixed

sequentially convergent then for every & X the
sequence of iteratesf"xg} converges to the fixed point.

If we takeT = x we obtain the following result given
by Eslamian and Abkar irg],[9].

point ae X such that for each z X, lim f"x=a.
n—-o0

The following example is neither satisfying Banach
contraction principle nor Corollaryl but satisfies
Theoren¥.
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Example 1Let X = [0, 1] endowed with Euclidean metric.
Also, letS: X — X be given asSx= x— x%. ThenSis a
not contraction mapping. If we takex= 3 such that T is

continuous, one to one subsequentially convergent then we

obtain that
d(rsxTsy = XX VY
XISy =173 2
2 2
Xy Xy
=12 2’+ 272
<d(TxTy). (29)

Thus, @9) shows thatS doesn't satisfies neither Banach
Contraction Principle nor Corollarg. Thus we can not
guarantee the existence of the fixed pointSoNow, we
takey (t) =t = a(t), B(t) = 2t2. Assume thak >y, we

have

d(TSXTSY = X_sz—y_zyz
= [0y (2 -y?)
< 2 [y — 0y
=d(TxTy)—2d(TxTy)?
=d(TxTy)-B(d(TxTy)). (30)

Thus, S satisfies the inequalit{s) with T andf3. Hence,
(according to the Theored) Shas a unique fixed point in
X. Infact,p=0¢€ X is unique fixed point o&.

Now, we introduce the concept of wedélf-a,()
contractive condition for Kannan fixed point theorem.

Theorem 5.Let (X,d) be a complete metric space and f
X — X be a mapping. Let E SSQX) and f satisfying
the inequality

YT IXTHY) <a(3[d(TxT ) +d(TyTy)])—B(d(TxTHX),d(TyTfy)

such that forpy € ¥, a € @, 3 € I',,we have &)

Yt) <o), impliest <t (32)
andforallt>0

Ygt)—at)+p(t,t)>0. (33)

Then, f has a unique fixed point.

Proof. Let x be an arbitrary point in X. We define the
iterative sequencexn} by %11 = fxn (equivelently,
Xn= f"%), n=1,2,...From (31), we have

Yd(Tx, Txar1) = Y(d(T fx1, T X))
(E[d Tx-1, T f%0-1) +d (T, Tm)])
B(d<T>s1 1T %1),d(Tx, T %))

d(TX-1, T %) +d(Tx,, TXn+1)]>

a

(34)

From (32), we see tha{d (T x,, TX,+1)} is a monotone
decreasing sequence of non-negative real numbers.
Hence, there is £ R such that

limd (Txa, Txa1) = (35)
Letting n — o in (34, then we have
Y(r)<oa(r)—p(r,r). From (33), we have = 0.

Next we prove that{Tx,} is a Cauchy sequence. If
possible, le{ T x,} be not a Cahucy sequence. Then there
existse > 0 for which we can find subsequenc{él’sxmk)}

and {Tx, } of {Tx,} with n(k) > m(k) > k such that

d (T %> Tn) > € (36)

Take advantage oB(), we havey (¢) < a (0) — (0,0).
But this case is in conflict witls > 0. Thus,{Tx,} is a
Cauchy sequence in complete metric space X. Hence, there

isue X such that xy) — U, ask— o andnirpon(k) =Tu.
Also, we have
W(A(T 1T g 0)) < @ (G [ATUT U+ (T2, T00)] )
-B (d(Tfu,Tu),d(Txn(k),l,ka))),
Letting k — o in the last inequality, we have

W (d(TfuTu) << a(3d(TuTfu). From (32, we
obtain d(Tu, T fu)=0and as T is one to we get= fu.
Itis easy to see the uniqueness of the fixed point.

Example 2Let X = [0, 1] endowed withd (x,y) = [x—VY].
Let fx= % andTx=x?. If we considenx=0 andy = 1,
thenf doesn’t satisfies the condition of Kannan fixed point
theorem. On the other hand if we takét) =t = a (t) and
B (t,t) = 0,then for allx,y € X, we have
d(TfxTfy) < %[d (TxT )+ d(Ty.Tfy)]

Thus, (according to the Theorer) f has a unique
fixed point inX. Really, p= 0 € X is unique fixed point
of f.

In Theoremb, if we considery (t) = a (t), then we
obtain the following result given by Razani and Parvaneh

[13.

Corollary6. (Weak T-— K Contraction Mapping
Theorem) Let(X,d) be a complete metric space and
T,f : X — X be mappings such that T is one to one and
graph closed (or subsequentially convergent and
continuous ). Let f satisfying the inequality

Yd(TxTfy) < ( [d(TxTX)+d(TyTfy)]) —B(d(TxTfx),d(Ty.Tfy))

where;

1) B :[0,) x [0,00) — [0,) is & continuous function
such that3 (x,y) =0ifand only if x=y=10

2) ¢ : [0,00) — [0,00) is continuous and strictly
increasing andy (0) = 0.

Then, f has a unique fixed point. Also, if T is
sequentially convergent then fog ¥ X the sequence of
iterates{ f"xo} converges to this fixed point.
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Now, we introduce the concept of wedlsa,f)
contractive condition for Chatterjea fixed point theorem.

Theorem 6.Let (X,d) be a complete metric space and f

X — X be a mapping. Let E SSQX) and f satisfying
the inequality

YT T ) < a (3[d(TxT H)+d(TyTfy)]) —B(d(TxT 1x),d(Ty T fy))

such that fory € W, a € @, € I',,we have

Y(t1) <a(t),impliest <t (37)
andforallt>0
Yit)—oa(t)+pB(tt) >0. (38)

Then, f has a unique fixed point.

Proof. Let % be an arbitrary point in X. We define the
iterative sequencexn} by %11 = fxn (equivelently,
xn=1"%),n=12,....

Y(d(TX, TXee1)) = Y (A(T X1, T X)) < @ (% [d(Tx-1. TX0) + d (T %0, TXs1)]) -
(39)
From (37), we obtain thaf{d (T Xy, Tx,+1)} is @ monotone

decreasing sequence of non-negative real numbers. Henc

there is re R such that as1 — o d(TXy, TXys1) — 1
andy (r) <a(r)—B(r,0). From (38), we obtain r= 0.
As in the proof of the Theoredy we get {Tx,} is a

Cauchy sequence. To complete the proof, the similar

process in theorerh and5 would be used.

In Theorem6, if we considery (t) = a (t), then we

3 Conclusion

We established some fixed point theorems which are more
general than the results of Razani and Parvarih, |
Eslamian and Abkarg].
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