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1 Introduction space with the metric

Throughoutw, x andA denote the classes of all, gai d(x,y)= Sup{lxmk—ymnkIW%‘*R ‘mn,k:1,2,3, }, (1)
and analytic scalar valued single sequences, respectively mnk
We write w® for the set of all complex triple sequences
(Xmk), Wwherem, n,k € N, the set of positive integers.Then, for allx = {Xyk}andy = {ymk} inl3. Let
w2 is a linear space under the coordinate wise addition andp = {finite sequenceés
scalar multiplication. Consider a triple sequense= (k). The (m,n, k)"

Let (xmi) be a triple sequence of real or complex section x™M"K of the sequence is defined by
numbers. Then the ser'l@‘r’,';@n,k:lxmnk is called a triple  yimni _ Zﬂ?&ioﬁjqajq forallmn.k € N,
series. The triple serieg 1 Xmk IS said to be

convergent if and only if the triple sequen¢&myk) is 00.00
convergent, where 00 "'O 0
m,n,k
Sk = z Xijqg (mn,k=1,2,3,...). Sk =
i,j,0=1 .
00..10...
A sequence = (Xmk) is said to be triple analytic if 00..00...

1
SUP Xk |77 < co. e o .
mn,k with 1 in the(m, n,k)!" position and zero otherwise.

N al | I A sequence = (Xmk) is called triple gai sequence if
The vector space of all triple analytic sequences are 1 :
usually denoted pby\3. A sequgnca :)Ex,mk) ?s called ((M-+n+K)! Xy ) ek — 0 asm,n,k — eo. The triple

. ) . gai sequences will be denoted jpy.
triple entire sequence if Consider a triple sequence= (Xyk). The (m n k)"

section XM"K  of the sequence is defined by
Xkl — 5 M XijaDijq for all mn.k € N; whereljjq

The vector space of all triple entire sequences aredenotes the triple sehquence whose only non zero termis a
usually denoted by 3. The space\® and/ 2 is a metric in the (i, j,k)" place for each, j,k € N.

1
[Xrnk| ™k — 0 asm,n,k — co.

1
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An FK-space(or a metric spack)is said to have AK  stronger than the others, thgmand q are said to be
property if (Omk) is a Schauder basis foX, or  equivalent.
equivalentlyxmnK — x. A sequence spack is said to be solid or normal if
An FDK-space is a triple sequence space endowedOmkXmnk) € E Whenevelxmk) € E and for all sequences
with a complete metrizable; locally convex topology Of scalargamy) with |amk| < 1, for all mn,k € N.

under which the coordinate mappings are continuous. A sequence spack is said to be monotone if it
If X is a sequence space, we give the following contains the canonical pre-images of all its step spaces.
definitions: A sequencé is said to be convergence freé ) €
(i) X' is continuous dual oX; E whenevelXmk) € E andxmk = 0 implies thaym = 0.
(i) X9 = Let p= (pmk) be a sequence of positive real numbers
- with 0 < Prmk < SUPPmk = G and LetD = max(1,26-1).
a=(amk): Y |amkXmk| <, for eachxe X} ;. Then foramk, bk € C, the set of complex numbers for
m,n k=1 all m,n,k € N we have
(iii) XB =
0 } |an‘nk+ bmnk|pmnk < D{|amnk|pmnk+ |bmnk|pmnk}a (3)
a=@mK: Y amkXmk iS convergent, for eache X 5 ;
mnk=1 whereD = max (1,2771) |H = sup, , Pk
(iv) XY = By S(X) we denote the linear space of all sequences
M,N,K X = (Xmk) With (Xmmk) € X and the usual coordinate wise
a=(am): er';J>p1 mnzkzlamnkxmnk < for eachxe X operationsax = (0 Xmk) andX+Y = (Xmk + Ymnk) , for

) eacha € C. If A = (Ank) is a scalar sequence ardE
(v) LetX bearFK-space) ¢; then S(X) then we shall o 1 ArricXomic)
X = {f(Dmnk)i feX }: LetU be the set of all sequencas= (Umy) such that
(vi) X% = Umk # 0 and complex for alinn k=123, ---.
Following Ruckle 1] and Maddox 2] we recall
{a:(amnk): sup|amkxmk|1/m+”+k<00, for eachx e x}; that a functionf : [0,0) — [0,) such that modulu$ is
mn,k (i) f(x) = 0 if and only if x = 0, (i)
X% XB, XY are calledor— (or Kothe-Toeplitz) dual of ~ f(x+y) < f(x)+ f(y), forall x>0, y=> 0, (iii) fis
X, B—(or generalized-Kothe-Toeplitz) dual ofX, y— dual  increasing, (iv)f is continuous from the right of 0. It
of X, & —dual of X respectively.X? is defined by Gupta follows from (i) and (iv) f must be continuous
and Kamptan10]. It is clear thaix@ c XP andX? c XY, ~ everywhere on[0,«0). For a sequence of moduli
butX® c XY does not hold. f = (fink) we give the following conditions: (v)
SURnnk frnk (1) < oo for all t > 0, (vi) lim¢ 0 frmk (t) =0
uniformly in mnk > 1. We remark that in case
frk = f (Mm,n,k > 1), wheref is a modulus function, the
conditions (v) and (vi) are automatically fulfilled.
) ) ) o Let (X,q) be a semi normed space over the fi€laf
A sequencex = (Xmk) s said to be triple analytic if complex numbers with the semi norm The symbol
SURynk |Xmnk| 7k < 0. The vector space of all triple X?(X) denotes the spaces of all triple gai sequences

analytic sequences is usually denoted/by A sequence defined oveX. We define the following sequence space:
X = (Xmk) Iis called triple entire sequence if

[Xernk| wk - 0 as m,n,k — c. The vector space of X?(p,q,u) = {xe S(X) :
triple entire sequences is usually denoted By. A Pk
sequencex = (Xmk) is called triple gai sequence if u,mk[fmnk (q (((m+n+ k)!|x,mk|)1/m+”+k)ﬂ -0

1
((m+n+K)! [Xmk| ) ™% — 0 asm,n,k — co. The vector
space of triple gai sequences is usually denotedyhy
The space® is a metric space with the metric

2 Definitions and Preliminaries

asm,n,k — oo}

We get the following sequence spaces frxjﬁﬁp, qg,u)

d(x,y) = sup? ((M+n+K)! Xk — ymnk|)whk : on giving particular values tp andu. Taking prk = 1 for
mn,k allm,n,k € N we have
m,n,k:1,2,3,...} )

xia.u) = {xesm):

forall x= {Xmk} and y={ymi}in x3. | 1/mentk
Let p,q be semi norms on a vector spaXeThenp is Urmik [f"‘"k (q (((m+ N+ K)! i) ))} =0

said to be stronger thatif whenever(xyk) is a sequence

i ) ) k
such thatp (Xmk) — 0, then alsog (Xmk) — O. If each is asm,n,k — °°}
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If we takeuyn = 1, then we have

X?(pvq):{xe S(X) g()\x):{|)\|l/m+n+k:

{fmnk (q (((m+ n+k)! |x,mk|)1/m+”+k))} ™ 0 iwﬁumnk {fmnk (q (((m+ n+Kk)! |ank|)1/m+n+k))} } :

asm,n,k—>oo} Hence x3¥(p,q,u) is a paranormed space. This

If we take prrk = 1 andupk = 1 for allmnk € N, completes the proof.

then we have Theorem 3.3.Let f = (frk) @and T = (Tyk) be a two
sequence of moduli. Then

Xi(@) = {xe s(X):

f k ' l/m+n+k 0
[ mnk (q (((m+ N+ Kt ) ))} - Proof: The proof is easy, so omitted.

asm,n k — oo} Remark 3.4.Let f = (fk) be a sequence of moduji
andg be two semi norms oKX, we have
In addition to the above sequence spaces, we have () X7(P,a1,W)NX7(P, G2, u) C X7 (P, G+ Gp, U)

x3(p,qu) = x3(p), on taking Umk = 1 for all @iy If % is stronger than ¢, then
mn,ke N, qx) = X, (fuk) = f for all mn,ke Nand ~ X{(P.d1,u) € x7(p, 2, u) _
X = C. In this chapter we introduce the sequence spaces (i) If Qi equivalent to g then
x3(p,q,u), using an modulus functiofi and defined over ~ X7(P,d1, ) = (P, G2, )
a semi normed spade, q), semi normed by. We study Theorem 3.5.() Let 0 < Pk < Frk and { rmnk} be
some properties of these sequence spaces and obtal mnk mnk
some inclusion relations. bounded Then?(r,q,u) C x7(p,q,u)

Lemma 2.1.Let p andq be semi norms on a linear space  (ii) U1 < Uz implies x7(p,q,u1) C X{(p,q, U2)
X. Thenp is stronger tham if and only if there exists a  proof: Let

xi(p.a.w(x3(p.g,u) C x7.1(p,q,u)

constanM such thaty(x) < Mp(x) for all x € X. x € x{(r,q,u) (4)
Remark 2.2.From the two above definitions it is clear that

Eei lid implies thak i tone. Fmnk
a sequence spaéeis solid implies thak is monotone U {fmk(q(((m+n+k)! |ank|>1/m+n+k)ﬂ -0

_ as mnk— o (5)
3 Main Results
Let ok
1/m+n+k m
Theorem 3.1.If f = (fy) be a sequence of moduli, then tnk = Unmk {f"‘"k (q (((m+ N+ K)! [Xmk]) ))}
x3(p,q,u) are linear spaces over the set of complexand Amk = ‘r)”"kk. Since pmk < 'k, We have

numbers. 0<Amk < 1. Take 0< A < Ak
Proof: It is routine verification. Therefore the proof is Define umnk = trnk (tmnk > 1); Umnk = O(tmnk < 1); and
omitted. Vimk = O(tmnk > 1); Vimk = trnk(tnk < 1) trnk = Unnk +
Theorem 3.2.x3(p,q,u) are paranormed spaces with the Vmnk; ok 4 V. Now it follows that
paranorny defined by

Wk <t and Vil <AL (6)

_ | 1/mn+k )

(%) = Suptimc | fek (0 (R park) ™) ) |- g o e e <A by @

Proof: Clearly g(x) = g(—x) andg(6) = 0, where8 is Foric? A
the zero sequence. It can be easily verified giat-y) < Urnnk [fmnk ( ( m+n-+k)! |)1/m+“+k)) k} “
g(x)+9g(y). Nextx — 6, A fixed impliesg(Ax) — 0. Also Pk
X— 6 andA — 0 impliesg(Ax) —» 0. The case\ —0and < U | frmk (@ (((m+n+ 0! pami) /™) ) |

x fixed implies thag(A x) — 0O follows from the following

expressions.

g(Ax) = urmk[ ( ( (M+n+K) |)1/m+n+k))rmnk] AN——
e {fm”k (q (((m+ n-+k)! M"“kx’mk')l/mw)” ' < Unmik [ mnk (q (((m+ N+ K)! X |)1/m+n+k))} -
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[fmn (q <<<m+n>! |xpm|>l/m+n+km P

< e[ fres (1 (-4 14 K1 ) ™04) )|
But

Upnk {fmnk (q (((m+ n+Kk)! |ank|)l/m+”+k))} Pk -0
as m,n,k — oo,
By (5), we have

T

as mn,k— oo,
Hence
x€ xi(p.a,u) 7)
From @) and (7) we getx3(r,q,u) C x3(p,q,u). This
completes the proof.
Proof (ii): The proof is easy, so omitted.

Theorem 3.6. The spacex?(p,q,u) is solid, hence is
monotone.

Proof: Let (xmk) € X7 _(P,q,u) and (amk) be a

sequence of scalars such thety|Y™™* < 1 for all
m,n,k € N. Then

Urmnk {fmnk (q (((m+ n+Kk)! |annkxmnk|)l/m+n+k) )} Prmk

< Unnk [fmnk (q (((m+ n+Kk)! |x,mk|)1/m+n+k))] Prnk
forallmnkeN

[fr’mk (q (((m+ n+k)! |amnkxmk|)1/m+n+k))] Prnk

< {fmnk (q (((m—i— n+Kk)! |ank|)l/m+”+k))} Pk

forallmn ke N.

This completes the proof.
Result 3.7.The space(]?(p, g,u) are not convergence free
in general.
Proof: The proof follows from the following example.

Example. Consider the sequences
(ank) ’ (Ymnk) € X]:“;(pa q, U). Defined as
mH-n-+k
(Xrmikc) (m+r%+k)! (m+:rL1+k) " and
—n—k\ MN+k

(Ymi) = (m+r%+k)! (Renrk) Hence
Prmnk

umnk[fmnk (q(m))} — 0 as mnk — oo.

Which implies Xmk) = 0. Also
Prmnk

umnk[fmnk (q(%))} —0 as m,n,k— . But

(Ymk) 7 0. Hence the spacex;?’(p,q,u) are not
convergence free in general. This completes the proof.
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