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Abstract: In the present article, we investigate a fractional boundary value problem (FBVP) of complex orderθ = m+ iα, where
1< m ≤ 2 andα ∈ R+ is studied. By applying two fixed point theorems Banach and Schauder, we achieved some new existence and
uniqueness conclusions of complex solutions. We present anexample to express our results.

Keywords: fixed-point theorem, complex order, existence.

1 Introduction

Study of fractional differential equations has been considerably progressed in recent years that implies importance and
place of the fractional calculus in the sciences and engineering. On the other side, according to extensive applications
of fractional calculus in natural phenomena like chemical physics, electrical networks, viscoelasticity, porous media,
electrical networks, it got many scholar’s attention, see articles like [1,2,3,4].

In the past few years, solvability of BVPs for nonlinear fractional differential equations were studied that in these
types of problems usually existence and multiplicity of solutions is discussed with fixed point theorems, see [7,8,9,11].
Also the existence and uniqueness of positive solutions of FBVPs by applying some fixed point theorems on cone were
acquired, as [5,6,7,8,10].

Bai and Lu [5] considered the following BVP of nonlinear fractional differential equation
{

Dα
0+u(t)+ f (t,u(t)) = 0, 0≤ t ≤ 1;

u(0) = u(1) = 0,

whereDα
0+ is the standard Riemann-Liouville fractional derivative of orderα ∈ (1,2] and f is a continuous function. By

applying fixed point theorems on cone existence and multiplicity of positive solutions to the problem achieved.
Agarwal and his co-authors [6] studied existence of positive solutions for the singular fractional boundary value

problem
{

Dα
0+u(t)+ f (t,u(t),Dµu(t)) = 0, 0≤ t ≤ 1;

u(0) = u(1) = 0,

in which 1< α < 2,0≤ µ ≤ α −1 and the positive functionf satisfied the Caratheodory conditions on[0,1]× [0,∞]×R

and f has singularity atx = 0.
In all above mentioned papers, order of differentiation wasreal and in the knowledge of authors there isn’t any problem

containing fractional differential operator of complex order.
The novelty of the present work is to consider the fractionalBVP for differential equation of complex-order, namely:

Dθ
0+q(τ) = h(τ,q(τ)),τ ∈ [0,1],θ = m+ iα, (1)

subject to boundary conditions
q(0) = q(1) = 0, (2)
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in which, 1< m ≤ 2,α ∈ R+ andDθ
0+ is the Riemann-Liouville fractional derivative of orderθ ∈ C andh ∈ C([0,1]×

[0,∞), [0,∞)). Our aim is to prove the existence of complex solution for thedifferential equation of complex order which
has not been studied as mentioned above.

The remainder article is divided as follows: in section 2, wegive some preliminaries of fractional derivatives and
integrals. Then the integral equation pertaining to the problem (1)-(2) and the corresponding Green’s function obtained.
By assuming conditions and using fixed point theorems existence and uniqueness of complex solutions will be obtained
in the last section. Furthermore an example is given.

2 Preliminaries and Notations

This section contains definitions and lemmas of fractional calculus that is needed to prove our results. The presentation
here can be found in [1,2,5].

Definition 2.1. ([5]) The Riemann-Liouville fractional integral of orderµ ∈ C, (ℜ(µ)> 0) of a functionh : (0,∞)−→R

is

Iµ
0+h(ρ) =

1
Γ (µ)

∫ ρ

0
(ρ − s)µ−1h(s)ds.

Definition 2.2.([5]) The Riemann-Liouville fractional derivative of orderµ ∈C, (ℜ(µ)> 0) of a functionh : (0,∞)−→R

has the form

Dµ
0+h(ρ) =

1
Γ (n− µ)

dn

dρn

∫ ρ

0

h(s)
(ρ − s)µ−n+1ds,

wheren = [ℜ(µ)]+1.

Definition 2.3. ([2]) The Stirling asymptotic formula of the Gamma function forz ∈ C is following

Γ (z) = (2π)1/2zz−1/2e−z
[

1+O

(

1
z

)]

(|arg(z)|< π ; |z| → ∞), (3)

and its result for|Γ (a+ ib)|, (a,b ∈ R) is

|Γ (a+ ib)|= (2π)1/2|b|a−1/2e−a−π |b|/2
[

1+O

(

1
b

)]

(b → ∞). (4)

Lemma 2.1. ([5]) Let q ∈ C(0,1)∩ L(0,1) with a fractional derivative of orderµ ∈ C, (ℜ(µ) > 0) that belongs to
C(0,1)∩L(0,1). Then

Iµ
0+Dµ

0+q(τ) = q(τ)+
n

∑
i=1

ciτµ−i,

for someci ∈ R, i = 1, ...,n, wheren = [ℜ(µ)]+1.

Proof. From [5] we can conclude forµ ∈ C, (ℜ(µ)> 0) that is true.

Lemma 2.2.Let y(s) ∈C[0,1]. Then, the following FBVP

{

Dθ
0+q(τ) = y(τ), τ ∈ [0,1];

q(0) = q(1) = 0, θ = m+ iα.

for 1< m ≤ 2, α ∈ R+, is equivalent to

q(τ) =
∫ 1

0
G(τ,s)y(s)ds,

where

G(τ,s) =
1

Γ (θ )

{

(τ − s)θ−1− τθ−1(1− s)θ−1, 0≤ s ≤ τ,
−τθ−1(1− s)θ−1, τ ≤ s ≤ 1.

Proof. Lemma 2.1. leads to

q(τ) = c1τθ−1+ c2τθ−2+ Iθ
0+y(τ) = c1τθ−1+ c2τθ−2+

1
Γ (θ )

∫ τ

0
(τ − s)θ−1y(s)ds, (5)
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for somec1,c2 ∈R. By using conditionq(0) = 0 supposec2 = 0. Also, the boundary conditionq(1) = 0 gives

c1 =−
1

Γ (θ )

∫ 1

0
(1− s)θ−1y(s)ds.

Substitutingc1 into (5) yield

q(τ) =
−τθ−1

Γ (θ )

∫ 1

0
(1− s)θ−1y(s)ds+

1
Γ (θ )

∫ τ

0
(τ − s)θ−1y(s)ds.

We obtain the Green’s function

q(τ) = −
1

Γ (θ )

(

∫ τ

0
+

∫ 1

τ

)

τθ−1(1− s)θ−1y(s)ds+
1

Γ (θ )

∫ τ

0
(τ − s)θ−1y(s)ds

=
1

Γ (θ )

∫ τ

0
[(τ − s)θ−1− τθ−1(1− s)θ−1]y(s)ds−

1
Γ (θ )

∫ 1

τ
τθ−1(1− s)θ−1y(s)ds

=
∫ 1

0
G(τ,s)y(s)ds.

3 Existence Results

Let B =C[0,1] be a Banach space of continuous functions endowed with the norm ‖q‖= max0≤τ≤1 |q(τ)|.
Define the operatorA : B → B as follows:

(A q)(τ) =
1

Γ (θ )

∫ τ

0
(τ − s)θ−1h(s,q(s))ds−

τθ−1

Γ (θ )

∫ 1

0
(1− s)θ−1h(s,q(s))ds.

According to Lemma 2.2, the fixed points of the operatorA are the same solutions of the BVP (1)-(2). To obtain necessary
results, we assume:

(H1) h ∈C([0,1]× [0,∞), [0,∞)).
(H2) ∀τ ∈ [0,1], q, q́ ∈ R, there is a constantK > 0 so that

|h(τ,q)− h(τ, q́)| ≤ K|q− q́|.

(H3) γ1 =
2K

m|Γ (θ)| < 1.

Theorem 3.1.Under assumptions (H1-H3), the FBVP (1)-(2) has a unique solution.

Proof. Since h and G(τ,s) are continuous, thenA is continuous. Regarding the condition(H1), put
M = maxτ∈[0,1] |h(τ,0)|. Define a ballDr = {q ∈ B : ‖q‖ ≤ r}, where γ2

1−γ1
≤ r and γ2 = 2M

m|Γ (θ)| . First, we show
A Dr ⊂ Dr, for q ∈ Dr

|A q(τ)| ≤
|τθ−1|

|Γ (θ )|

∫ 1

0
|(1− s)θ−1||h(s,q(s))|ds+

1
|Γ (θ )|

∫ τ

0
|(τ − s)θ−1||h(s,q(s))|ds

≤
1

|Γ (θ )|

∫ 1

0
|(1− s)θ−1|(|h(s,q(s))− h(s,0)|+ |h(s,0)|)ds

+
1

|Γ (θ )|

∫ τ

0
|(τ − s)θ−1|(|h(s,q(s))− h(s,0)|+ |h(s,0)|)ds

≤ (K|q(s)|+M)

{

1
|Γ (θ )|

∫ 1

0
|(1− s)θ−1|ds+

1
|Γ (θ )|

∫ τ

0
|(τ − s)θ−1|ds

}

≤
(K‖q‖+M)

|Γ (θ )|

{

∫ 1

0
(1− s)m−1ds+

∫ τ

0
(τ − s)m−1ds

}

≤
Kr+M
|Γ (θ )|

{

1
m
+

τm

m

}

≤
2(Kr+M)

m|Γ (θ )|
= γ1r+ γ2 ≤ r.
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Now, for q, q́ ∈ B, τ ∈ [0,1], we obtain

|A q(τ)−A q́(τ)| ≤
|τθ−1|

|Γ (θ )|

∫ 1

0
|(1− s)θ−1||h(s,q(s))− h(s, q́(s))|ds

+
1

|Γ (θ )|

∫ τ

0
|(τ − s)θ−1||h(s,q(s))− h(s, q́(s))|ds

≤
K‖q− q́‖
|Γ (θ )|

{

∫ 1

0
|(1− s)θ−1|ds+

∫ τ

0
|(τ − s)θ−1|ds

}

=
K‖q− q́‖
|Γ (θ )|

{

∫ 1

0
(1− s)m−1ds+

∫ τ

0
(τ − s)m−1ds

}

≤
2K

m|Γ (θ )|
‖q− q́‖

= γ1‖q− q́‖,

whereγ1 < 1. Therefore,A is a contraction. By the contraction mapping principle, we conclude that FBVP (1)-(2) has a
unique solution.

Theorem 3.2.Under assumptions (H1) and (H3) the FBVP (1)-(2) has a solution on [0,1].

Proof. Let us consider a convex, bounded and closed subsetDr = {q ∈ B : ‖q‖ ≤ r}, of the Banach spaceB. We showed
thatA mapsDr into Dr.

Now, letM = maxτ∈[0,1],q∈Dr |h(τ,q(τ))|+1, for q ∈ Dr, we give

|A q(τ)| ≤
|τθ−1|

|Γ (θ )|

∫ 1

0
|(1− s)θ−1||h(s,q(s))|ds+

1
|Γ (θ )|

∫ τ

0
|(τ − s)θ−1||h(s,q(s))|ds

≤
M

|Γ (θ )|

{

∫ 1

0
(1− s)m−1ds+

∫ τ

0
(τ − s)m−1ds

}

≤
2M

m|Γ (θ )|
.

Thus,A is uniformly bounded onDr. Next, we show thatA (Dr) is equicontinuous. Forq ∈ Dr andτ1,τ2 ∈ [0,1] such
thatτ1 < τ2 we get,

|A q(τ2)−A q(τ1)| ≤

∣

∣

∣

∣

∣

τθ−1
2 − τθ−1

1

Γ (θ )

∫ 1

0
(1− s)θ−1h(s,q(s))ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

1
Γ (θ )

∫ τ2

0
(τ2− s)θ−1h(s,q(s))ds−

1
Γ (θ )

∫ τ1

0
(τ1− s)θ−1h(s,q(s))ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

τθ−1
2 − τθ−1

1

Γ (θ )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ 1

0
(1− s)θ−1h(s,q(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

1
Γ (θ )

∫ τ1

0
[(τ2− s)θ−1− (τ1− s)θ−1]h(s,q(s))ds

+
1

Γ (θ )

∫ τ2

τ1

(τ2− s)θ−1h(s,q(s))ds

∣

∣

∣

∣

≤
M|τθ−1

2 − τθ−1
1 |

|Γ (θ )|

∣

∣

∣

∣

∫ 1

0
(1− s)θ−1ds

∣

∣

∣

∣

+
M

|Γ (θ )|

∣

∣

∣

∣

∫ τ1

0
[(τ2− s)θ−1− (τ1− s)θ−1]ds+

∫ τ2

τ1

(τ2− s)θ−1ds

∣

∣

∣

∣

≤
M

|Γ (θ +1)|
|τθ−1

2 − τθ−1
1 |+

2M
|Γ (θ +1)|

|(τ2− τ1)
θ |+

M
|Γ (θ +1)|

|τθ
2 − τθ

1 |.

It is easy to see that functionsτθ andτθ−1 are uniformly continuous on [0,1]. Then,A (Dr) is equicontinuous. By the
Arzela-Ascoli theoremA (Dr) is compact and soA : Dr → Dr, is completely continuous. The Schauder fixed point
theorem now causes that the BVP (1)-(2) has a solution.
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4 Illustrative Example

Example 4.1Let us consider fractional BVP of complex order:
{

D
3
2+i
0+ q(τ) = tan−1 q

τ+2 , τ ∈ [0,1];
q(0) = q(1) = 0.

(6)

where,m = 3
2, α = 1 and

h(τ,q) =
tan−1 q
τ +2

, (τ,q) ∈ [0,1]× [0,∞).

It is clear thath is a continuous function. Now, for(τ,q),(τ, q́) ∈ [0,1]× [0,∞) we get

|h(τ,q)− h(τ, q́)| =
1

τ +2
| tan−1 q− tan−1 q́|

≤
1
2
| tan−1 q− tan−1 q́|

≤
1
2
|q− q́|.

Thus,K = 1
2, and in view of relation (4), since|Γ (3

2 + i)|> 1, we have

γ1 =
2K

m|Γ (θ )|
=

1
3
2|Γ (3

2 + i)|
=

2

3|Γ (3
2 + i)|

< 1.

By applying Theorem 3.1, we deduced that BVP (6) has a unique solution.

References

[1] B. Ross(Ed.), The fractional calculus and its application, in: Lecture notes in mathematics, vol.475, Springer-Verlag, Berlin, 1975.
[2] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory andapplication of fractional differential equations, Elsevier B.V, Netherlands

2006.
[3] W. Sumelka, Fractional viscoplasticity, Mech. Res. Commun. 56 (2014) 31-36.
[4] D. Baleanu, J.A. Tenreiro Machado, A.C.J. Luo, Fractional Dynamics and Control, Springer Science, 2012.
[5] Z. Bai, H. Lu, Positive solutions for a boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl.

311 (2005), 495-505.
[6] R.P. Agarwal, D. O

′
Regan, S. Stanek, Positive solutions for Dirichlet problemof singular nonlinear fractional differential equations,

J. Math. Anal. Appl. 371 (2010) 57-68.
[7] X. Zhang, L. Liu, Y. Wu, Multiple positive solutions of a singular fractional differential equation with negativelyperturbed term,

Math. Comput. Modelling 55 (2012) 1263-1274.
[8] X. Zhang, Y. Han, Existence and uniqueness of positive solutions for higher order nonlocal fractional differentialequations, Appl.

Math. Lett. 25 (2012) 555-560.
[9] W. Xie, J. Xiao, Z. Luo, Existence of solutions for Riemann-Liouville fractional boundary value problem, Abstr. Appl. Anal. 2014

(2014).
[10] C. Yang, C. Zhai, Uniqueness of positive solutions for afractional differential equation via a fixed point theorem of a sum operator,

Electron. J. Diff. Equ. (2012) 70:1-8.
[11] D. Baleanu, J.J. Trujillo, On exact solutions of a classof fractional Euler-Lagrange equations, Nonlinear Dyn., 52 (4) (2008)

331-335.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminaries and Notations
	Existence Results
	Illustrative Example

