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Abstract: In present article, we discussed about Two - Sample Bayeticticn scenario under progressive Type - Il right censprin
scheme for two - parameter Rayleigh model. The Bayes piedit¢ngth of bounds and Bayes predictive estimatorrtBrorder
statistic drawn from a future random sample of parent pdfmiaindependently and with an arbitrary progressive ogng scheme
are obtained. The properties of Highest Posterior Denstgrvals are also studied
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1 Introduction

Prediction based on censored data is an important topic imyrfields like as medical and engineering sciences. An
important objective of a life - testing experiment is to gotdhe nature of future sample based on current sample.
Prediction of mean, smallest or largest observation in aréusample has a topic of interest and importance in the
context of quality and reliability analysis.

The objective of present paper is to predict about the natfifiture behavior of an observation when sufficient
information regarding the past and present behavior of antewr an observation is known or given.

A good deal of literature is available on predictive infazerfor Rayleigh distribution under different criterior¥] [
presented highest posterior density prediction interfeal&" order statistic of a future sample. The Bayes prediction for
independent future sample based on Type - Il doubly censRegdeigh data have discussed (8].[[15], based on
doubly Rayleigh censored samples, derived estimationeoptkdictive distribution for total time on test up to a carta
failure in a future sample 18] have discussed about some Bayes prediction intervalsdgleiyh model. Some Bayes
estimators for inverse Rayleigh model under differentecidin have discussed byl]]. Recently, 2] presents a
comparative study based on two different asymmetric losstfons for Progressive censored two - parameter Rayleigh
distribution.

The prediction problems of lifetime distribution are imtaont and have been studied by many authors. Few of those who
have been extensively studied predictive inference farrubbservations ar@], [10], [1], [9], [16], [17], [18], [8], [2]
and [14].

The probability density function and distribution functiof the considered two - parameter Rayleigh distribution is

_ . 2
f(x;e,o):xezaexp<—(x 0)>;x>o>o,6>0. @)
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and ,
@);x>o>0,6>0. (2)

F(x;e,a)zl—exp<— 0

Here, parameter@ ando are known as scale and location parameter respectivaly ([

In the present paper, our focus is on Bayes prediction leafjtiounds and Bayes predictive estimators frorder
statistic in a future random sample drawn from parent pdfmiandependently and with arbitrary progressive cemspri
schemes based on Two - sample plan. Both known and unknows o&focation parameter are considered here for the
prediction. For evaluation of performances of the propopestedures, a simulation study carries out also. The
properties of the HPD intervals are studied in last sectiso.a

2 The Progressive Type - |1 Right Censoring

The time and cost restrictions censoring are useful in &ftimg experiments. The censoring arises when exachiigsti

are only partially known. The progressive censoring appabe a great importance in planned duration experiments in
reliability studies. In many industrial experiments inviolg lifetimes of machines or units, experiments have to be
terminated early and the number of failures must be limidvirious reasons. In addition, some life tests require
removal of functioning test specimens to collect degracatelated information to failure time data. The samples tha

arise from such experiments are called censored samples.

The planning of experiments with aim of reducing total disrabf experiment or the number of failures leads naturally
to the Type - | & Type - Il censoring scheme. The main disadagatof Type - | & Type - Il censoring schemes is that
they do not allow removal of units at points other than thenteation point of an experiment. Progressively Type - Il
censored sampling is an important method of obtaining desach lifetime studies.

The Progressive Type - |l right censoring scheme is dessdabdollows:

Let us suppose an experiment in whiclindependent and identical uni¥g, Xs, ..., X, are placed on a life test at the
beginning time and firsin; (1 < m < n) failure times are observed. At the time of each failure odogrprior to the
termination point, one or more surviving units are removedithe test. The experiment is terminated at the timef®f
failure, and all remaining surviving units are removed fritra test.

Let x1) < Xp) < ... < Xy are the lifetimes of completely observed units to fail @RdRy, ..., Rm; (M < n) are the

numbers of units withdrawn at these failure times. H&gRy, ...,Rn; (m < n) all are predefined integers follows the
relation

Rj=n—m.

IE

J

At first failure time x;), withdraw Ry items randomly from remaining — 1 surviving units. Immediately after the
second observed failure timey), R, items are withdrawn from remaining— 2 — Ry surviving units at random, and so
on. The experiments continue until @t failure timexm), the remaining item&y, =n—m— zT;ll R; are withdrawn.

Ry,Rp,... Ry,Ro,..., Ry,Ro,...,
Here, Xl(:n}nznz Rm)axz(: 1.Ro Rm) (:r%mz Rm

mn ) be m ordered failure times andRy, Ry, ...,Rm) be the progressive
censoring scheme (See for detad}) [

geeey

The resultingn ordered values, which are obtained as a consequence ofpkist censoring, are appropriately referred
to as progressively Type - Il right censored order stasstic

Further, it is noted that if
R=0Vi=12,..m-1=Ry=n—-m

Progressively Type - Il right censoring scheme reducesga@timventional Type - Il censoring scheme. Also, noted that i
R=0Vi=12..m=n=m

above censoring scheme reduces to the complete sample case.
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Based on progressively Type - Il censoring scheme the jonatbability density function of order statistics
Xj(_RLRz’ --Rm) Xz(!?réﬁzwﬁm)’m’ (B&iﬁzwﬂn) is defined as
u R
fxl:m:n7X2:m:n7~~7Xm:m:n (670|)_() = Cp |_l f (X(i); 970) (1_ F (X(i); 970)) ) (3)
=

where f(-) andF(-) are given respectively byl and @) andC; is a progressive normalizing constant defined as
Co=n(n—Ri—1)(n—Ri—Rx—2)... (n+ 1- z’j“:‘ll R — m) . The progressive Type - Il censored sample is denoted
by x= (x(l),x(z), ...,x(m)) and(Ry, Ry, ...,Rm) being progressive censoring scheme for considered Rayteaylel.

Subtitling (1) and @) in (3), the joint probability density function is obtain as:

T
fxlmn x2mn ----- Xmmn(e G|X) CpAm()_(v 0) ezma(p( 26’32> 1 (4)

whereAn (x.0) = [y (x;) — @) andTp = 517 (x;) — 0)° (Ri+1).

3 Bayes Prediction Length of Bounds when L ocation Parameter is Known

Assuming the location parameteris known and scale paramet@ris a realization of a random variable. A conjugate
family of prior density for parametdf is taken as an inverted Gamma with probability density fiomct

20+1
01(0)0 (5> exp( 62> a>0,0>0. (5)

There is clearly no way in which one can say that one prior teeb¢han other. It is more frequently the case that, we
select to restrict attention to a given flexible family ofqes, and we choose one from that family, which seems to match
best with our personal beliefs. The prid) (has advantages over many other distributions becauses alytical
tractability, richness and easy interpretability.

Based on Bayes theorem, the posterior density is defined as

XX X (6,0(X) - 91(6)
QX o L:mins/AN2:mins - mn . (6)
O 0) = g e Xomn X (B-01)-02(6) 0B

Using @) and 6) in (6), the posterior density is obtain as

CoAm(x,0) 8~ 2mexp( ) g-2a— 1exp(—%)

N

n(6[x,0) =
JoCpAm(x,0) 6-2m exp( ) f—2a- lexp( %2) de
= m(6|x,0) = n*exp T g—amra)-1 (7)
RA) 262
wheren* = W andTp=Tp+1.
We haveXl(Rnﬁfz"”’R”‘),XZ(F,?1 fz‘”"m,..., (RuRe--Rm) pe the progressive Type - Il censored ordered statisticizefrs

from a sample of size with progressive censoring scherfi®, Ry, ...,Ry) from considered model). Now we assume

that Yls'l 32.0Su) Y2<S'l ﬁz 75‘“') Y,f,,sl S2S) s another (unobserved) independent progressively Typé right
Censored ordered statistics of sMefrom another sample, of si2¢ with progressive censoring scherf®,S, ..., Su)
from same modell).

The first sample is considered as "informative” (past) sanwhereas the second sample is considered as the "future”
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sample. Now, let us take thaf,) be thert";1 < r < M order statistic from the future sample of sike Based on

informative progressive Type - Il right censored sample, phediction ofr'" order statistic from future sample is the
objective of the present article.

Following [4], the probability density function of (" order statistic) is obtain as

r
"6, 0) =9 (v[6,0) 3 A" (1-F (vi16.0))"
i=

2
Y -0) &, Yo~ 0
= QD%i Al exp (-N%) ; (8)

whereA = 31 (Sj+1) =N =31 (Si+1), = [1_1 A andA = 1 —(A.lA-) Vi jr>1Af=1forr =1
j—Ai
The Bayes predictive density function 6% order statisticyy) is thus defined as
h* (Y |x. 6,0) = /eh(y<r>|970) -11(6]x,0)d6. )

Applying (7) and @) in (9), we get

r Ai (Y — o)+ T
h* (y(r>|)_(’ G,U) _ q’n* (y(r> _ O_) Zl)\l* Aap <_ | ( (r) ) p) . efz(m—HJ)*Bde
i=

(10)

The Bayes prediction bounds fi;);1 < r <M are obtained by evaluatirfer (Y(r> > £|>_<) , for some given value of.
We have from 10)

Pr (Y > £lx) =/g h* (yr)lx,6,0)dy

. 0 Lo, A\ —(Mmta+1)
Pr (Y(r) > £|)_() = 2q0(m+ G) (Tp) m—H?!/e (y(r) - O') -Z\)\i ()\i (Y(r) - O')Z—I—Tp) dy(r)
=
S Pr (Y, > €)= 0 (’\‘*> WEZD o (11)
— 2) 5 I = .
v i; A Tp
Now, One - Sided Bayes prediction bounds are obtain by splidglowing equality
T
Pr (Y >l1fx) =1— > (12)
and .

Pr (Y > l2lx) = > (13)

Here,l1 andl, are the lower and upper Bayes prediction bounds for the randwoiableY;) and 1- 7 is the confidence
prediction coefficient.

Using (L1) in (12) and (3) we get the lower and upper Bayes prediction bounds as:

D)
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and

Q-5 () .

Further simplification of the equalitied4) does not possible. A numerical technique is applied her@lftaining the
values ofl; andl, for somer.

For a particular case, substituting= 1 in the predictive survival functiori), for predicting the first iten¥(y of next
item to fail, and is obtain as

2 —-m-a
Pr (Y > €lx) = (N (e _fa) + 1) . (15)
p

The, One - Sided Bayes prediction lower and upper boundé{pare now obtain as

R T\ ~1/(a+m)
lh=0+1/T W’T —{(1—5) —1}

| Too e [T Y(@tm)
lp=0+14/T W’T —{(5) —1}. (a6)

Hence, the Bayes prediction length of boundstgy is

and

L=l,—15. (17)

Now, the Bayes predictive estimator ¢ order statisticY;); 1 <r < M under squared error loss function is obtained as

A?j /2> @?(2); (18)

where®(z) = [/ %dz andv = ﬁff;_z

4 Bayes Prediction Length of Bounds when L ocation Parameter is Unknown

When, scale and location both parameters are consideretidsm variable, the joint probability density function end
progressive Type - Il censoring criterion is given by

1 T,
fxlzm:n,XZZm:n,...,m;m;n (ea G|)_() = CpAm ()_(7 0) mexp (_ 2_9p2> . (19)

Itis clear from (L9) that, the functiofT, depends on the location parameteHence, in present case when both parameters
are consider being random variable, the joint prior derfsitparametef ando is considered as

9(6,0) =02(6]0)-93(0). (20)

Hereg, (8|0) andgs (o) both are inverted gamma densities and defined as

g—20—1g—1/26?

and
o—2B-1g1/20?
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The joint posterior density function is now obtained as

fxlmnxzmn Xmmn(e 0|X) (970)
O = T ey menoma. X (0-01-9(6.0) 4640

(0o exp - Tp)) (Feszro e (—25))

Jo i (552 fo 02 Lexp (33 ) dodo
+ 1
srow-g(omemien(-g) ) (Fhpe P ee(50))i @

= — T
whereo = -1 ando = [, ‘r”(‘;)“’ (A'TZ()WLU 2= 1exp( 2c1;2)d0'

On similar line, the Bayes predictive density function¥gy;1 <r < M is obtained as

0™ (yp) %, 6, 0) // »16,0) - 1" (6, 0]x)d6do

v N ()

2 A~
/ g-2mro+l)-lgp <_ Ai (y(r) —0) +Tp> dodo
6

20 An(X,0)F (Mm+0+1) 55 4
o bl 6.0) =225 ot
(Y(r)|_ ) o i; i o I—(O.)

—-m-o-1

exp (—%) (V) —0) ()\i (Vi) — o)’ + 'fp) do (24)

Hence, the Bayes prediction bounds ¥y;1 < r < M are obtained similarly by evaluatirfes ( > s|x) for some
given value ofe. We have from 24)

Pr (Y > lx) =/£ ™ (v %) dy(r)

_ %PiZAi*/UAm(XaU)I/__(ST;+ o+1) o 2B Lexp (_%)

0 -m-o-1
'/y()g (i —9) (X (v~ 0)*+ To) dy(rdo

= Pr (Y > €[x) :g r <_') Qp(0)do (25)

—-m-a
whereQ(0) = A—m(%ﬂggr[pzrgrl) o lexp (—%2) ()\i (e— 0)2+Tp) .
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Using 25) in (12) and (L3) we get One - Sided lower and upper Bayes prediction bounds as

() (-2 =3(5) fan e
<_)( ZG)/QF" (26)

—-m-o
whereQp, (0) = % o2~ 1exp( 2:;2) ()\. ) j=12

and

Further simplifications of equalitie®) do not possible. A numerical technique is applied here bgaiming the values
of I; andl, for somer.

Similarly, the Bayes predictive estimator fiéf order statisticv(;); 1 <r < M under squared error loss function in present
case is

~ (0 r )\* _ .
Yy =E(Yn)lx) = | Pr(Yy) > elx) de = 26 2, (ﬁ) /GQP(U) do; (27)

— A\ —Mm— 1 )
whereQy(0) = %W G*Zﬁ’*lexp(—z%z) (To) ™ 72 0(2), @(2) = [ vz (1+2) ™ “dzandv = ﬁf_‘;—z

SH.P.D.INTERVALS

In this section, our objective is to study about highest @ast density (HPD) interval for unknown paramegeof the
considered model. Since, the posterior densit¥|x, o) corresponding to the parametiis unimodel. Thus, 10Q —
7)% HPD intervalHy, Hy] for the paramete must satisfy the following equations simultaneously.

/HH2 m(fx,0)do=1—1 (28)
and
m(Hilx,0) = m(Hz[x, 0). (29)

Now, the expressior2@) & (29) rewritten as

n

ﬁfw et ldz=1-1
= [y(a+mH")—y(a+mH")] =1-1)F (M+a) (30)
and )
ool (o) () @
whereH’ = H2 andH” = szZ'

Solve simultaneously the equatior3®) and @1) to obtain the highest posterior density limidg andH,.
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6 Numerical lllustration
In present section, we carry out the performance of Bayegigiien lengths of bounds, Bayes predictive estimatorfor
order statistic and HPD intervals for the future order statiunder progressively Type - Il censored sample.

1.For given values of the prior parameterrandom values of the parametgis generated from the prior densiy)(

2.Using generated values 6fobtained in stepslj, we generate a progressively Type - Il censored sampléhéocase
of known location parameter, of simefor a given values of censoring schefei = 1,2,....m, from the considered
Rayleigh model, according to an algorithm proposed #ly The censoring scheme for different valuesmofis
presented in Tablely.

3.For the different informative sample sizes= 10,10,20 and future sample siZ¢(= 10,20) Table @) displays the
Bayes predictive length of bounds for tH8 order statisticy/).

4.We consider here without loss generalfy= 0Vi = 1,2,...,M, which represents the ordinary order statistics. The
smallest, middle, and largest future ordered lifetimesjctvhare practically of some special interest, are only
predicted.

5.The lengths of prediction boundsyf,, are calculated form,D0,000 generated future ordered samples each of size
N = 20 of the Rayleigh density when location parameter is known.

6.For given8 ando with N = 10, generate the future ordered samples of size 10,10, 20) using following relation
Xi = 0/262log(1—U;). Here,U; are independently distributédi(0, 1).

7.For selected values af (= 0.50,1.00,5.00,10.00) and prior parametes (= 0.50,1.00, 5.00,10.00); the prediction
length of bounds are obtained and presented in Taler(y for (a = o = 0.50,10.00).

8.1t is observed from Table] that, the length of bounds tend to be wider as the value & g@aameter increases when
other parametric values are consider to be fixed. Oppositelthas been seen when prior parametarcreases. It is
also noted further that when confidence lewelecreases the length of intervals tends to be closer.

In case, when both parameters are considered to be rand@hleathe length of bounds are obtained as follows:

1.We generate location parametefrom (22) for given values of the prior paramet@r Using generated values of,
obtained the values of the paramefidny using @1).

2.Following Step 2) to (6), the lengths of the Bayes prediction bounds ft order statistics are obtained and
presented in Tabled] for selected parametric values.

3.All the behaviors are seen to be similar as compared tortbe/ik case of location parameter. The gains in magnitude
in the length of the prediction bounds are robust.

4.Table @) and 6) shows the estimate values of the, when location parameter are known and unknown respectively
Following above steps, the estimate values are obtainéthé\properties have been seen similar as discuss above.

5.Based on above steps, the HPD intervals have been obwseednd presents in Tabl6)( All the properties have
been seen similar as discuss above for Bayes predictiothl@figpounds.

Table 1: Censoring Scheme for Different Valuesrof

Case | m RVi=12..m
1 10 1210012000
2 10 1003001001
3 20 10200102000100010010
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Table 2: Bayes Prediction Lengths of Bounds fgf) (Wheno Known)
g — 0.50 10.00

al | m| 1> | 90% 95% 99% 90% 95% 99%
Y1) | 0.2748 | 0.2814 | 0.3286| 0.4561| 0.4671| 0.5454
10 | yi | 01201 0.1230| 0.1436| 0.1993| 0.2042 | 0.2384
Yo | 0.1132)| 0.1159| 0.1353 | 0.1879| 0.1924| 0.2246
Ya) | 0.2720| 0.2814| 0.3286| 0.4569 | 0.4727 | 0.5520
050 | 10 | yi | 01212 0.1254| 0.1464 | 0.2036 | 0.2107 | 0.2459
Yo | 0.1120| 0.1159| 0.1353 | 0.1881| 0.1947| 0.2273
Y1) | 0.2701| 0.2766 | 0.3230| 0.4510| 0.4619 | 0.5394
20 | yi | 0.1178| 0.1206 | 0.1408 | 0.1967| 0.2014 | 0.2351
Y10 | 0.1062| 0.1088| 0.1270| 0.1773| 0.1817| 0.2121
Y1) | 0.1337| 0.1355| 0.1373| 0.4519| 0.4561| 0.4918
10 | yi5 | 0.0584| 0.0592| 0.0600 | 0.1852| 0.1994 | 0.2150
Y10 | 0.0550 | 0.0557 | 0.0565| 0.1746| 0.1879| 0.2025
Yy | 0.1377| 0.1382 0.1387| 0.4245| 0.4616 | 0.4977
10.00 | 10 | y(5 | 0.0614 | 0.0616 | 0.0618 | 0.1892| 0.2058 | 0.2217
Y10 | 0.0567| 0.0569 | 0.0571| 0.1748| 0.1901| 0.2049
Y1) | 01291 0.1316 | 0.1342| 0.4190| 0.4511| 0.4864
20 | y@) | 0.0564 | 0.0575| 0.0586 | 0.1827 | 0.1967 | 0.2120
Y10 | 0.0508 | 0.0518| 0.0528 | 0.1647 | 0.1774| 0.1912

Table 3: Bayes Prediction Lengths of Bounds for) (Whenao Unknown)

Bl [m [t~ | 90% | 95% | 99%
Y1) | 0.3019| 0.3120 | 0.3446

10 | ys | 0.1320| 01364 0.1506

Yo | 0.1244| 0.1285 | 0.1419

Y1) | 0.2964 | 0.3067 | 0.3581

0.50 | 10 | ys | 0.1321| 0.1367| 0.1596
Yo | 01221 0.1263 | 0.1475

Y1) | 0.2968 | 0.3067 | 0.3387

20 | y5 | 0.1294 | 0.1337 | 0.1477

Yo | 0.1167| 0.1206 | 0.1332

Y1) | 0.1469 | 0.1502 | 0.1506

10 | ys | 0.0642 | 0.0656 | 0.0658

Y10 | 0.0604 | 0.0618 | 0.0620

Y1) | 0.1499 | 0.1505 | 0.1510

10.00 | 10 | y5 | 0.0668 | 0.0671 | 0.0673
Yo | 0.0617 | 0.0620 | 0.0622

Y1) | 01418 0.1459 | 0.1472

20 | ys) | 0.0620 | 0.0638 | 0.0643

Yi1o | 0.0558| 0.0574 | 0.0579
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Table 4: Estimate values ofj;) Under SELF (Whero Known)

a] [m[o—~] 050 [ 100 | 500 | 1000
Y1) | 1.0546| 1.1605| 1.2969 | 1.4382
10 | Y5 | 1.1234| 1.2458| 1.3816 | 1.5322
Yo | 1.1655| 1.2925| 1.4334 | 1.5896
Y1) | 1.0602| 1.1757 | 1.3038 | 1.4459
050 | 10 | Y5 | 1.1223| 1.2446| 1.3802 | 1.5306
Yo | 1.1666 | 1.2937 | 1.4347 | 1.5910
Y1) | 1.0513| 1.1659 | 1.2930| 1.4339
20 | §s) | 1.1223| 1.2446| 1.3802| 1.5306
Yo | 1.1578| 1.2840| 1.4239 | 1.5791
Y1) | 0.9656| 1.0708 | 1.1875| 1.3169
10 | Y5 | 1.0286 | 1.1407| 1.2650 | 1.4029
Yo | 1.0672| 1.1835| 1.3125| 1.4555
Y1) | 0.9708| 1.0766 | 1.1639| 1.3240
10.00 | 10 | §5) | 1.0276| 1.1396| 1.2638 | 1.4015
Yo | 1.0682 | 1.1846| 1.3137 | 1.4569
Y1) | 0.9626| 1.0675| 1.1838| 1.3128
20 | §s) | 1.0276| 1.1396 | 1.2638| 1.4015
Yo | 1.0601 | 1.1756| 1.3037 | 1.4458

Table 5: Estimate values o) Under SELF (Whero Unknown)

m| B— 0.50 1.00 5.00 10.00
Y1y | 1.1801| 1.2969 | 1.4408 | 1.5980
10 | yi) | 1.2570| 1.3815| 1.5349| 1.7024
Yo | 1.3041] 1.4333| 1.5924| 1.7662
Y1) | 1.1863| 1.3038 | 1.4485| 1.6065
10 | yi | 1.2558| 1.3802 | 1.5333| 1.7006
Yoy | 1.3054| 1.4347| 1.5939 | 1.7677
Yo | 1.1764 | 1.2929 | 1.4365| 1.5932
20 | yi) | 1.2558| 1.3802| 1.5333| 1.7006
Yo | 1.2955] 1.4239| 1.5819| 1.7545

Table 6: Highest Posterior Density Intervalg & 10.00)

m al Hq Ho

0.50 | 1.1756| 1.1600| 1.1447| 2.2847| 2.2111| 2.1398
1.00 | 1.1636| 1.1481| 1.1328| 2.1856| 2.1152 | 2.0471
10 | 500 | 1.1530| 1.1377| 1.1225| 2.1063| 2.0385| 1.9728
10.00 | 1.1053 | 1.0906| 1.0761| 1.9771| 1.9136| 1.8520
0.50 | 1.0703 | 1.0561 | 1.0422| 2.2544| 2.1818 | 2.1114
1.00 | 1.0624 | 1.0482| 1.0344 | 2.1566 | 2.0871 | 2.0200
10 | 500 | 1.0571| 1.0431| 1.0292| 2.0785| 2.0115| 1.9466
10.00 | 1.0029 | 0.9896| 0.9765| 1.9510| 1.8881| 1.8273
0.50 | 1.0658| 1.0519| 1.0378| 1.8724| 1.7071| 1.6213
1.00 | 1.0464| 1.0325| 1.0189| 1.8380| 1.6782| 1.6002
20 | 500 | 1.0313| 1.0177| 1.0042| 1.8089| 1.6583| 1.5817
10.00 | 0.9682 | 0.9553| 0.9426 | 1.7342| 1.5898| 1.5163
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