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Abstract: In this article, we establish a unique fixed point theoremfpy, weakly integral type contraction in the context of complete
G-metric space. Our established result extend some wellikmesults in literature. Suitable example is also givertlfierusability of
the derived result.
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1 Introduction Theorem 1Weak contractive self map in a complete
metric space has a unique fixed point.

Poincare, in 1886 introduced the concept of fixed point.putta and Choudhury7] generalized the concept of weak

Later on a Frer_]Ch mathematiCian FreChe_t initiated thq:ontraction as aq‘“q;) weak contraction and established
concept of metric space in 1906. Combining these tWothe following result.

different concepts a new field of fixed point theory )
originated called Metric Fixed Point Theory. Metric fixed Theorem 2Let T be a self map on complete metric space
point theory is an important mathematical discipline (X.d) satisfying the following inequality

because of its applications in areas such as variational and

linear inequalities, optimization, and approximation Y(d(TXTy) < Y(dxy) - @ldxy), ¥XyeEX.
theory. Itis useq for existence of fixed pointin Qifferehtia wherey, @ : R* — R* is monotonic non-decreasing and
equations, matrix equations and integral equations. continuous function such thgt(0) = 0= @(0), Y(t) > 0

In 1922, Banachd] proved a theorem known as Banach gnqg(t) > 0fort > 0. Then T has a unique fixed point.
contraction principle. Banach contraction principle esat

“A contraction mapping in a complete metric space has a Zhang and Sondlf] proved the following theorem for
unique fixed point”. After that many authors generalized two self map in a complete metric space.

contiaciive condiions. Th concept of weak contracton<0reM LEL S, T be a seff map on complete mefric
is initiated by Alber and Gurrel] in 1997, as a space(X,d) suchthat/ x,y € X,

generalization of contraction and established the d(Tx Sy < M(xy)— @(M(x,y)), ¥xyeX,
existence of fixed points for a self map in a Hilbert space.

Rhoades extended this concept to metric spaces andhere

definedg-weak contraction as following: L

A self mapT on metric spacéX,d) is said to bep-weak ~ M(xy) =max{d(xy),d(x TX),d(y.Sy), 3[d(x, Sy +d(y. Tx)]},
contraction if there exists a map : Rt — R with

©(0) = 0 ande(t) > 0 for allt > 0 such that and@:RT — R* is lower semi continuous function with

@(0)=0andg(t) >0fort >0. ThenSand T has a unique

common fixed point.
d(TxTy) <d(xy) - @(d(xy), ¥xyeX. P

Dragan Doric p] extend the result of Zhang and Song in
Rhoades14] proved the following theorem. the following way:
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Theorem 4A self map T and S on complete metric spaceHassen ayadi] prove the following common fixed point

(X,d) such thatv x,y € X, theorem for integral type contraction in generalized noetri

spaces.
Y(d(TxSy) < Y(M(xy)) — @(M(x,y)), .

Theorem 7Let (X,G) be a complete G-metric space and

where f,g: X — X be a mapping such that

M(x,y) = max{d(x,y),d(x, Tx),d(y,Sy), G(fx fy,f2) G(gx.0y.92)
(x) = mar{ ). s T8l 9 /[ ot <a [ g
i[d(X,S”"‘d(y,TX)]}, 0 0

vV xy,z€ X wherea € [0,1) and ¢ : R" — R" is a
¢ :R* — R" is a continuous monotone non-decreasing Lebesgue-integrable, non-negative mapping which is
function and @ : RT™ — R™ is lower semi-continuous summable on each compact subsetRf such that
function withs(0) = 0= @(0) and/(t) >0, p(t) > 0for  [* p(t)dt > O for eache > 0. If f(X) c g(X) and gX) is
t>0.ThenSand T has a common fixed point. a complete subspace of X. Then f and g have a unique
t point of coincidence in X. Moreover if f and g are weakly
rqompatible, then f and g have a unique common fixed
Roint.

In 2005 Mustafa and Sim4.p], introduced a new concep
of generalized metric spaces, called G-metric spaces. |
such spaces every triplet of elements is assigned to
non-negative real number, based on the nofion Ofgecently Guptet al [8] established the following result
G-metric spaces after that many researcher extend thg)r weak contraction.

known contractions in G-metric space one of these is

(Y, @) weak contraction se[9]. Theorem 8Let (X,d) be a complete metric space atd

In 2002, the famous Banach fixed point theorem wasR* — R* be Lebesgue integrable mapping.. X — X
extended by Branciaré] for a mapping of integral type. such thatv x,y € X

Branciari established the following fixed point theorem:

. G(TxTy) M(xy)
Theorem 5If T be a self- map of a complete metric space / Hdt) < / Hdt
(X.d) such that’ x,y € X w( ], sdt) <u( [ owat)

d(TXTy) dxy) ~o( / My #(t)ct)
/0 ¢(t)dt§n/o o(t)dt, n€[0,1), 0 :

where ¢ : R — R™ is a Lebesgue-integrable,
hnon-negative mapping which is summable on each
compact subset dR* such that/§ ¢(t)dt > 0 for each
€>0. ¢ :R" — R is continuous and nondecreasing
function andg : RT™ — R is a lower semi continuous
This result was more generalized and extend by manyand nondecreasing function such thaft) = 0 = ¢(t) if
authors either by relaxing the condition of contractivity o and only if t= 0 where

changing the underlying space or sometimes both for the

study of the existence of fixed points and common fixed . [d(xTX)+d(y.Ty)]

points for different mapping in complete metric space seeM(X’ y)= max{d(x, Y),d(x Tx),d(y,Ty), 2 }
[10,11] and references therein.

Luong and Thuan3] proved the following theorem for Then T has a unique fixed point.

Y o weakly contractive condition.

where, ¢ : R™ — RT is a Lebesgue-integrable,
non-negative mapping which is summable on eac
compact subset dk™ such that s @(t)dt > O for each

€ >0.Then T has a unique fixed point.

Through out the papeR™, N andNg will denote the set
Theorem 6Let T bey;, weakly contractive self map on of all non-negative real numbers, the set of positive intege
complete metric spacéX,d) and ¢ : R — R* be  and The set of non-negative integer respectively.
Lebesgue integrable mapping such that for eaghexX, Let

w(/odwm) ¢(t)dt) . w(/od‘x’y) ¢(t)dt) ®— {¢ - ¢ :Rt - R*, ¢ is Lebesgue integrable,

d(xy)
- (0(/0 ¢(t)dt), summable on each compact subseRdfand|s ¢ (t)dt >
where ¢y : R™ — R* is continuous and nondecreasing Oforeache >0 .
function, @ : Rt — R* is a lower semi continuous and In this paper, using the concept ¢l , weakly integral
nondecreasing function such thgi{t) = 0 = ¢(t) if and  type contraction a fixed point theorem in complete
only ift=0. Then T has a unique fixed point. G-metric space is investigated.
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2 Preliminaries

Definition 1.[12] Let X be a non-empty set and let & x
X x X — R" be a function satisfying the conditions:

1.G(x,y,z) = 0implies thatx=y=zV x,y,z€ X;

20 < G(x,x,y) Vx,y € X with x#£y;

3.G(x,%,Y) < G(X,y,2) VX,y,z€ X with y# z;

4.G(x,Y,2) = G(x,z,y) = G(Y,z,X) = ... (Symmetry in
three variables);

5.6(x,y,2) < G(x,a,a) +G(a,y,2) VX, y,zac X.

Then it is called G-metric on X and the pdX,G) is a
G-metric space.

Example Let X =R" andG: X x X x X — R™ be the
function defined is follow

G(XMZ) = maX{|X—y|, |y_ Z|a |Z_ X|}a
for all x,y,z € X. ThenG is G-metric onX.

Definition 2.Let (X,G) be a G-metric space and lej, ke
a sequence in X. A pointxX is said to be the limit of the
sequencexif

lim G(Xn,Xm,X) =0
n,m-—sco

and the sequence Xs said to be G-convergent to X.

Definition 3.A sequencexs called a G-Cauchy sequence
if for everye > 0, there is a positive integel such that
G(Xn,Xm, X ) < € foralln,m,| > N.

Definition 4.A metric space (X,G) is said to be

G-complete (or a complete G-metric space) if every

G-Cauchy sequence {iX, G) is G-convergentin X.

Proposition 1{12] Let (X,G) be a G-metric space. Then
the following statement holds:

1'|G(X7 Y, Z) - G(Xv Y, a)| < maX{G(aa Z, Z)a G(Za a, a)}'
2.G(x,Y,y) < 2G(y,x,X) V Xy, z,a € X.

Lemma 1[10Q] Let ¢ € ®@ and{rn}ney iS @ non-negative
sequence withmp_,., rp = a. Then

lim
n—oo

/Ornqb(t)dtz /anb(t)dt.

Lemma 2[10] Let ¢ € ® and {rp}ncy iS @ NON-negative
sequence. Then

lim
n—oo

'n .
/0 $(t)dt=0 lim ry=0.

3 Main results
Theorem 9Let (X,G) be a complete G-metric space and

¢ : RT™ — RT be a Lebesgue integrable mapping. X —
X such that’ x,y,ze€ X

w(/OG(TxTy,TZ) ¢(t)dt) - w(/OM(x,yz) ¢(t)dt)

—o( [ s0a), @

where ¢ € @ and ¢ : R™ — R™ is continuous and
non-decreasing function ang : R* — R* is a lower

semi continuous and non-decreasing function such that

Y(t) = 0= @(t) if and only if t= 0, where

M(xy.2) = max{e<x,Tx,y>,G(x,mz>,e<x7y, 2),

[G(x, Ty, T2+ G(TxY,2)] }
5 )

G(y,Ty.Ty),G(zTzT2),

Then T has a unique fixed point.

ProofTakex be arbitrary point irK define a sequencg =
Tx1forn=0,1,2...... using (@) for eachn € Ny we get

w(/OG(Xn,Xm,an) ¢(t)dt) _ w(/OG(Txnl,Txn,TXn) ¢(t)dt)
< w( /0 ooz ¢(t)dt) - qo( /O o) ¢(t)dt)2)

which implies that,

w(/OG(Xn,xn+1-,xn+1)¢(t)dt) < w(/owxnl’xmxn)ﬂt)dt).

By usingy function we have

o (t)dt < /O

Now, by using the rectangle property of G-metric, we have

M (Xn—1,%n,%n)

/G(Xnaxn+1-,xn+1) ¢ (t)dt
0 .

®3)

M (Xn—1,%n,%n) = maX{G(anLT)‘nfLXnLG(anbTanLXn%

G(¥n—1,%n%n), G(Xn, TX1, T %), G(%n, TXn, T Xn)

G(%n-1, T, TX1) + G(T X1 1, %n, Xn) }
2

= maX{G(th Xn+17 Xn+1) ) G(an:ln Xn, Xn)7

G(an:ln Xn+1, Xn+1) }

G(Xn—laxn+1axn+1) < G(Xn7Xn+17Xn+1) + G(Xn—lvxnvxn)

As
’ 2 2

So

M (Xn—1,%n,%n) = maX{G(XnaXn+17Xn+1)a G(Xn—laxnaxn)}a
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Assume thaG(Xn, Xn+1,Xn+1) > G(Xn—1,%n, Xn)
clearly G(Xn,Xn+1,%+1) > O Therefore

(p(f(?(xn7xn+lvxn+l) ¢ (t)dt) > 0 then by @) we have

G(Xn7xn+1»Xn+1)
o( o (t)dt)
/O G(Xn7xn+1»Xn+1)
<y( /O p(t)ct)

_ qo(/oG(Xn-,XnHaXnH) ¢ (t)dt),

, hence

w(/()G(Xn,Xn+l7xn+l) ¢(t)dt) _ w(/OG(xn,xn+1.Xn+1) ¢(t)dt),

it is not possible. So by usin@)

w(AemMMLmH»¢amofgw(AQMM”“””¢amQ.

Sincey is monotone non-decreasing, we get

G(XnXn+1.%n+1) G(Xn,Xn—1,%n-1)
/ o (t)dt < / o(t)dt.
0 0

Therefore there exi$t> 0 such that
. G(XnXn41,%0+1)
lim p(t)dt=1. 4)

n—o /o

we claim that > 0. Taking limitn — o in (2) using @) we

get
) <gl)—o) <y).
Which is contradiction. Therefote= 0. So we have
G(Xn—1,%n,%n)
lim ¢ (t)dt =0,

n—o Jo

by Lemma2
lim G(Xn-1,%n,%1) =0, )

n—o0

using Propositiord we can write

lim G(Xp,Xn—1,%n—1) = 0. (6)

n—oo

Now, we show thafx,} is a G-Cauchy sequence . Suppose
that, {x»} is not a G-Cauchy sequence. Then, there exist

€ > 0 and subsequencés,
n(k) > m(k) > k such that,

(k)} and{xm(k)} of {xn} with

G(Xm(k)» Xm(k)» Xn(k)) > €,V k€ N. (7)
Furthermore, corresponding (k) one can choose(k)
such that, it is the smallest integer witk(k) > m(k)
satisfying () then,

G(Xm(k)» Xm(k)» Xn(k)—1) < &,V ke N (8)

Using equation®) and rectangular property @3- metric
space, we have

€ < G(Xm(k)» Xm(k)» Xn(k)) = G(Xn(k)> Xm(k) » Xm(k) )
< G(Xm(ky s Xm(k)» Xn(k)—1) + C(Xn(k) — 1: Xn(k) - 1: %n(ky)>  (9)

G(Unm(ky)—1: Um(ky) 1+ Un(ky)—1) = G(Un(ky)—1: Um(ky) — 1> Um(ky) 1)

< G(Unm(ky) 1 Umn(ky)— 1+ Um(ky) ) + G(Um(ky) s Um(ky)  Un(y))

+ G(Un(k;) 1 Un(ky) Un(ky))» - (10)

and

G(Xm(k)— 1> Xm(k)— 15 Xn(k)—1) = G(Xn(k)— 1 Xm(k) — 1: Xm(k)~1)
< G(Xm(k)—1, Xm(k) 1> Xm(k) ) + G (Xmiky» Xm(k) s Xn(k) )
+ G(Xn(k)—1, Xn(k)> Xn(k) ), (11)
Using limitk — o in (9), (10) and (1), we get

lim G (Xm), Xm(k) Xn(9) = IM G(Xmii) -1, Xm(k -1, Xn()-1) = €;
(12)
Consider

(I.’(/Oe(ﬁ(t)dt) - w(/OG(Xm(k)7Xm(k)7Xn(k) ¢(t)dt)
- qj(/‘M(Xm(k)—lﬁxm(k)—lﬁxn(k)—ﬁ ¢(t)dt)

M (Xin(i)— 1 Xm(k)— 1 Xn(k)~1)
~o( | s(0)dt), (13)

where

M (Xm(k) — 1 Xm(k)—1> Xn(k)—1)

:max{G( —15 T Xm(k)—1, Xm(l)—1)

G(Xm(k)—15 T Xm(k)— 15 Xn(k)—1)» G(Xm(k) — 1 Xm(k) — 1, Xn(k)—1)
G(kaflaTXm() 1 TXn—1)> CXn—15 T Xk —15 T Xk —1)
G(Xm—1 T Xmk)—1> T Xk —1) + G(T Xk

— 15 Xm(k)—1> Xn(k)—1
2

= maX{G(Xm(k)—laxm(k)7Xm(k)—1)7 G(Xm(k)—1> Xm(k)» Xn(k)— 1)

G(Xm(k)— 15 Xm(k)— 15 Xn(k)— 1) » C(Xm(k)— 1 Xm(k)» Xm(k) )

G(Xn(k)— 1 Xn(k)» Xn(k) )

G(Xm(k)— 1 Xm(k)» Xn(k) ) + G (Xmie)
2

Xm(k)lvxn(k)l}

Now

max{ABCDEF }

M (Xm(k) —1-Xm(k)—1-Xn(k)—1)
t)dt,
JA b(1)

¢(t)dt:/0

where

A= G(Xm(k) 1, Xm(k)» Xm(k)—1)> B = G(Xm(k)—1, Xm(k) » Xn(k) 1)
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C = G(Xm(l)—1>Xm(k)—1, ¥n(k)—1)
D = G(Xm(k)—1>Xm(k) s Xm(k) ) E = G(Xn(k)—1: Xn(k)» Xn(k))

G(Xm(k)— 1> Xm(k)» ¥n(k) ) + G (Xm(k) s Xm(k)— 15 Xn(k)—1)

F =
2

M Xk —1-Xm(k)—1-Xn(k)—1)
JA 6(t)d

t
— max{ /OA¢(t)dt,/oB¢(t)dt,/oc¢(t)dt,

[ o, [“owa [ ¢<t>dt},

G(Xm(k)—15 Xm(k)» Xn(k)~1) = G(Xn(k)— 1> Xm(k)» Xm(k)—1)

(14)

< G(Xm(k)— 1 Xm(k)— 1> Xm(k) ) + G (Xm(k)— 1> Xm(k) — 1 Xn(k)—1) s

(15)
and
G(Xm(k)—1> Xm(k)» Xn(k)) = CXn(k) -Xm(k) » Xm(k)—1)
< G(Xn(k)» Xm(k) » Xm(k) ) + G (X s Xm(k)» Xm(ky—1),  (16)

Applying limit k — o in (15) and @6) using @) and (2),
we have

lim Gk 1. Xmiky - Xn(ky-1) = & (7)

im G(Xm(k)—1, Xm(k)» Xn(k)) = €- (18)

k—o0

Applying limit k — oo in (14), using 6), (12), (17), (18),
we get

M (Xm(k)—1 - Xm(k) — 1 Xn(k)—1

. ) £
lim o(t)dt = /0 ot)dt  (19)

k—o /0

Taking limit of (13) using (L9) and lower semi continuity
of ¢ we have

lll(/ogqb(t)dt) < l,U(/qub(t)dt)
—¢(/()g¢(t)dt) < LIJ(/qub(t)dt)

which is contradiction. Therefore, is a G-Cauchy
sequence. By a G-completenessXaf x, — X in X we
claim thatx is a fixed point. Consider

w(/OG(an,T)ng) ¢(t)dt) _ w(/OG(Txn,T)ng) ¢(t)dt)
<u( [ swa) o [T pwar). @o)

Where

M (Xn, X, X) = max{G(xmTxmx)7G(xn7T>qq7x)7G(xn7x7x)7G(x7T)ng)7

G(x,Tx TX), 5

[G(Xn, TX TX) + G(T %1, %, X)] }
= max{G(xn,xn+1,x),G(xn,x,x),G(x,Tx,Tx),

[G(XmeaTx) + G(Xn+l>x>x)} }
2 7

Applying limit n — o, we have

Ii_r)n M (Xn, X, X) = G(X, T X, TX). (21)

n

Taking limit in (20) and using 21) one can get

w(/OG(X,TxTx) ¢(t)dt) - w(/OG(x,TxTx) ¢(t)dt)
o [T ptyan).

if G(x,Tx,Tx) >0 then

w(/OG(x,TxTx) ¢(t)dt)
- w(/OG(xJ)ng) ¢(t)dt) B (p(/OG(x,TxTx) ¢(t)dt)
<o( [T gtar).

Which is contradiction. S&(x, Tx, TX) = 0 impliesx =
Tx

Uniqueness:Now we prove thak is the unique fixed
point of T. Suppose it is not then there exissuch that

Ty=yandx#y.

w(/()c;(x,x,y) ¢(t)dt) _ w(/OG<T>c,Tx,Ty)¢(t)dt)
<u(f" o2

o " s wa). @2

MOGX,Y) :max{e<x,mx>,G(x,Tx,y>,G<x,x,y>,

G(x, TxTx),G(y, Ty, Ty),

G(x,TxTy)JrG(Txx,y)}
2

= maX{G(x,TXX),G(x, XY),G(y, Ty, Ty),

G(X, TXTy) +G(TxX,y)
2
=G(X,X,y).
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Using 22) we have
q;( /O coey ¢(t)dt) < q;( /O S0y ¢(t)dt).

Now we have,

ll’(/()G(TxTy,TZ) ¢(t)dt) = l,U/O% ¢ (t)dt = w(6_14) _ 6_14

We arrive at contradiction. This proves the uniqueness

and hence the result.

Corollary 1.Let (X,d) be a complete G-metric space and
¢ :RT — R be Lebesgue integrable mapping. X — X
such thatv x,y,z € X

/OG(TWTZ> p(t)dt < /OWX’Y’Z) p(t)dt= "’(/OM(W) oloct)

(23)
Where ¢ € @ and ¢ : RT — R is continuous and
non-decreasing function ang : R™ — R* is a lower

w( 0M(x,y,z) ¢(t)dt> _ (p<foM(x.y.Z) ¢(t)dt> =yY(l)— 1)

Implies that

o( [T ewa) <o [ pa)
o [ ptar),

All conditions of of Theoren® are satisfied. Thu$ has a

semi continuous and non-decreasing function such thahniquefixed point.

@(t) =0ifand only ift=0and¢(t) > 0ift > 0 where

M(x..2) = max{ G(x Txy). Gl T2,

G(x,Y,2),G(y, Ty, Ty),G(zTzT2),

G(x, Ty, T2 +G(TxY,2) }
5 )

Then T has a unique fixed point.
ProofThe proof follow by takingp(t) =t in Theorem 3.1.
Corollary 2.Let (X,d) be a complete G-metric space and
T : X — X such that’ x,y,ze X

(6TxTyT2) <w(Mxy2) —o(Mxy.2).

where ¢ : R™ — R™ is continuous and non-decreasing
function andg : R™ — R™ is a lower semi continuous
and non-decreasing function such thaft) = 0 = @(t) if
and only if t= 0 where

M(xy.2) = max{e<x,Tx,y>,G(x,mz>,e<x7y, 2),

G(Y, Ty, Ty),G(zTz T2,
G(x, Ty, T2 + G(TxYy,2z)

o

ProofThe proof follow by takingp(t) = 1 in Theoren®.

Then T has a unique fixed point.

Example et X = [1, 2] be endowed with G-metric
G(Xaya Z) = ma.X{|X— y|7 |y_ Z|7 |Z_ x|}7v Xy,ze X.

Assumex<y<zletT: X —=X,:RT = R", ¢ :RT —
R* andg:R" — R* defined by,

T = { 1Vxell,2),
2VYx=2,
Pt)y=t v teR" ¢(t)
p(t)=32 vV teR".

t
— VteR"
2 VIERD

4 Conclusion

The established results generalize some result8]afid
[13] in the setting of generalized metric spaces
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