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Abstract: In the present study, we have considered the exponentiatening distribution as an important life time model for the
situations where hazard rate function is either monotonéreiasing or in the bathtub shape. We propose Bayes estanaftthe
parameter of the exponentiated gamma distribution undeergéentropy loss function, squared error loss functichwsa have also
derived its maximum likelihood estimator. The estimatasehbeen compared through their simulated risks.
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1 Introduction
[1] introduced exponentiated gamma distribution as a lifestimodel applicable to the life data having either monotonic
increasing or bathtub shaped hazard rate function. It séers flexible in this sense and it has single parameter, the
shape. Therefore, it is parsimonious in parameters ancet@mple to use.
The probability density function (pdf) of exponentiatedrgaa distribution EGf) is of the form,
f(x) =Oxe X[1—e*(x+1)]%1 ; x>0,6>0 1)

where®0 is the shape parameter.

The cumulative distribution function (cdf), survival furan and hazard rate function corresponding to the pyate
given by,

F(x)=[1—e*(x+1))° 2)
S(x) =1—[1—eX(x+1))° (3)
e Oxe X[1—e X(x+1)°"
xe —€ *(X
hx) = —— [1—eX(x+1)° 4)
respectively.

It has increasing hazard rate function whep- % and its hazard rate function takes Bathtub shape v(i:hgn%. Itis
important to mention that whe@ = 1, pdf (1) is that of gamma distribution with shape parametet 2 and scale
parametefl =1, i.e.G(2,1). For more details about this distribution, s€¢ [
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The rest of the paper is organized as follows: In section 2hawe explained Progressive Type Il (PT-11) Censored
Sample with Binomial Removals and derived MLE @&for such a sample from E®] distribution. Further, in section
3, we have derived the Bayes estimatorsfafinder General Entropy Loss Function (GELF) and Squaredr Ewes
Function (SELF) using gamma distribution as prior @rComparison between the considered estimatof, t¢firough
simulated risks under GELF is shown in section 4. Finallpatosions have been shown in the last section.

2 PT-11 Censored Sample with Binomial Removals

In medical field and reliability analysis, most of the data aot coming either in the form of the complete sample or in
the form of Type | or Type Il censored samples. The obsermatinay be removed from the experiment at any point of
time other than the termination point. This is what is knowgnpaogressive censoring scheme (s& ahd [10]). For
example, patients are registered for visiting to a doctoaarertain day, after getting the time of appointment, some
patient(s) may be removed any time, due to some unavoideblons. The sample, thus obtained is the patients, who
successfully completed his task of visiting the doctor,abexl the PT-1l censored sample. It may also be noted that the
no. of patients removed from the process is not fixed, theeéfanay be supposed to be a non-negative integral valued
discrete random variable. If the no. of removals follow Bimal distribution with certain parameters, then the
corresponding sample is called PT-Il censored sample witbrBial removals. For more applications of PT-Il censored
with Binomial removal, the readers are referred 14,12,13,14,15,16,17]. More precisely, this scheme is planed as
follows;

Supposa identical items are put on a life testing experiment and wktaiminate the experiment as soonms n
items are failed (i.emis the effective sample size). Also, suppose that the piitityalp of removal is constant for each
individual. LetR; be the no. of removals after th# failure occured at time. Then (Xg,Ry), (X2, Re), ..., (Xm, Rm)
constitute a PT-1I censored sample with the Binomial renmva

At the time of first failureX;, let R; items are randomly removed with fixed probabilipyof removals from the
remainingn — 1 survived items. HereR; follows B(n— m, p). Similarly, at the time of second failu’&, let R, items
from the remainingh — 2 — R; survived items are randomly removed with the same remoabgiility p. Here,R,
follows B(n—m— Ry, p). Similarly, at the time of third failurés, let Rz items are randomly removed from the remaining

2 2
n—3— Y R alived items with the same removal probabilityHere,R; follow B (n -m—3 R, p) . Continuing in this
i=1 i=1
way, at the time ofm— 1)™" failure X,_1, let Ry,_1 items are randomly removed with prefixed probabifitgf removals
m-2 m-2
from the remainingr— (m—1) — _Z R; survived items and alsg,_1 follow B <n —m-— _Z Ri, p). Finally, at the time
m-1

of mh failure X, all the remainingRy, = N — m — > R survived items will be removed. Therefore,
i=1

(X1,R1), (X2,R2), ..., (Xm, Rm) denote PT-1l censored sample with Binomial removals, wh@re X, < X3 < ... < Xn
andRy, Ry, ..., Ry are the corresponding no. of removals.
The full likelihood function of PT-II censored sample witinBmial removals is given by (se€])
L(6) = L1(8,X|R=")P(R=T) (5)

whereL; (6, X|R=r) is the likelihood function with pre-determined number ahevals, sayR; =r1,Ry =ra,...,Rm=
rmand is given by

L1(6,X|R=r)=C" rlf X)) [S(%)]" 6)

and
PR=r)=P(Rn1=rm1/Rm2=rmo2,...,Ri=r1)...P(Re=r2|R =r1)P(Ry =r1) (7)

The constant* involved in @) is given by

-3)

o*
||
3
H:I,L
/\
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Itis known that
n-m r n—m-—r
PRi=r) = (" )2 prms @
and also for every=2,3,--- m—1
i-1 i
n—m-—73%r . n—m-7y r
PR =rilR_1=ri_1,....,Ri=r11) = < . =1 >p'(1—p) 1=1 9)
|
Putting the values fron8j and @) in (7), after some simplification, we get
5 (m-1)(n-m)" (m-i)
r m— n—m)— m—1)rj
(n—m)!p= (1-p) =
PR=r)= — — (10)

(n—m— > ri)! < M ri!>

i=1 i=1
Again, putting the values fromi) and @) in (6), we get
L1(6,X|R=r)=c"gM . mef'gly“' . [1—e%(x+1)]%1 . [1-(1—eX(x+1)°%" (11)
1(0, — — a = _ q — _ i (% i
[Ie = [jit-e o0
(12)

Finally, substituting the values from@) and (1) in (5), we get
L(B) =c™am 2 mefiglx‘ 2 [1-e(x+1)°t . [1—(1—e(x+1)°%"
e i

where
m-1 m-1
( ) izlri 1 )(mfl>(n*m>*izl(mfl)n
sk _ ~ (N—M)Ip= —p -
¢ =cC m-1 m-1
<n—m— ) ri>!< 1l ri!)
i=1 i=1

which is independent 3.

2.1 Maximum Likelihood Estimator of 6
The log-likelihood function can be obtained by taking In oftbsides of {2). The same is obtained as follows
(13)

1(8)=C+ mln6+iln(xj) —ixj +(6-1) _iln[lfe’xi (xi+1)] +iri In[1—(1—e (x+1))9

The log- likelihood equation for estimatirejis given by,
21(6)
o6 ° 4
(15)

m o o Drifl—eX(x+1)n1l—eX(x+1)]
§+i;m[1—e X'(X|+1)]_i; [1—{1—67X4(Xi—|—1)}9] =0

and after simplification, it reduces to,
If By be the Maximum Likelihood Estimator (MLE) &, then it will be the solution ofX5) for 8. The same is, therefore

(16)

given by,
A m
O = 1€~ (x+1)]°M In[1—e % (x+1)] _ E In[1—e%(x +1)]
i£1 [1—{1—e % (x+1)}oM] i1

Above is an implicit equation B, So it cannot be solved analytically. For solving it, we pye@ to use some numerical
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3 Bayes Estimators of 6 under GELF and SELF

3.1 Loss Function

An important element of statistical inference, which canagls be viewed as a statistical decision problem, is the loss
function (see,3]). The incorporation of a loss function into statisticabéysis was first studied extensively B}.[Though,

it is often argued that it is too difficult to define functiohst truly represent the losses. Besides this, a singlelogsion

is not appropriate for all the situations. However, a sigisloss function has to be non-negative function takimgkest
value zero when the inference matches exactly with thetye@i number of loss functions have been suggested in
the statistical literature depending upon the various iciemations related to the type of inference to be drawn ard th
requirement of the problem in hand. One among them is squaredloss function (SELF), as defined by

Ls(6,0) = (6 —06)? 17)
The Bayes estimator & under SELF 17) is given by

Bs=E[6]X] (18)
provided that the posterior expectatiB(f|X) exists and is finite.

No doubt, it is a suitable loss function, in a situation whexer estimation and under estimation of the equal
magnitudes are of the equal importance. Hence, it is seitfnlestimation of the location parameter. For estimatibn o
scale parameter, a modified form of it may be defined as follows

A~ 2
Lus(8,6) = (g - 1) (19)

But, one criticism behind its use is that it penalizes ovéneion more heavily than under estimation. Likewise gsal/
loss functiuons have been defined in literature and they timie own advantages/disadvantages. A useful asymmetric
loss function available in the literature is general engrigss function (GELF), proposed b§][ It is defined as follows;

Ls(6,6) 0 <g> —cln <g> -1 (20)

wherec is the loss parameter. When> 0, over estimation is more serious than under estimatiorvdrehc < 0,
under estimation is more serious than over estimation. Etiléd discussion about its seriousness, readers maytoefe

(8].

The Bayes estimator & under GELF 20) is given as,

1
c

B = [E(69X)] (21)

It is easy to see that when= —1, the Bayes estimatoR{) under GELF reduces to the Bayes estimdt8r{under
SELF.

3.2 Prior and Posterior Distributions

For Bayes estimators, another important element is to spagirior distribution for the parametér Hence, we consider
Gamma prior (seed]) for 6 having pdf
9(6) = O geogr-1. g >0,6>0,y>0 (22)
r(y) o
wherey and é are the hyper- parameters. These can be obtained, if anynaepéndent informations of are
available, say prior mean and prior variance are known (8¢€llhe mean and variance of the prior distributi@2) are

¥ and%; respectively. Thus, we také = £ andV = %, yieldingy = Mvz andé =Y.
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The formula for the evaluation of the posterior pdftbis given by,

h(olx) = 5 89(0) (23)
gL(G)g(G)dG

Putting the value from1(2) and @2) in (23), after simplification, we get

h(8]X) = il L (24)

O™V 1e09 {1 0+ 1)) 1] [1- {1- e ¥ (x+ DY)
j6m+>’—1e—59 |-|{1 e (x +1)}10- 1_H[1 {1—e%(x+1)}0]100

Now, to have an idea about the shape of the prior and postafsrfor different confidence levels in the guessed value
of 8, we have generated a PT-Il censored sample with Binomiabvate from EG@) distribution for fixedn = 20,
m=16,0 =2, p=0.7,M = 2 (guess/ expected value 6Bfas its true value) and = 0.1 (showing a higher confidence
in the guessed value) aMd= 100 (showing a weak confidence in the guessed value). Thelsgmperated is

(X,R) = (0.76100913), (1.00666831), (1.52283060), (1.87261640), (1.89204170),
(1.90403630), (2.10487970), (2.40161760), (2.65829570), (2.65845660), (3.02372400),
(3.05409660), (3.10271710), (3.78511810), (3.95748270), (4.48312330).

14

Prior and Postarior pfs

Fig. 1: Prior and Posterior pdfs @ for a randomly generated sample from Bg{or fixedn=20,m=16,p=0.7,6 =2,M =2 and
V=0.1

Now, the Bayes estimator & under GELF 20) is obtained as follows,

1
c

b — [E{67°[X)]

1
c

— /G*Ch(e\x)de
0

[Omctr 180 M1 e X (x4 1)}0 1 [T[1-{1-e(x+1)}°00]
e, = o 5)
Jomy-1e-00 [ {1— % (4 + D)0 [][1- {1-e-% (x + 1)} 700
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Prior and Posterior pfs

Fig. 2: Prior and Posterior pdfs @ for a randomly generated sample from Bg{or fixedn=20,m=16,p=0.7,6 =2,M =2 and
V=100

Further, puttingc = —1 in (25), we will get the Bayes estimat@k of 6 under SELF 17) as follows,

_zem“e*‘seﬁl{l—e** (% +1)}9*1ﬁ - {1-e%(x+1)}°]"a8

bs= & . (26)

1
m

[ OmY-1e-00 [] {1—e % (x+1)}0-1 [ [1— {1—e % (x +1)}9]190

0 i=1 i=1

The above integrals can not be solved in analytic form, antiave used Gauss- Laguerre’s quadrature formula for their

evaluation.

4 Comparison of the Estimators

In this section, we compare the various estimatorséivg.és, éG in terms of simulated risks (average loss over sample
space) under GELF. It is clear that the expressions for #ie itannot be obtained in nice closed form. So, the risks of
the estimators are estimated on the basis of Monte Carlolaiimn study of 15000 samples. It may be noted that the
risks of the estimators will be a function of number of itenus pn testn, number of failure itemsn, parametef of the
model, the hyper parameteysand d of the prior distribution, the probability of removatsand the loss parameterin
order to consider the variation of these values, we obtaihed simulated risks fon = 20, m = 16, ¢ = +2,
p=0.1[0.1]0.9, (6,M) = (0.45,0.45), (1,1),(2,2),(3,3) andV = 0.1,0.5,1,2,5,10,100.

Tables 1-2 shows the simulated risks of the estimator® fafr different values ofp to know the effect of variation
of probability of removals on the behaviour of the estimatand rest Table shows the behaviour of the estimators for
different confidence (in terms of the prior varianégin the guessed value & as the prior meaM. For Table 1, the
prior varianceV is taken as ( (showing highest confidence in the guessed/ expected eaiasM = 2) and for Table
2, itis taken as 100 (showing weak confidence in the guesded v&6 asM = 2). Tables 3-6 shows the simulated risks
of the estimators of for different confidence (in terms of the prior variantgein the guessed/ expected valuebods the
prior meanM. The values of8,M) are taken as (0.45, 0.45), (1, 1), (2, 2) and (3, 3) respédygtive
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Table 1: Risks of the estimators @ under GELF for fixech=20,m=16,6 =2, M =2,V =0.1

c=+2 c=-2
P Rolle)  Ro(Bs) Ro(Bw) _ Rs(fs)  Rol(0s) R (Bu)
0.1 0.01806085 0.02280319 0.2616136 0.02224671 0.02681011432867
0.2 0.01753692 0.02051633 0.2217551 0.02130798 0.026346801349945
0.3 0.01747559 0.01966373 0.2040761 0.02061367 0.01991531302015
0.4 0.0175328 0.01936451 0.1973288 0.01978936 0.019311%h8275748
0.5 0.01746726 0.01892542 0.1895154 0.01967025 0.019266%H1269812
0.6 0.01725819 0.01840503 0.180719 0.01940204 0.019080RB8271345
0.7 0.01735347 0.01847842 0.1786356 0.01922389 0.0190043112498
0.8 0.0173863 0.01842922 0.1782316 0.01929778 0.01902921244912
0.9 0.0174571 0.01819471 0.1711512 0.01935479 0.01919428242753

Table 2: Risks of the estimators df under GELF for fixech=20,m=16,6 =2 ,M =2,V =100

p

c=+2

c=-2

Rs(6c)

Rg(6s) R (6wm)

Rs(6c)

Rs(6s) Re(6w)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1842305
0.1643036
0.1494717
0.1447854
0.1407876
0.1443127
0.1382853
0.1404795
0.1377727

0.2613134
0.2249233
0.2002807
0.191031

0.1823119
0.1859287
0.1759059
0.177176

0.1717521

0.2627249
0.2261695
0.2013577
0.1921082
0.1834088
0.1869588
0.1767949
0.1783076
0.1727641

0.1540899
0.1385676
0.1321424
0.1292502
0.1260229
0.1265856
0.1253101
0.1249847
0.1231351

0.1432171451917
0.1313545334R15
0.126318 89022
0.1249286 6%R1B
0.1221056 249726
0.123304125%811
0.1228271254824
0.1232442 53198
0.1211229236986

Table 3: Risks of the estimators @& under GELF for fixech=20,m= 16,0 =0.45 ,M =0.45,p=0.7

Vv c=+2 c=-2
Ra(6c) Rg(6s) Rs(6v) Ra(6c) Ra(6s) Ra(6m)

0.1 0.1522145 0.2597943 20.5683 0.1430109 0.1283871 22850
0.5 0.1982171 0.3231893 20.5683 0.1683532 0.1511554 22850

1 0.2002473 0.3301908 20.5683 0.1691168 0.1517257 2.85032
2 0.2058107 0.3365795 20.5683 0.1671809 0.1502441 2.35032
5 0.2078822 0.3378962 20.5683 0.170149 0.1528192 2.250325
10 0.2062502 0.3368736 20.5683 0.1729808 0.1553371 228503
100 0.2047746 0.3356332 20.5683 0.1720665 0.1548754 22850
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Table 4: Risks of the estimators & under GELF for fixeh=20,m=16,0=1,M=1,p=0.7
v c=2 c=-2
Ro (o) Ra(09) Rs(fv)  Ro(fo) Ra(69) R (6u)
0.1 0.01998175 0.03513954 0.1772896 0.02743486 0.023575m1254698
0.5 0.08176263 0.1149959 0.1757939 0.0816942 0.07709967249649
1 0.1027509 0.1397839 0.1810192 0.09569857 0.09148601261698
2 0.1145359 0.1559517 0.1845201 0.1009505 0.09688423 4@642
5 0.1125766 0.1552062 0.1739459 0.1071259 0.1026709  4BIZ5
10 0.1206365 0.1649486 0.1806348 0.1062286 0.102354 42823
100 0.1198332 0.1629902 0.1759634 0.1109909 0.1069599 24&r5H6
Table5: Risks of the estimators @& under GELF for fixeh=20,m=16,0=2,M=2,p=0.7
v c=+2 c=-2
Ro(fc) Ra(09) Re(fv)  Ro(fo) Ra(69) R (6u)
0.1 0.01738049 0.01849966 0.1809 0.01928572 0.01902396226408
0.5 0.05263576 0.06856368 0.1800376 0.05624724 0.05815181244203
1 0.08196411 0.1032413 0.1824513 0.07914178 0.0761269222%493
2 0.1040259 0.1298358 0.1763877 0.09843685 0.09536179234187
5 0.1250234 0.1580818 0.1796584 0.1153303 0.1125645  &7325
10 0.1303433 0.1672054 0.1784685 0.120486 0.1178791  ©6485
100 0.1391073 0.177199 0.1781687 0.1254443 0.1228761 50148
Table 6: Risks of the estimators @& under GELF for fixech=20,m=16,0=3 ,M=3,p=0.7
Vv c=2 c=-2
Rs(6c) Rs(6s) Rs(6wm) Rs(6c) Ra(6s) Re(6w)
0.1 0.002441971 0.002372834 0.1779936 0.002452271 (BE62FZ 0.1236747
0.5 0.02418586 0.02894724 0.1793605 0.02651089 0.026960%.1235788
1 0.05407217 0.0626433 0.1808652 0.05448362 0.05292322124%691
2 0.08221695 0.09848584 0.1790107 0.08108148 0.079337531251812
5 0.107614 0.1324118 0.1703554 0.1045946 0.1024301 5336
10 0.1235384 0.1542973 0.1752024 0.1146213 0.1120572 2952
100 0.142346 0.1810237 0.1811093 0.129197 0.1266361 m287
5 Conclusion

In this paper, we proposed the classical and the Bayesiamagipes to estimate the parameter of Bzdistribution.

In classical approach, we have derived MLE. Bayes estimaoe obtained using both GELF and SELF. To compare
the considered estimators, extensive simulation studige heen performed. The hyper parameters were chosen as per
method suggested in sub-sectioR.3The results shows that, when over estimation is morewsetian under estimation,

in almost all the cases, the estimaflyy performs better than the estimatdksand 6y; while in the reverse situation, in

almost all the case$g performs better thafg and6y.
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