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Abstract: In the present study, we have considered the exponentiated gamma distribution as an important life time model for the
situations where hazard rate function is either monotonic increasing or in the bathtub shape. We propose Bayes estimators of the
parameter of the exponentiated gamma distribution under general entropy loss function, squared error loss function and we have also
derived its maximum likelihood estimator. The estimators have been compared through their simulated risks.
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1 Introduction

[1] introduced exponentiated gamma distribution as a life time model applicable to the life data having either monotonic
increasing or bathtub shaped hazard rate function. It seemsto be flexible in this sense and it has single parameter, the
shape. Therefore, it is parsimonious in parameters and hence simple to use.

The probability density function (pdf) of exponentiated gamma distribution EG(θ ) is of the form,

f (x) = θxe−x[1− e−x(x+1)]θ−1 ; x > 0, θ > 0 (1)

whereθ is the shape parameter.

The cumulative distribution function (cdf), survival function and hazard rate function corresponding to the pdf (1) are
given by,

F(x) = [1− e−x(x+1)]θ (2)

S(x) = 1− [1− e−x(x+1)]θ (3)

and

h(x) =
θxe−x[1− e−x(x+1)]θ−1

1− [1− e−x(x+1)]θ
(4)

respectively.

It has increasing hazard rate function whenθ >
1
2 and its hazard rate function takes Bathtub shape whenθ ≤ 1

2. It is
important to mention that whenθ = 1, pdf (1) is that of gamma distribution with shape parameterα = 2 and scale
parameterβ = 1, i.e.G(2,1). For more details about this distribution, see [2].
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The rest of the paper is organized as follows: In section 2, wehave explained Progressive Type II (PT-II) Censored
Sample with Binomial Removals and derived MLE ofθ for such a sample from EG(θ ) distribution. Further, in section
3, we have derived the Bayes estimators ofθ under General Entropy Loss Function (GELF) and Squared Error Loss
Function (SELF) using gamma distribution as prior forθ . Comparison between the considered estimators ofθ , through
simulated risks under GELF is shown in section 4. Finally, conclusions have been shown in the last section.

2 PT-II Censored Sample with Binomial Removals

In medical field and reliability analysis, most of the data are not coming either in the form of the complete sample or in
the form of Type I or Type II censored samples. The observations may be removed from the experiment at any point of
time other than the termination point. This is what is known as progressive censoring scheme (see, [9] and [10]). For
example, patients are registered for visiting to a doctor ona certain day, after getting the time of appointment, some
patient(s) may be removed any time, due to some unavoidable reasons. The sample, thus obtained is the patients, who
successfully completed his task of visiting the doctor, is called the PT-II censored sample. It may also be noted that the
no. of patients removed from the process is not fixed, therefore it may be supposed to be a non-negative integral valued
discrete random variable. If the no. of removals follow Binomial distribution with certain parameters, then the
corresponding sample is called PT-II censored sample with Binomial removals. For more applications of PT-II censored
with Binomial removal, the readers are referred to [11,12,13,14,15,16,17]. More precisely, this scheme is planed as
follows;

Supposen identical items are put on a life testing experiment and we will terminate the experiment as soon asm ≤ n
items are failed (i.e.m is the effective sample size). Also, suppose that the probability p of removal is constant for each
individual. Let Ri be the no. of removals after theith failure occured at timeXi. Then(X1,R1),(X2,R2), . . . ,(Xm,Rm)
constitute a PT-II censored sample with the Binomial removals, if

At the time of first failureX1, let R1 items are randomly removed with fixed probabilityp of removals from the
remainingn−1 survived items. Here,R1 follows B(n−m, p). Similarly, at the time of second failureX2, let R2 items
from the remainingn− 2− R1 survived items are randomly removed with the same removal probability p. Here,R2
follows B(n−m−R1, p). Similarly, at the time of third failureX3, let R3 items are randomly removed from the remaining

n−3−
2
∑

i=1
Ri alived items with the same removal probabilityp. Here,R3 follow B

(

n−m−
2
∑
i=1

Ri, p

)

. Continuing in this

way, at the time of(m−1)th failureXm−1, let Rm−1 items are randomly removed with prefixed probabilityp of removals

from the remainingn− (m−1)−
m−2
∑

i=1
Ri survived items and alsoRm−1 follow B

(

n−m−
m−2
∑

i=1
Ri, p

)

. Finally, at the time

of mth failure Xm, all the remaining Rm = n − m −
m−1
∑

i=1
Ri survived items will be removed. Therefore,

(X1,R1),(X2,R2), . . . ,(Xm,Rm) denote PT-II censored sample with Binomial removals, whereX1 < X2 < X3 < .. . < Xm
andR1,R2, . . . ,Rm are the corresponding no. of removals.

The full likelihood function of PT-II censored sample with Binomial removals is given by (see, [9])

L(θ ) = L1(θ ,X|R = r)P(R = r) (5)

whereL1(θ ,X|R = r) is the likelihood function with pre-determined number of removals, sayR1 = r1,R2 = r2, . . . ,Rm =
rm and is given by

L1(θ ,X|R = r) = c∗
m

∏
i=1

f (xi)[S(xi)]
ri (6)

and
P(R = r) = P(Rm−1 = rm−1|Rm−2 = rm−2, . . . ,R1 = r1) . . .P(R2 = r2|R1 = r1)P(R1 = r1) (7)

The constantc∗ involved in (6) is given by

c∗ = n
m−1

∏
l=1

(

n− l−
l

∑
i=1

ri

)
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It is known that

P(R1 = r1) =

(

n−m
r1

)

pr1(1− p)n−m−r1 (8)

and also for everyi = 2,3, · · · ,m−1,

P(Ri = ri|Ri−1 = ri−1, . . . ,R1 = r1) =

(

n−m−
i−1
∑

l=1
rl

ri

)

pri(1− p)
n−m−

i
∑

l=1
rl

(9)

Putting the values from (8) and (9) in (7), after some simplification, we get

P(R = r) =
(n−m)!p

m−1
∑

i=1
ri
(1− p)

(m−1)(n−m)−
m−1
∑

i=1
(m−i)ri

(

n−m−
m−1
∑

i=1
ri

)

!

(

m−1
∏
i=1

ri!

) (10)

Again, putting the values from (1) and (3) in (6), we get

L1(θ ,X|R = r) = c∗θ m
m

∏
i=1

xie
−

m
∑

i=1
xi

m

∏
i=1

[1− e−xi(xi +1)]θ−1
m

∏
i=1

[1− (1− e−xi(xi +1))θ ]ri (11)

Finally, substituting the values from (10) and (11) in (5), we get

L(θ ) = c∗∗θ m
m

∏
i=1

xie
−

m
∑

i=1
xi

m

∏
i=1

[1− e−xi(xi +1)]θ−1
m

∏
i=1

[1− (1− e−xi(xi +1))θ ]ri (12)

where

c∗∗ = c∗ (n−m)!p

m−1
∑

i=1
ri
(1−p)

(m−1)(n−m)−
m−1

∑
i=1

(m−i)ri

(

n−m−
m−1
∑

i=1
ri

)

!

(

m−1
∏

i=1
ri!

)

which is independent ofθ .

2.1 Maximum Likelihood Estimator of θ

The log-likelihood function can be obtained by taking ln of both sides of (12). The same is obtained as follows

l(θ) =C+m ln θ +
m

∑
i=1

ln(xi)−
m

∑
i=1

xi +(θ −1)
m

∑
i=1

ln[1− e−xi (xi +1)]+
m

∑
i=1

ri ln[1− (1− e−xi (xi +1))θ ] (13)

The log- likelihood equation for estimatingθ is given by,

∂ l(θ )
∂θ

= 0 (14)

and after simplification, it reduces to,

m
θ
+

m

∑
i=1

ln[1− e−xi(xi +1)]−
m

∑
i=1

ri[1− e−xi(xi +1)]θ ln[1− e−xi(xi +1)]
[1−{1− e−xi(xi +1)}θ ]

= 0 (15)

If θ̂M be the Maximum Likelihood Estimator (MLE) ofθ , then it will be the solution of (15) for θ . The same is, therefore
given by,

θ̂M =
m

m
∑

i=1

ri[1−e−xi (xi+1)]θ̂M ln[1−e−xi(xi+1)]

[1−{1−e−xi(xi+1)}θ̂M ]
−

m
∑

i=1
ln[1− e−xi(xi +1)]

(16)

Above is an implicit equation in̂θM, so it cannot be solved analytically. For solving it, we propose to use some numerical
iteration method, particularly we have used Newton-Raphson method.
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3 Bayes Estimators of θ under GELF and SELF

3.1 Loss Function

An important element of statistical inference, which can always be viewed as a statistical decision problem, is the loss
function (see, [3]). The incorporation of a loss function into statistical analysis was first studied extensively by [4]. Though,
it is often argued that it is too difficult to define functions that truly represent the losses. Besides this, a single loss function
is not appropriate for all the situations. However, a statistical loss function has to be non-negative function taking smallest
value zero when the inference matches exactly with the reality. A number of loss functions have been suggested in
the statistical literature depending upon the various considerations related to the type of inference to be drawn and the
requirement of the problem in hand. One among them is squarederror loss function (SELF), as defined by

LS(θ̂ ,θ ) = (θ̂ −θ )2 (17)

The Bayes estimator ofθ under SELF (17) is given by

θ̂S = E[θ |X] (18)

provided that the posterior expectationE(θ |X) exists and is finite.

No doubt, it is a suitable loss function, in a situation whereover estimation and under estimation of the equal
magnitudes are of the equal importance. Hence, it is suitable for estimation of the location parameter. For estimation of
scale parameter, a modified form of it may be defined as follows,

LMS(θ̂ ,θ ) =

(

θ̂
θ
−1

)2

(19)

But, one criticism behind its use is that it penalizes over estimation more heavily than under estimation. Likewise, several
loss functiuons have been defined in literature and they havetheir own advantages/disadvantages. A useful asymmetric
loss function available in the literature is general entropy loss function (GELF), proposed by [5]. It is defined as follows;

LG(θ̂ ,θ ) ∝

(

θ̂
θ

)c

− c ln

(

θ̂
θ

)

−1 (20)

wherec is the loss parameter. Whenc > 0, over estimation is more serious than under estimation andwhenc < 0,
under estimation is more serious than over estimation. For detailed discussion about its seriousness, readers may refer to
[8].

The Bayes estimator ofθ under GELF (20) is given as,

θ̂G = [E(θ−c|X)]−
1
c (21)

It is easy to see that whenc = −1, the Bayes estimator (21) under GELF reduces to the Bayes estimator(18) under
SELF.

3.2 Prior and Posterior Distributions

For Bayes estimators, another important element is to specify a prior distribution for the parameterθ . Hence, we consider
Gamma prior (see [6]) for θ having pdf

g(θ ) =
δ γ

Γ (γ)
e−δθ θ γ−1; θ > 0,δ > 0,γ > 0 (22)

whereγ and δ are the hyper- parameters. These can be obtained, if any two independent informations onθ are
available, say prior mean and prior variance are known (see [7]). The mean and variance of the prior distribution (22) are
γ
δ and γ

δ 2 respectively. Thus, we takeM = γ
δ andV = γ

δ 2 , yieldingγ = M2

V andδ = M
V .
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The formula for the evaluation of the posterior pdf ofθ is given by,

h(θ |X) =
L(θ )g(θ )

∞
∫

0
L(θ )g(θ )∂θ

(23)

Putting the value from (12) and (22) in (23), after simplification, we get

h(θ |X) =

θ m+γ−1e−δθ
m
∏
i=1

{1− e−xi(xi +1)}θ−1
m
∏
i=1

[1−{1− e−xi(xi +1)}θ ]ri

∞
∫

0
θ m+γ−1e−δθ

m
∏
i=1

{1− e−xi(xi +1)}θ−1
m
∏
i=1

[1−{1− e−xi(xi +1)}θ ]ri∂θ
(24)

Now, to have an idea about the shape of the prior and posteriorpdfs for different confidence levels in the guessed value
of θ , we have generated a PT-II censored sample with Binomial removals from EG(θ ) distribution for fixedn = 20,
m = 16,θ = 2, p = 0.7, M = 2 (guess/ expected value ofθ as its true value) andV = 0.1 (showing a higher confidence
in the guessed value) andV = 100 (showing a weak confidence in the guessed value). The sample generated is

(X,R) = (0.7610091,3),(1.0066683,1),(1.5228306,0),(1.8726164,0),(1.8920417,0),
(1.9040363,0),(2.1048797,0),(2.4016176,0),(2.6582957,0),(2.6584566,0),(3.0237240,0),
(3.0540966,0),(3.1027171,0),(3.7851181,0),(3.9574827,0),(4.4831233,0).

Fig. 1: Prior and Posterior pdfs ofθ for a randomly generated sample from EG(θ ) for fixedn = 20,m = 16, p = 0.7, θ = 2, M = 2 and
V=0.1

Now, the Bayes estimator ofθ under GELF (20) is obtained as follows,

θ̂G =
[

E{θ−c|X}
]− 1

c

=





∞
∫

0

θ−ch(θ |x)∂θ





− 1
c

=









∞
∫

0
θ m−c+γ−1e−δ θ m

∏
i=1

{1−e−xi (xi +1)}θ−1
m
∏
i=1

[1−{1−e−xi (xi +1)}θ ]ri ∂θ

∞
∫

0
θ m+γ−1e−δ θ

m
∏
i=1

{1−e−xi (xi +1)}θ−1
m
∏
i=1

[1−{1−e−xi (xi +1)}θ ]ri ∂θ









− 1
c

(25)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


270 D. Kumar et al.: Bayesian Estimation of Exponentiated GammaParameter

Fig. 2: Prior and Posterior pdfs ofθ for a randomly generated sample from EG(θ ) for fixedn = 20,m = 16, p = 0.7, θ = 2, M = 2 and
V=100

Further, puttingc =−1 in (25), we will get the Bayes estimator̂θS of θ under SELF (17) as follows,

θ̂S =

∞
∫

0
θ m+γe−δ θ

m
∏
i=1

{1−e−xi (xi +1)}θ−1
m
∏

i=1
[1−{1−e−xi (xi +1)}θ ]ri ∂θ

∞
∫

0
θ m+γ−1e−δ θ

m
∏
i=1

{1−e−xi (xi +1)}θ−1
m
∏

i=1
[1−{1−e−xi (xi +1)}θ ]ri ∂θ

(26)

The above integrals can not be solved in analytic form, and wehave used Gauss- Laguerre’s quadrature formula for their
evaluation.

4 Comparison of the Estimators

In this section, we compare the various estimators i.e.θ̂M, θ̂S, θ̂G in terms of simulated risks (average loss over sample
space) under GELF. It is clear that the expressions for the risks cannot be obtained in nice closed form. So, the risks of
the estimators are estimated on the basis of Monte Carlo simulation study of 15000 samples. It may be noted that the
risks of the estimators will be a function of number of items put on testn, number of failure itemsm, parameterθ of the
model, the hyper parametersγ andδ of the prior distribution, the probability of removalsp and the loss parameterc. In
order to consider the variation of these values, we obtainedthe simulated risks forn = 20, m = 16, c = ±2,
p = 0.1[0.1]0.9, (θ ,M) = (0.45,0.45),(1,1),(2,2),(3,3) andV = 0.1,0.5,1,2,5,10,100.

Tables 1-2 shows the simulated risks of the estimators ofθ for different values ofp to know the effect of variation
of probability of removals on the behaviour of the estimators and rest Table shows the behaviour of the estimators for
different confidence (in terms of the prior varianceV ) in the guessed value ofθ as the prior meanM. For Table 1, the
prior varianceV is taken as 0.1 (showing highest confidence in the guessed/ expected valueof θ asM = 2) and for Table
2, it is taken as 100 (showing weak confidence in the guessed value ofθ asM = 2). Tables 3-6 shows the simulated risks
of the estimators ofθ for different confidence (in terms of the prior varianceV ) in the guessed/ expected value ofθ as the
prior meanM. The values of(θ ,M) are taken as (0.45, 0.45), (1, 1), (2, 2) and (3, 3) respectively.
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Table 1: Risks of the estimators ofθ under GELF for fixedn = 20,m = 16,θ = 2 , M = 2,V = 0.1

p
c=+2 c=-2

RG(θ̂G) RG(θ̂S) RG(θ̂M) RG(θ̂G) RG(θ̂S) RG(θ̂M)
0.1 0.01806085 0.02280319 0.2616136 0.02224671 0.02081016 0.1432867
0.2 0.01753692 0.02051633 0.2217551 0.02130798 0.02034693 0.1349945
0.3 0.01747559 0.01966373 0.2040761 0.02061367 0.01991531 0.1302015
0.4 0.0175328 0.01936451 0.1973288 0.01978936 0.019311580.1275748
0.5 0.01746726 0.01892542 0.1895154 0.01967025 0.01926669 0.1269812
0.6 0.01725819 0.01840503 0.180719 0.01940204 0.019080380.1271345
0.7 0.01735347 0.01847842 0.1786356 0.01922389 0.01900441 0.12498
0.8 0.0173863 0.01842922 0.1782316 0.01929778 0.0190292 0.1244912
0.9 0.0174571 0.01819471 0.1711512 0.01935479 0.019194450.1242753

Table 2: Risks of the estimators ofθ under GELF for fixedn = 20,m = 16,θ = 2 , M = 2,V = 100

p
c=+2 c=-2

RG(θ̂G) RG(θ̂S) RG(θ̂M) RG(θ̂G) RG(θ̂S) RG(θ̂M)
0.1 0.1842305 0.2613134 0.2627249 0.1540899 0.1432171 0.1457917
0.2 0.1643036 0.2249233 0.2261695 0.1385676 0.1313545 0.1334275
0.3 0.1494717 0.2002807 0.2013577 0.1321424 0.126318 0.1289029
0.4 0.1447854 0.191031 0.1921082 0.1292502 0.1249286 0.1269216
0.5 0.1407876 0.1823119 0.1834088 0.1260229 0.1221056 0.1249726
0.6 0.1443127 0.1859287 0.1869588 0.1265856 0.1233041 0.1255811
0.7 0.1382853 0.1759059 0.1767949 0.1253101 0.1228271 0.1254824
0.8 0.1404795 0.177176 0.1783076 0.1249847 0.1232442 0.1253196
0.9 0.1377727 0.1717521 0.1727641 0.1231351 0.1211229 0.1236936

Table 3: Risks of the estimators ofθ under GELF for fixedn = 20,m = 16,θ = 0.45 ,M = 0.45, p = 0.7

V
c=+2 c=-2

RG(θ̂G) RG(θ̂S) RG(θ̂M) RG(θ̂G) RG(θ̂S) RG(θ̂M)
0.1 0.1522145 0.2597943 20.5683 0.1430109 0.1283871 2.250325
0.5 0.1982171 0.3231893 20.5683 0.1683532 0.1511554 2.250325
1 0.2002473 0.3301908 20.5683 0.1691168 0.1517257 2.250325
2 0.2058107 0.3365795 20.5683 0.1671809 0.1502441 2.250325
5 0.2078822 0.3378962 20.5683 0.170149 0.1528192 2.250325
10 0.2062502 0.3368736 20.5683 0.1729808 0.1553371 2.250325
100 0.2047746 0.3356332 20.5683 0.1720665 0.1548754 2.250325
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Table 4: Risks of the estimators ofθ under GELF for fixedn = 20,m = 16,θ = 1 , M = 1, p = 0.7

V
c=2 c=-2

RG(θ̂G) RG(θ̂S) RG(θ̂M) RG(θ̂G) RG(θ̂S) RG(θ̂M)
0.1 0.01998175 0.03513954 0.1772896 0.02743486 0.02357507 0.1254698
0.5 0.08176263 0.1149959 0.1757939 0.0816942 0.07709967 0.1249649
1 0.1027509 0.1397839 0.1810192 0.09569857 0.09148601 0.1261698
2 0.1145359 0.1559517 0.1845201 0.1009505 0.09688423 0.1240642
5 0.1125766 0.1552062 0.1739459 0.1071259 0.1026709 0.1254877
10 0.1206365 0.1649486 0.1806348 0.1062286 0.102354 0.1234283
100 0.1198332 0.1629902 0.1759634 0.1109909 0.1069599 0.1248256

Table 5: Risks of the estimators ofθ under GELF for fixedn = 20,m = 16,θ = 2 , M = 2, p = 0.7

V
c=+2 c=-2

RG(θ̂G) RG(θ̂S) RG(θ̂M) RG(θ̂G) RG(θ̂S) RG(θ̂M)
0.1 0.01738049 0.01849966 0.1809 0.01928572 0.01902396 0.1226408
0.5 0.05263576 0.06856368 0.1800376 0.05624724 0.05315186 0.1244203
1 0.08196411 0.1032413 0.1824513 0.07914178 0.07612692 0.1229493
2 0.1040259 0.1298358 0.1763877 0.09843685 0.09536179 0.1234137
5 0.1250234 0.1580818 0.1796584 0.1153303 0.1125645 0.1258732
10 0.1303433 0.1672054 0.1784685 0.120486 0.1178791 0.1255648
100 0.1391073 0.177199 0.1781687 0.1254443 0.1228761 0.1251145

Table 6: Risks of the estimators ofθ under GELF for fixedn = 20,m = 16,θ = 3 , M = 3, p = 0.7

V
c=2 c=-2

RG(θ̂G) RG(θ̂S) RG(θ̂M) RG(θ̂G) RG(θ̂S) RG(θ̂M)
0.1 0.002441971 0.002372834 0.1779936 0.002452271 0.002487627 0.1236747
0.5 0.02418586 0.02894724 0.1793605 0.02651089 0.02496056 0.1235788
1 0.05407217 0.0626433 0.1808652 0.05448362 0.05292322 0.1249691
2 0.08221695 0.09848584 0.1790107 0.08108148 0.07933753 0.1251812
5 0.107614 0.1324118 0.1703554 0.1045946 0.1024301 0.1236653
10 0.1235384 0.1542973 0.1752024 0.1146213 0.1120572 0.1229152
100 0.142346 0.1810237 0.1811093 0.129197 0.1266361 0.1270126

5 Conclusion

In this paper, we proposed the classical and the Bayesian approaches to estimate the parameter of EG(θ )- distribution.
In classical approach, we have derived MLE. Bayes estimators are obtained using both GELF and SELF. To compare
the considered estimators, extensive simulation studies have been performed. The hyper parameters were chosen as per
method suggested in sub-section 3.2. The results shows that, when over estimation is more serious than under estimation,
in almost all the cases, the estimatorθ̂G performs better than the estimatorsθ̂S andθ̂M; while in the reverse situation, in
almost all the cases,̂θS performs better than̂θG andθ̂M.
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