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Abstract: In this paper, we use the Caputo fractional differential operator, which is introduced by Italian scientist Caputo in 

1967, an attempt as an application in electrical engineering, we obtain the solution of fractional differential equation associated 

with a LCR electrical circuit viz. the inductance L, the capacitance C and the resistor R in a closed form in terms of the three- 

parameters Mittag-Leffer function. The generalization of two parameters Mittag-Leffer function introduced by Prabhakar in 

1971 in the form of three- parameters Mittag-Leffer function. 
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1 Introduction 

The fractional calculus is a generalization of ordinary 

differentiation to non-integer case. In other words, the 

fractional calculus operators deal with integrals and 

derivatives of arbitrary (i.e. real or complex) order. The name 

“fractional calculus” is actually a misnomer; the designation, 

“integration and differentiation of arbitrary order” is more 

appropriate. The classical calculus was independently 

discovered in seventeenth century by Isaac Newton and 

Gottfried Wilhelm Leibnitz. The question raised by Leibnitz 

for the existence of fractional derivative of order, half was an 

ongoing topic amongst mathematicians for more than three 

hundred years, consequently several aspects of fractional 

calculus were developed and studied. 

During last decade applied mathematicians and 

physicists  found the fractional calculus operators  to be very 

useful in a variety of fields such as  quantitative biology, 

electro chemistry, scattering theory,  transport theory, 

probability, elasticity, control theory, potential theory, signal 

processing, image processing, diffusion theory, kinetic 

theory, heat transfer theory and circuit theory  etc.. The 

fractional calculus operators also occur   widely in technical 

problems associated with transmission lines and the theory of 

compressional shock waves. 

The first accurate use of a derivative of non-integer order 

is due to the French mathematician S. F. Lacroix [21] in 1819 

who expressed the derivative of non-integer order ½ in terms 

of Legendre’s factorial symbol .  

 

Γ(𝑎) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡

∞

0

 

Starting, with a function 𝑦 = 𝑥𝑚, Lacroix 

expressed it as follows 

𝑑𝑛𝑦

𝑑𝑥𝑛
=

𝑚!

(𝑚 − 𝑛)!
𝑥𝑚−𝑛 =

Γ(𝑚 + 1)

Γ(𝑚 − 𝑛 + 1)
𝑥𝑚−𝑛 

Replacing with 
1

2
 and putting𝑚 = 1, he obtained 

the derivative of order 
1

2
 of the function 𝑥. 

𝑑1 2⁄ 𝑦

𝑑𝑥1 2⁄
=

2

√𝜋
√𝑥 

The credit of first application of fractional calculus 

goes to Abel’s [22] who employed it in the solution of an 

integral equation which emerged in the formulation of the 

tautochrone problem of finding the shape of a frictionless wire 

lying in a vertical plane such that the time of slide of a bead 

placed on the wire to the lowest point of the wire is the same 

regardless of position of the bead on the wire.  

 

 

2 Special Functions of Fractional Calculus 

The importance of special functions as a device of 

mathematical analysis is well known to the scientist, 

mathematician and engineers dealing with the practical 

applications of differential equations. The solution of various 

problems from the heat conduction, electromagnetic waves, 
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fluid mechanics, quantum mechanics, kinetic equations and 

diffusion equations etc. lead obligatory to using the special 

function. Special functions arise as a solution of some basic 

ordinary differential equations and solving partial differential 

equations by means of separation of variable method. The 

verity of the nature of the methods leading to special functions 

stimulated the increasing of the number of special functions 

used in applications. 

2.1 The Mittag-Leffler Function 

 The Mittag-Leffler function introduced by Mittag-

Leffler [18] in 1903 is defined as  

𝐸𝛼(𝑥) = ∑
𝑥𝑘

Γ(𝛼𝑘 + 1)
,

∞

𝑘=0

  

(𝛼 ∈ 𝐶, 𝑅𝑒(𝛼) > 0)               (1) 

            A generalization of the Mittag-Leffler function is 

given by Wiman [20] in 1905 defined as 

𝐸𝛼,𝛽(𝑥) = ∑
𝑥𝑘

Γ(𝛼𝑘 + 𝛽)
,

∞

𝑘=0

  

(𝛼, 𝛽 ∈ 𝐶, 𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝛽) > 0)    (2) 

Prabhakar [19] introduced a generalization of (2) in 1971 in 

the form 

𝐸𝛼,𝛽
𝛾 (𝑥) = ∑

(𝛾)𝑘𝑥𝑘

Γ(𝛼𝑘 + 𝛽) 𝑘!
,                    

∞

𝑘=0

 

 (𝛼, 𝛽, 𝛾 ∈ 𝐶, 𝑅𝑒(𝛼) > 0), 𝑅𝑒(𝛽) > 0        (3) 

Where (𝛾)𝑘 is the Pochammer symbol. 

It is an entire function with 𝜌 = [𝑅𝑒(𝑣)]−1. 

For 𝛾 = 1, this function coincides with (2), while for 𝛾 = 𝛽 =
1  with (1) : 

𝐸𝛼,𝛽
1 (𝑥) = 𝐸𝛼,𝛽(𝑥), 𝐸𝛼,1

1 (𝑥) = 𝐸𝛼(𝑥)         (4) 

We also have 

𝜙(𝛽, 𝛾; 𝑥) = 𝐹11
0 (𝛽, 𝛾; 𝑥) = Γ𝛾 𝐸1,𝛾

𝛽 (𝑥)        (5) 

𝐸𝛼,𝛽
𝛾 (𝑥) =

1

Γ𝛾
𝐻1,2

1,1 [−𝑥 |
(1 − 𝛾, 1)

(0,1), (1 − 𝛽, 𝛼)
], 

 𝑅𝑒(𝛼) > 0; 𝛼, 𝛽, 𝛾 ∈ 𝐶         (6) 

For 𝛾 = 1 (6) gives rise to the following result for the 

generalized Mittag-Leffler function. 

𝐸𝛼,𝛽(𝑥) = 𝐻1,2
1,1 [−𝑥 |

(0, 1)

(0,1), (1 − 𝛽, 𝛼)
], 

𝑅𝑒(𝛼) > 0; 𝛼, 𝛽 ∈ 𝐶                              (7) 

If we further take 𝛽 = 1  in (7) we find that 

𝐸𝛼(𝑥) = 𝐻1,2
1,1 [−𝑥 |

(0, 1)

(0,1), (0, 𝛼)
], 

 𝑅𝑒(𝛼) > 0; 𝛼 ∈ 𝐶                                (8) 

Many numbers of definitions of fractional derivative are 

given by many mathematicians like Riemann-Liouville 

operator, Modified Riemann-Liouville fractional derivative, 

Caputo fractional derivative, Weyl Fractional operator, Tuan 

and Saigo Fractional Operators. The Riemann-Liouville 

fractional derivative of constant is not equal to the Caputo 

fractional derivative of constant viz the Caputo fractional 

derivative of constant is zero. 

2.2 Caputo Fractional Derivative 

The Caputo fractional derivative of order 𝛼 > 0 is introduced 

by Caputo [24] in the form 

 (𝑖𝑓  𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑅𝑒(𝛼)  >  0, 𝑚 ∈ 𝑁): 

𝐷𝑎
𝑐

𝑡
𝛼𝑓(𝑡) = 𝐼𝑚−𝛼𝐷𝑚𝑓(𝑡) 

Or  

𝐷𝑎
𝑐

𝑡
𝛼𝑓(𝑡) =

1

Γ(𝑚 − 𝛼)
∫(𝑡 − 𝜏)𝑚−𝛼−1𝑓𝑚(𝜏)𝑑𝜏

𝑡

0

, 𝑡 > 0 

=
𝑑𝑚𝑓(𝑡)

𝑑𝑡𝑚
, if 𝛼 = 𝑚              (9) 

Where  
𝑑𝑚𝑓(𝑡)

𝑑𝑡𝑚  is the m-th derivative of order m of the function 

𝑓(𝑡) with respect to 𝑡. 

Or 

𝐷0
𝑐

𝑥
𝛼𝑓(𝑥) =

1

Γ(1 − 𝛼)
∫

𝑓′(𝑡)

(𝑥 − 𝑡)𝛼
𝑑𝑡,

𝑥

0

 

where 0 < 𝛼 < 1)     (10) 

According to this definition, 

𝐷𝑎
𝑐

𝑡
𝛼𝐴 = 0,        𝑓(𝑡) = 𝐴 = constant 

That is, Caputo’s fractional derivative of a constant is zero.   

The Caputo fractional derivative is a short of regularization in 

the time origin for the Riemann-Liouville fractional 

derivative. 

The Laplace transform of Caputo derivative is representation 

of  

𝐿[ 𝐷𝑎
𝑐

𝑡
𝛼𝑓(𝑡)] = 𝑠𝛼𝐹(𝑠) − ∑ 𝑓𝑘

𝑛−1

𝑘=0

(0) 𝑠𝛼−𝑘−1      (11) 

We see that from the equation (11) the representation of the 

Caputo derivative in Laplace domain using the initial 

condition  𝑓𝑘(0) where k is integer. When the initial 

conditions are zero then the equation (11) converted into  
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𝐿[ 𝐷𝑎
𝑐

𝑡
𝛼𝑓(𝑡)] = 𝑠𝛼𝐹(𝑠) 

The importance of the Mittag-Leffler function and its 

generalizations due to their applications in several fields of 

science and engineering. The applications of the Mittag-

Leffler functions are observed recently in a number of papers, 

related to fractional calculus and fractional order differential 

and integral equations and systems. Soubhia, Camargo and 

Rubens [17] have derived some applications of the Mittag-

Leffler function in electrical engineering. 

3 Definition 

Unit Ramp function−Let 𝑓(𝑡) be the ramp function. The 

ramp mathematically expressed as follows: 

𝑓(𝑡) = {
0      𝑓𝑜𝑟 𝑡 < 0
𝑡     𝑓𝑜𝑟 𝑡 ≥ 0

                           (12) 

And its Laplace transform is 𝑠−2. 

Unit Parabolic function−Let 𝑓(𝑡) be the parabolic function. 

The Parabolic mathematically expressed as follows: 

𝑓(𝑡) = {

0      𝑓𝑜𝑟 𝑡 < 0

𝑡

2

2

     𝑓𝑜𝑟 𝑡 ≥ 0
                    (13) 

And its Laplace transform is 
1

𝑠3. 

4 RLC - Electrical Circuit 

In this paper, we present RLC electrical circuit with a 

capacitor and an inductor are connected in parallel and this set 

is connected in series with a resistor and voltage. The 

capacitance C, the inductance L and the resistor R are consider 

positive constants and 𝜓(𝑡) is the ramp function earlier paper 

[17], consider the 𝜓(𝑡) is Heaviside function.  

The constitutive equations associated with a three elements of 

RLC electrical circuit are: 

The voltage drop 

𝑈𝐿(𝑡) = 𝐿
𝑑

𝑑𝑥
𝐼(𝑇), across an inducter; 

The voltage drop  

𝑈𝑅(𝑡) = 𝑅𝐼(𝑡),       across a resistor; 

The voltage drop 

𝑈𝑐(𝑡) =
1

𝐶
∫ 𝐼(𝜉)𝑑𝜉,

𝑡

0

         across a capacitor 

And where 𝐼(𝑡) is the current. 

Applying the Kirchhoff’s voltage law and constitutive 

equations associated with the three elements, we can write the 

non-homogeneous second order ordinary differential 

equation  

𝑅𝐶
𝑑2

𝑑𝑡2
𝑈𝐶(𝑡) +

𝑑

𝑑𝑡
𝑈𝐶(𝑡) +

𝑅

𝐿
𝑈𝐶(𝑡) =

𝑑

𝑑𝑡
𝜓(𝑡)  (14) 

Where 𝑈𝑐(𝑡) is the voltage on the capacitor, this is the same 

on the inductor as we can see in figure 1, because they are 

connected in parallel. 

 

On the other hand, we obtain other non-homogeneous second 

order ordinary differential equations associated with the 

current on the inductor, 

𝑅𝐿𝐶
𝑑2

𝑑𝑡2
𝑖𝐿(𝑡) + 𝐿

𝑑

𝑑𝑡
𝑖𝐿(𝑡) + 𝑅𝑖𝐿(𝑡) = 𝜓(𝑡)        (15) 

 Again, using the constitutive equation for the inductor, these 

two non-homogeneous second order ordinary differential 

equations can be led to correspondent integro-differential 

equations, 

𝑅
𝑑

𝑑𝑡
𝑖𝐶(𝑡) +

1

𝐶
𝑖𝐶(𝑡) +

𝑅

𝐿𝐶
∫ 𝑖𝐶(𝜉)𝑑𝜉,

𝑡

0

=
𝑑

𝑑𝑡
𝜓(𝑡)   (16) 

And 

𝑅𝐶
𝑑

𝑑𝑡
𝑈𝐿(𝑡) + 𝑈𝐿(𝑡) +

𝑅

𝐿
∫ 𝑈𝐿(𝜉)𝑑𝜉,

𝑡

0

= 𝜓(𝑡)     (17) 

respectively. We note that, integro-differential equations have 

the some form. Here we consider only the first one. The 

classical methodology to discuss this integro-differential 

equation is the Laplace transform. To this end, we consider 

the initial condition 𝑖𝐶(0) = 0 and the solution can be found 

in terms of an exponential function [23]. 

5 Fractional Integro-Differential Equation 

In this section we discuss the fractional form of equation (16), 

i.e. a Fractional integro-differential equation associated with 

a current on the capacitor,  

𝑅
𝑑𝛼

𝑑𝑡𝛼
𝑖𝐶(𝑡) +

1

𝐶
𝑖𝐶(𝑡) +

𝑅

𝐿𝐶

1

Γ𝛼
∫(𝑡 − 𝜉)𝛼−1𝑖𝐶(𝜉)𝑑𝜉,

𝑡

0

 

=
𝑑

𝑑𝑡
𝜓(𝑡)                           (18) 

We also consider 𝑖𝐶(0) = 0, i.e., the initial current on the 

capacitor is zero. We note that this equation is a possible 

generalization of the classical integro-differential equation 
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associated with the RLC electrical circuit, because for 𝛼 =  1 

we recover the results obtained in (16). This replacement can 

be useful in discussing the corresponding numerical problem, 

for a particular value of the parameter, because the solution is 

presented in terms of a closed expression. 

To solve this fractional integro-differential equation, we 

introduce the Laplace integral transform, defined by 

𝐿[𝑖𝐶(𝑡)] = 𝐹(𝑠) =  ∫ 𝑒−𝑠𝑡𝑖𝐶(𝑡)

∞

0

𝑑𝑡 

with 𝑅𝑒(𝑠)  >  0, and we obtain the following algebraic 

equation 

𝑅𝑠𝛼𝐹(𝑠) +
𝐹(𝑠)

𝐶
+

𝑅

𝐿𝐶

𝐹(𝑠)

𝑠𝛼
=

1

𝑠
, 

Whose solution is given by 

𝐹(𝑠) =
1

𝑅

𝑠𝛼−1

𝑠2𝛼 + 𝑎𝑠𝛼 + 𝑏
, 

where we have introduced the positive parameters 𝑎 = 1/𝑅𝐶 

and 𝑏 = 1/𝐿𝐶. 

To recover the solution of the fractional integro-differential 

equation, we proceed with the inverse Laplace transform 

𝑖𝐶(𝑡) =
1

𝑅
𝐿−1 [

𝑠𝛼−1

𝑠2𝛼 + 𝑎𝑠𝛼 + 𝑏
] 

Using the relation [3] 

𝐿−1 [
𝑠𝜌−1

𝑠𝛼 + 𝐴𝑠𝛽 + 𝐵
]

= 𝑡𝛼−𝜌 ∑(−𝐴)𝑟𝑡(𝛼−𝛽)𝑟𝐸𝛼,𝛼+1−𝜌+(𝛼−𝛽)𝑟
𝑟+1 (−𝐵𝑡𝛼)

∞

𝑟=0

 

Valid for |
𝐴𝑠𝛽

𝑠𝛼 + 𝐵
| < 1 and 𝛼 ≥ 𝛽, 

We can write,  

𝑖𝐶(𝑡) =
𝑡𝛼

𝑅
∑ (−𝑎)𝑟𝑡𝛼𝑟𝐸2𝛼,𝛼+1+𝛼𝑟

𝑟+1 (−𝑏𝑡2𝛼)∞
𝑟=0 𝜓(𝑡)(19) 

Where 𝐸𝜇,𝑣
𝜌

(𝑡)is the three parameter Mittag-Leffler functions 

and 𝜓(𝑡) is the Ramp function. 

 

Again, if we consider 𝜓(𝑡) function is parabolic function then 

the solution  

𝑖𝐶(𝑡) =
𝑡𝛼+1

𝑅
∑ (−𝑎)𝑟𝑡𝛼𝑟𝐸2𝛼,𝛼+2+𝛼𝑟

𝑟+1 (−𝑏𝑡2𝛼)∞
𝑟=0 𝜓(𝑡) (20) 

6 Conclusion 

In this paper we obtain new results for series in three-

parameter Mittag- Leffer functions. The possible applications 

of our results, we obtain a closed form to the solution of the 

fractional integro- differential equation associated with a 

particular RLC electrical circuit, in terms of the three-

parameter Mittag-Leffer function. Our main result is 

interesting with respect to simplifying several other results, 

for i.e. as one can see in [5] where we discussed the fractional 

telegraph equation, and in [4], where the anomalous diffusion 

was presented. The results in both papers are given in terms 

of the three- parameter Mittag-Leffer function.  
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