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Abstract: In present article, we discussed about Two - Sample Bayes prediction scenario under progressive Type - II right censoring
scheme for two - parameter Rayleigh model. The Bayes prediction length of bounds and Bayes predictive estimator forrth order
statistic drawn from a future random sample of parent population, independently and with an arbitrary progressive censoring scheme
are obtained. The properties of Highest Posterior Density intervals are also studied
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1 Introduction

Prediction based on censored data is an important topic in many fields like as medical and engineering sciences. An
important objective of a life - testing experiment is to predict the nature of future sample based on current sample.
Prediction of mean, smallest or largest observation in a future sample has a topic of interest and importance in the
context of quality and reliability analysis.

The objective of present paper is to predict about the natureof future behavior of an observation when sufficient
information regarding the past and present behavior of an event or an observation is known or given.

A good deal of literature is available on predictive inference for Rayleigh distribution under different criterion. [7]
presented highest posterior density prediction intervalsfor kth order statistic of a future sample. The Bayes prediction for
independent future sample based on Type - II doubly censoredRayleigh data have discussed by [5]. [15], based on
doubly Rayleigh censored samples, derived estimation of the predictive distribution for total time on test up to a certain
failure in a future sample. [13] have discussed about some Bayes prediction intervals for Rayleigh model. Some Bayes
estimators for inverse Rayleigh model under different criterion have discussed by [11]. Recently, [12] presents a
comparative study based on two different asymmetric loss functions for Progressive censored two - parameter Rayleigh
distribution.

The prediction problems of lifetime distribution are important and have been studied by many authors. Few of those who
have been extensively studied predictive inference for future observations are [6], [10], [1], [9], [16], [17], [18], [8], [2]
and [14].

The probability density function and distribution function of the considered two - parameter Rayleigh distribution is

f (x;θ ,σ) =
x−σ

θ 2 exp

(

− (x−σ)2

2θ 2

)

; x > σ > 0,θ > 0. (1)
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and

F (x;θ ,σ) = 1− exp

(

− (x−σ)2

2θ 2

)

; x > σ > 0,θ > 0. (2)

Here, parametersθ andσ are known as scale and location parameter respectively ([3]).

In the present paper, our focus is on Bayes prediction lengthof bounds and Bayes predictive estimators forrth order
statistic in a future random sample drawn from parent population independently and with arbitrary progressive censoring
schemes based on Two - sample plan. Both known and unknown cases of location parameter are considered here for the
prediction. For evaluation of performances of the proposedprocedures, a simulation study carries out also. The
properties of the HPD intervals are studied in last section also.

2 The Progressive Type - II Right Censoring

The time and cost restrictions censoring are useful in life testing experiments. The censoring arises when exact lifetimes
are only partially known. The progressive censoring appears to be a great importance in planned duration experiments in
reliability studies. In many industrial experiments involving lifetimes of machines or units, experiments have to be
terminated early and the number of failures must be limited for various reasons. In addition, some life tests require
removal of functioning test specimens to collect degradation related information to failure time data. The samples that
arise from such experiments are called censored samples.

The planning of experiments with aim of reducing total duration of experiment or the number of failures leads naturally
to the Type - I & Type - II censoring scheme. The main disadvantage of Type - I & Type - II censoring schemes is that
they do not allow removal of units at points other than the termination point of an experiment. Progressively Type - II
censored sampling is an important method of obtaining data in such lifetime studies.

The Progressive Type - II right censoring scheme is describes as follows:

Let us suppose an experiment in whichn independent and identical unitsX1,X2, ...,Xn are placed on a life test at the
beginning time and firstm;(1 ≤ m ≤ n) failure times are observed. At the time of each failure occurring prior to the
termination point, one or more surviving units are removed from the test. The experiment is terminated at the time ofmth

failure, and all remaining surviving units are removed fromthe test.

Let x(1) ≤ x(2) ≤ ... ≤ x(m) are the lifetimes of completely observed units to fail andR1,R2, ...,Rm;(m ≤ n) are the
numbers of units withdrawn at these failure times. Here,R1,R2, ...,Rm;(m ≤ n) all are predefined integers follows the
relation

m

∑
j=1

R j = n−m.

At first failure time x(1), withdraw R1 items randomly from remainingn − 1 surviving units. Immediately after the
second observed failure timex(2),R2 items are withdrawn from remainingn−2−R1 surviving units at random, and so

on. The experiments continue until atmth failure timex(m), the remaining itemsRm = n−m−∑m−1
j=1 R j are withdrawn.

Here, X (R1,R2,...,Rm)
1:m:n ,X (R1,R2,...,Rm)

2:m:n , ...,X (R1,R2,...,Rm)
m:m:n be m ordered failure times and(R1,R2, ...,Rm) be the progressive

censoring scheme (See for details [4]).

The resultingm ordered values, which are obtained as a consequence of this type of censoring, are appropriately referred
to as progressively Type - II right censored order statistics.

Further, it is noted that if
Ri = 0∀ i = 1,2, ...,m−1⇒ Rm = n−m

Progressively Type - II right censoring scheme reduces to the conventional Type - II censoring scheme. Also, noted that if

Ri = 0∀ i = 1,2, ...,m ⇒ n = m

above censoring scheme reduces to the complete sample case.
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Based on progressively Type - II censoring scheme the joint probability density function of order statistics

X (R1,R2,...,Rm)
1:m:n ,X (R1,R2,...,Rm)

2:m:n , ...,X (R1,R2,...,Rm)
m:m:n is defined as

fX1:m:n,X2:m:n,...,Xm:m:n (θ ,σ |x) =Cp

m

∏
i=1

f
(

x(i);θ ,σ
)(

1−F
(

x(i);θ ,σ
))Ri ; (3)

where f (·) and F(·) are given respectively by (1) and (2) and Cp is a progressive normalizing constant defined as

Cp = n(n−R1−1)(n−R1−R2−2) ...
(

n+1−∑m−1
j=1 R j −m

)

. The progressive Type - II censored sample is denoted

by x ≡
(

x(1),x(2), ...,x(m)

)

and(R1,R2, ...,Rm) being progressive censoring scheme for considered Rayleigh model.

Subtitling (1) and (2) in (3), the joint probability density function is obtain as:

fX1:m:n,X2:m:n,...,Xm:m:n (θ ,σ |x) =CpAm (x,σ) θ−2m exp

(

− Tp

2θ 2

)

; (4)

whereAm (x,σ) = ∏m
i=1

(

x(i)−σ
)

andTp = ∑m
i=1

(

x(i)−σ
)2

(Ri +1) .

3 Bayes Prediction Length of Bounds when Location Parameter is Known

Assuming the location parameterσ is known and scale parameterθ is a realization of a random variable. A conjugate
family of prior density for parameterθ is taken as an inverted Gamma with probability density function

g1(θ ) ∝
(

1
θ

)2α+1

exp

(

− 1
2θ 2

)

; α > 0,θ > 0. (5)

There is clearly no way in which one can say that one prior is better than other. It is more frequently the case that, we
select to restrict attention to a given flexible family of priors, and we choose one from that family, which seems to match
best with our personal beliefs. The prior (5) has advantages over many other distributions because of its analytical
tractability, richness and easy interpretability.

Based on Bayes theorem, the posterior density is defined as

π (θ |x,σ) =
fX1:m:n,X2:m:n,...,Xm:m:n (θ ,σ |x) ·g1(θ )

∫

θ fX1:m:n,X2:m:n,...,Xm:m:n (θ ,σ |x) ·g1(θ )dθ
. (6)

Using (4) and (5) in (6), the posterior density is obtain as

π (θ |x,σ) =
CpAm (x,σ) θ−2m exp

(

− Tp

2θ2

)

·θ−2α−1exp
(

− 1
2θ2

)

∫

θ CpAm (x,σ) θ−2m exp
(

− Tp

2θ2

)

·θ−2α−1exp
(

− 1
2θ2

)

dθ

⇒ π (θ |x,σ) = η∗exp

(

− T̂p

2θ 2

)

θ−2(m+α)−1 (7)

whereη∗ = (T̂p)
m+α

Γ (m+α)2m+α−1 andT̂p = Tp +1.

We haveX (R1,R2,...,Rm)
1:m:n ,X (R1,R2,...,Rm)

2:m:n , ...,X (R1,R2,...,Rm)
m:m:n be the progressive Type - II censored ordered statistics of size m

from a sample of sizen with progressive censoring scheme(R1,R2, ...,Rm) from considered model(1). Now we assume

that Y (S1,S2,...,SM)
1:M:N ,Y (S1,S2,...,SM)

2:M:N , ..., Y (S1,S2,...,SM)
M:M:N is another (unobserved) independent progressively Type - II right

censored ordered statistics of sizeM from another sample, of sizeN with progressive censoring scheme(S1,S2, ...,SM)
from same model (1).

The first sample is considered as ”informative” (past) sample, whereas the second sample is considered as the ”future”

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


132 G. Prakash: Bayes prediction under progressive...

sample. Now, let us take thatY(r) be therth ;1 ≤ r ≤ M order statistic from the future sample of sizeM. Based on
informative progressive Type - II right censored sample, the prediction ofrth order statistic from future sample is the
objective of the present article.

Following [4], the probability density function ofY(r) (rth order statistic) is obtain as

h
(

y(r)|θ ,σ
)

= φ f
(

y(r)|θ ,σ
)

r

∑
i=1

λ ∗
i

(

1−F
(

y(r)|θ ,σ
))λi−1

= φ
(

y(r)−σ
)

θ 2

r

∑
i=1

λ ∗
i exp

(

−λi

(

y(r)−σ
)2

2θ 2

)

; (8)

whereλi = ∑M
j=i (S j +1) = N −∑i−1

j=1 (S j +1) , φ = ∏r
i=1 λi andλ ∗

i = ∏r
j=i

1
(λ j−λi)

, ∀ i 6= j,r > 1,λ ∗
1 = 1 for r = 1.

The Bayes predictive density function forrth order statisticY(r) is thus defined as

h∗
(

y(r)|x,θ ,σ
)

=

∫

θ
h
(

y(r)|θ ,σ
)

·π (θ |x,σ)dθ . (9)

Applying (7) and (8) in (9), we get

h∗
(

y(r)|x,θ ,σ
)

= φ η∗ (y(r)−σ
)

r

∑
i=1

λ ∗
i

∫

θ
exp

(

−
λi
(

y(r)−σ
)2

+ T̂p

2θ 2

)

·θ−2(m+α)−3 dθ

⇒ h∗
(

y(r)|x,θ ,σ
)

= 2φ(m+α)
r

∑
i=1

λ ∗
i

(

λi
(

y(r)−σ
)2

+ T̂p

)−(m+α+1)

(

y(r)−σ
)(

T̂p
)m+α . (10)

The Bayes prediction bounds forY(r);1≤ r ≤ M are obtained by evaluatingPr
(

Y(r) ≥ ε|x
)

, for some given value ofε.
We have from (10)

Pr
(

Y(r) ≥ ε|x
)

=

∫ ∞

ε
h∗
(

y(r)|x,θ ,σ
)

d y(r)

Pr
(

Y(r) ≥ ε|x
)

= 2φ(m+α)
(

T̂p
)m+α

∫ ∞

ε

(

y(r)−σ
)

r

∑
i=1

λ ∗
i

(

λi
(

y(r)−σ
)2

+ T̂p

)−(m+α+1)
dy(r)

⇒ Pr
(

Y(r) ≥ ε|x
)

= φ
r

∑
i=1

(

λ ∗
i

λi

)

(

λi
(ε −σ)2

T̂p
+1

)−m−α

. (11)

Now, One - Sided Bayes prediction bounds are obtain by solving following equality

Pr
(

Y(r) ≥ l1|x
)

= 1− τ
2

(12)

and
Pr
(

Y(r) ≥ l2|x
)

=
τ
2
. (13)

Here,l1 andl2 are the lower and upper Bayes prediction bounds for the random variableY(r) and 1− τ is the confidence
prediction coefficient.

Using (11) in (12) and (13) we get the lower and upper Bayes prediction bounds as:

φ−1
(

1− τ
2

)

=
r

∑
i=1

(

λ ∗
i

λi

)

(

λi
(l1−σ)2

T̂p
+1

)−m−α
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and

φ−1
(τ

2

)

=
r

∑
i=1

(

λ ∗
i

λi

)

(

λi
(l2−σ)2

T̂p
+1

)−m−α

. (14)

Further simplification of the equalities (14) does not possible. A numerical technique is applied here for obtaining the
values ofl1 andl2 for someτ.

For a particular case, substitutingr = 1 in the predictive survival function (11), for predicting the first itemY(1) of next
item to fail, and is obtain as

Pr
(

Y(1) ≥ ε|x
)

=

(

N
(ε −σ)2

T̂p
+1

)−m−α

. (15)

The, One - Sided Bayes prediction lower and upper bounds forY(1) are now obtain as

l1 = σ +

√

τ∗
T̂p

N
; τ∗ =

{

(

1− τ
2

)−1/(α+m)
−1

}

and

l2 = σ +

√

τ∗∗
T̂p

N
; τ∗∗ =

{

(τ
2

)−1/(α+m)
−1

}

. (16)

Hence, the Bayes prediction length of bounds forY(1) is

L = l2− l1. (17)

Now, the Bayes predictive estimator forrth order statisticY(r);1≤ r ≤ M under squared error loss function is obtained as

ŷ(r) = E
(

Y(r)|x
)

=

∫

ε
Pr
(

Y(r) ≥ ε|x
)

dε = φ

√

T̂p

2

r

∑
i=1

(

λ ∗
i

λ 3/2
i

)

Φ(z); (18)

whereΦ(z) =
∫ ∞

ν
(1+z)−m−α

√
z dz andν = λiσ2

T̂p
.

4 Bayes Prediction Length of Bounds when Location Parameter is Unknown

When, scale and location both parameters are considered as random variable, the joint probability density function under
progressive Type - II censoring criterion is given by

fX1:m:n,X2:m:n,...,Xm:m:n (θ ,σ |x) =CpAm (x,σ)
1

θ 2m exp

(

− Tp

2θ 2

)

. (19)

It is clear from (19) that, the functionTp depends on the location parameterσ .Hence, in present case when both parameters
are consider being random variable, the joint prior densityfor parameterθ andσ is considered as

g(θ ,σ) = g2 (θ |σ) ·g3 (σ) . (20)

Hereg2 (θ |σ) andg3 (σ) both are inverted gamma densities and defined as

g2(θ |σ) =
θ−2σ−1e−1/2θ2

Γ (σ)2σ−1 ; θ > 0,σ > 0 (21)

and

g3(σ) =
σ−2β−1e−1/2σ2

Γ (β )2β−1
; β > 0,σ > 0. (22)
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The joint posterior density function is now obtained as

π∗ (θ ,σ |x) = fX1:m:n,X2:m:n,...,Xm:m:n (θ ,σ |x) ·g(θ ,σ)
∫

σ
∫

θ fX1:m:n,X2:m:n,...,Xm:m:n (θ ,σ |x) ·g(θ ,σ)dθdσ

=

(

θ−2(σ+m)−1 exp
(

− T̂p

2θ2

)) (

Am(x,σ)
Γ (σ)2σ σ−2β−1 exp

(

− 1
2σ2

))

∫

σ
Am(x,σ)
Γ (σ)2σ σ−2β−1 exp

(

− 1
2σ2

)

∫

θ θ−2(σ+m)−1 exp
(

− T̂p

2θ2

)

dθdσ

⇒ π∗ (θ ,σ |x) = ¯̄σ
(

θ−2(σ+m)−1 exp

(

− T̂p

2θ 2

)) (

Am (x,σ)

Γ (σ)2σ σ−2β−1 exp

(

− 1
2σ2

))

; (23)

where ¯̄σ = 1
2m−1σ̄ andσ̄ =

∫

σ
Γ (m+σ)

Γ (σ)
Am(x,σ)

(T̂p)
m+α σ−2β−1 exp

(

− 1
2σ2

)

dσ .

On similar line, the Bayes predictive density function forY(r);1≤ r ≤ M is obtained as

h∗∗
(

y(r)|x,θ ,σ
)

=

∫

σ

∫

θ
h
(

y(r)|θ ,σ
)

·π∗ (θ ,σ |x)dθdσ

= φ ¯̄σ
∫

σ

(

y(r)−σ
)

r

∑
i=1

λ ∗
i

Am (x,σ)

Γ (σ)2σ σ−2β−1 exp

(

− 1
2σ2

)

·
∫

θ
θ−2(m+σ+1)−1exp

(

−
λi
(

y(r)−σ
)2

+ T̂p

2θ 2

)

dθdσ

⇒ h∗∗
(

y(r)|x,θ ,σ
)

=
2φ
σ̄

r

∑
i=1

λ ∗
i

∫

σ

Am (x,σ)Γ (m+σ +1)
Γ (σ)

σ−2β−1

exp

(

− 1
2σ2

)

(

y(r)−σ
)

(

λi
(

y(r)−σ
)2
+ T̂p

)−m−σ−1
dσ (24)

Hence, the Bayes prediction bounds forY(r);1 ≤ r ≤ M are obtained similarly by evaluatingPr
(

y(r) ≥ ε|x
)

, for some
given value ofε. We have from (24)

Pr
(

Y(r) ≥ ε|x
)

=

∫ ∞

ε
h∗∗
(

y(r)|x
)

dy(r)

=
2φ
σ̄

r

∑
i=1

λ ∗
i

∫

σ

Am (x,σ) Γ (m+σ +1)
Γ (σ)

σ−2β−1 exp

(

− 1
2σ2

)

·
∫ ∞

y(r)=ε

(

y(r)−σ
)

(

λi
(

y(r)−σ
)2
+ T̂p

)−m−σ−1
dy(r)dσ

⇒ Pr
(

Y(r) ≥ ε|x
)

=
φ
σ̄

r

∑
i=1

(

λ ∗
i

λi

)

∫

σ
Ωp(σ)dσ (25)

whereΩp(σ) = Am(x,σ)Γ (m+σ+1)
(m+σ)Γ (σ)

σ−2β−1 exp
(

− 1
2σ2

) (

λi (ε −σ)2+ T̂p

)−m−σ
.
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Using (25) in (12) and (13) we get One - Sided lower and upper Bayes prediction bounds as

(

σ̄
φ

)

(

1− τ
2

)

=
r

∑
i=1

(

λ ∗
i

λi

)

∫

σ
Ωpl1

(σ)dσ

and
(

σ̄
φ

)

(τ
2

)

=
r

∑
i=1

(

λ ∗
i

λi

)

∫

σ
Ωpl2

(σ)dσ (26)

whereΩpl j
(σ) = Am(x,σ)Γ (m+σ+1)

(m+σ)Γ (σ) σ−2β−1 exp
(

− 1
2σ2

) (

λi (l j −σ)2+ T̂p

)−m−σ
, j = 1,2.

Further simplifications of equalities (26) do not possible. A numerical technique is applied here for obtaining the values
of l1 andl2 for someτ.

Similarly, the Bayes predictive estimator forrth order statisticY(r);1≤ r ≤ M under squared error loss function in present
case is

ˆ̂y(r) = E
(

Y(r)|x
)

=

∫

ε
Pr
(

Y(r) ≥ ε|x
)

dε =
φ

2σ̄

r

∑
i=1

(

λ ∗
i

λ 3/2
i

)

∫

σ
Ω̄p(σ)dσ ; (27)

whereΩ̄p(σ) = Am(x,σ)Γ (m+σ+1)
(m+σ)Γ (σ) σ−2β−1 exp

(

− 1
2σ2

)

(

T̂p
)−m−σ+ 1

2 Φ(z), Φ(z) =
∫ ∞

ν
√

z (1+ z)−m−α dz andν = λiσ2

T̂p
.

5 H. P. D. INTERVALS

In this section, our objective is to study about highest posterior density (HPD) interval for unknown parameterθ of the
considered model. Since, the posterior densityπ (θ |x,σ) corresponding to the parameterθ is unimodel. Thus, 100(1−
τ)% HPD interval[H1,H2] for the parameterθ must satisfy the following equations simultaneously.

∫ H2

H1

π (θ |x,σ) dθ = 1− τ (28)

and

π (H1|x,σ) = π (H2|x,σ) . (29)

Now, the expression (28) & (29) rewritten as

1
Γ (m+α)

∫ H′′

H′
e−zzα+m−1 dz = 1− τ

⇒
[

γ
(

α +m,H ′′)− γ
(

α +m,H ′)]= (1− τ)Γ (m+α) (30)

and

H2

H1
= exp

{

−
(

T̂p

2(2α +2m−1)

)(

1

H2
2

− 1

H2
1

)}

; (31)

whereH ′ = T̂p

2H2
2

andH ′′ = T̂p

2H2
1
.

Solve simultaneously the equations (30) and (31) to obtain the highest posterior density limitsH1 andH2.
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6 Numerical Illustration

In present section, we carry out the performance of Bayes prediction lengths of bounds, Bayes predictive estimator forrth

order statistic and HPD intervals for the future order statistic under progressively Type - II censored sample.

1.For given values of the prior parameterα, random values of the parameterθ is generated from the prior density (5).

2.Using generated values ofθ obtained in steps (1), we generate a progressively Type - II censored sample, forthe case
of known location parameter, of sizem for a given values of censoring schemeRi; i = 1,2, ...,m, from the considered
Rayleigh model, according to an algorithm proposed by [4]. The censoring scheme for different values ofm is
presented in Table (1).

3.For the different informative sample sizesm = 10,10,20 and future sample sizeN(= 10,20) Table (2) displays the
Bayes predictive length of bounds for therth order statisticsy(r).

4.We consider here without loss generalitySi = 0∀ i = 1,2, ...,M, which represents the ordinary order statistics. The
smallest, middle, and largest future ordered lifetimes, which are practically of some special interest, are only
predicted.

5.The lengths of prediction bounds ofy(r), are calculated form 1,00,000 generated future ordered samples each of size
N = 20 of the Rayleigh density when location parameter is known.

6.For givenθ andσ with N = 10, generate the future ordered samples of sizem(= 10,10,20) using following relation
xi = σ

√

2θ 2 log(1−Ui). Here,Ui are independently distributedU(0,1).

7.For selected values ofσ (= 0.50,1.00,5.00,10.00) and prior parameterα(= 0.50,1.00, 5.00,10.00); the prediction
length of bounds are obtained and presented in Table (2) only for (α = σ = 0.50,10.00).

8.It is observed from Table (2) that, the length of bounds tend to be wider as the value of scale parameter increases when
other parametric values are consider to be fixed. Opposite trend has been seen when prior parameterα increases. It is
also noted further that when confidence levelτ decreases the length of intervals tends to be closer.

In case, when both parameters are considered to be random variable, the length of bounds are obtained as follows:

1.We generate location parameterσ from (22) for given values of the prior parameterβ . Using generated values ofσ ,
obtained the values of the parameterθ by using (21).

2.Following Step (2) to (6), the lengths of the Bayes prediction bounds forrth order statistics are obtained and
presented in Table (3) for selected parametric values.

3.All the behaviors are seen to be similar as compared to the known case of location parameter. The gains in magnitude
in the length of the prediction bounds are robust.

4.Table (4) and (5) shows the estimate values of they(r) when location parameter are known and unknown respectively.
Following above steps, the estimate values are obtained. All the properties have been seen similar as discuss above.

5.Based on above steps, the HPD intervals have been obtainedalso and presents in Table (6). All the properties have
been seen similar as discuss above for Bayes prediction length of bounds.

Table 1: Censoring Scheme for Different Values ofm

Case m Ri ∀ i = 1,2, ...,m
1 10 1 2 1 0 0 1 2 0 0 0
2 10 1 0 0 3 0 0 1 0 0 1
3 20 1 0 2 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 1 0

c© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.5, No. 1, 129-139 (2016) /www.naturalspublishing.com/Journals.asp 137

Table 2: Bayes Prediction Lengths of Bounds fory(r) (Whenσ Known)

σ → 0.50 10.00
α ↓ m τ → 90% 95% 99% 90% 95% 99%

y(1) 0.2748 0.2814 0.3286 0.4561 0.4671 0.5454
10 y(5) 0.1201 0.1230 0.1436 0.1993 0.2042 0.2384

y(10) 0.1132 0.1159 0.1353 0.1879 0.1924 0.2246
y(1) 0.2720 0.2814 0.3286 0.4569 0.4727 0.5520

0.50 10 y(5) 0.1212 0.1254 0.1464 0.2036 0.2107 0.2459
y(10) 0.1120 0.1159 0.1353 0.1881 0.1947 0.2273
y(1) 0.2701 0.2766 0.3230 0.4510 0.4619 0.5394

20 y(5) 0.1178 0.1206 0.1408 0.1967 0.2014 0.2351
y(10) 0.1062 0.1088 0.1270 0.1773 0.1817 0.2121
y(1) 0.1337 0.1355 0.1373 0.4519 0.4561 0.4918

10 y(5) 0.0584 0.0592 0.0600 0.1852 0.1994 0.2150
y(10) 0.0550 0.0557 0.0565 0.1746 0.1879 0.2025
y(1) 0.1377 0.1382 0.1387 0.4245 0.4616 0.4977

10.00 10 y(5) 0.0614 0.0616 0.0618 0.1892 0.2058 0.2217
y(10) 0.0567 0.0569 0.0571 0.1748 0.1901 0.2049
y(1) 0.1291 0.1316 0.1342 0.4190 0.4511 0.4864

20 y(5) 0.0564 0.0575 0.0586 0.1827 0.1967 0.2120
y(10) 0.0508 0.0518 0.0528 0.1647 0.1774 0.1912

Table 3: Bayes Prediction Lengths of Bounds fory(r) (Whenσ Unknown)

β ↓ m τ → 90% 95% 99%
y(1) 0.3019 0.3120 0.3446

10 y(5) 0.1320 0.1364 0.1506
y(10) 0.1244 0.1285 0.1419
y(1) 0.2964 0.3067 0.3581

0.50 10 y(5) 0.1321 0.1367 0.1596
y(10) 0.1221 0.1263 0.1475
y(1) 0.2968 0.3067 0.3387

20 y(5) 0.1294 0.1337 0.1477
y(10) 0.1167 0.1206 0.1332
y(1) 0.1469 0.1502 0.1506

10 y(5) 0.0642 0.0656 0.0658
y(10) 0.0604 0.0618 0.0620
y(1) 0.1499 0.1505 0.1510

10.00 10 y(5) 0.0668 0.0671 0.0673
y(10) 0.0617 0.0620 0.0622
y(1) 0.1418 0.1459 0.1472

20 y(5) 0.0620 0.0638 0.0643
y(10) 0.0558 0.0574 0.0579
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Table 4: Estimate values ofy(r) Under SELF (Whenσ Known)

α ↓ m σ → 0.50 1.00 5.00 10.00
ŷ(1) 1.0546 1.1695 1.2969 1.4382

10 ŷ(5) 1.1234 1.2458 1.3816 1.5322
ŷ(10) 1.1655 1.2925 1.4334 1.5896
ŷ(1) 1.0602 1.1757 1.3038 1.4459

0.50 10 ŷ(5) 1.1223 1.2446 1.3802 1.5306
ŷ(10) 1.1666 1.2937 1.4347 1.5910
ŷ(1) 1.0513 1.1659 1.2930 1.4339

20 ŷ(5) 1.1223 1.2446 1.3802 1.5306
ŷ(10) 1.1578 1.2840 1.4239 1.5791
ŷ(1) 0.9656 1.0708 1.1875 1.3169

10 ŷ(5) 1.0286 1.1407 1.2650 1.4029
ŷ(10) 1.0672 1.1835 1.3125 1.4555
ŷ(1) 0.9708 1.0766 1.1939 1.3240

10.00 10 ŷ(5) 1.0276 1.1396 1.2638 1.4015
ŷ(10) 1.0682 1.1846 1.3137 1.4569
ŷ(1) 0.9626 1.0675 1.1838 1.3128

20 ŷ(5) 1.0276 1.1396 1.2638 1.4015
ŷ(10) 1.0601 1.1756 1.3037 1.4458

Table 5: Estimate values ofy(r) Under SELF (Whenσ Unknown)

m β → 0.50 1.00 5.00 10.00
y(1) 1.1801 1.2969 1.4408 1.5980

10 y(5) 1.2570 1.3815 1.5349 1.7024
y(10) 1.3041 1.4333 1.5924 1.7662
y(1) 1.1863 1.3038 1.4485 1.6065

10 y(5) 1.2558 1.3802 1.5333 1.7006
y(10) 1.3054 1.4347 1.5939 1.7677
y(1) 1.1764 1.2929 1.4365 1.5932

20 y(5) 1.2558 1.3802 1.5333 1.7006
y(10) 1.2955 1.4239 1.5819 1.7545

Table 6: Highest Posterior Density Intervals (β = 10.00)

m α ↓ H1 H2
0.50 1.1756 1.1600 1.1447 2.2847 2.2111 2.1398
1.00 1.1636 1.1481 1.1328 2.1856 2.1152 2.0471

10 5.00 1.1530 1.1377 1.1225 2.1063 2.0385 1.9728
10.00 1.1053 1.0906 1.0761 1.9771 1.9136 1.8520
0.50 1.0703 1.0561 1.0422 2.2544 2.1818 2.1114
1.00 1.0624 1.0482 1.0344 2.1566 2.0871 2.0200

10 5.00 1.0571 1.0431 1.0292 2.0785 2.0115 1.9466
10.00 1.0029 0.9896 0.9765 1.9510 1.8881 1.8273
0.50 1.0658 1.0519 1.0378 1.8724 1.7071 1.6213
1.00 1.0464 1.0325 1.0189 1.8380 1.6782 1.6002

20 5.00 1.0313 1.0177 1.0042 1.8089 1.6583 1.5817
10.00 0.9682 0.9553 0.9426 1.7342 1.5898 1.5163
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