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Abstract: In this paper, introducing a generalized random variable, we obtained a new relationship between fractional calculus and
statistics. With this definition, the domain of shape parameter space for some of distributions, such as Gamma, Beta and Weibull, were
expanded from(0,∞) to (−1,∞). It is shown that the expectation of such random variable,Φα (x), coincides with the fractional integral
of probability density function (PDF), at the origin, forα > 0, and also the fractional derivative of PDF, at the origin, for −1< α < 0.
We also, presented PDFs of such distributions as a product offractional derivation of Dirac delta function of shape parameter order,
δ (α)(.). Finally, we showed that the Liouville fractional differintegral operator on the moment generating function (MGF) of positive
random variable, at the origin, gives fractional moments.
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1 Introduction

The study of generalized functions is now widely used in
applied mathematics and engineering sciences.
Generalized functions are defined as a linear functional
on a spaceX of conveniently chosen test functions.
For every locally integrable functionf ∈ L 1

loc(R), there
exists a distributionFf : X →C defined by:

Ff (ϕ) = 〈 f ,ϕ〉 =
∫ ∞

−∞
f (x)ϕ(x)dx (1)

whereϕ ∈ X is test function from a suitable spaceX of
test functions. A distribution that corresponds to functions
via equation (1) are called regular distributions. Examples
for regular distributions are the convolution kernelsKα

± ∈

L 1
loc(R) defined as:

Kα
± = H(±x)

±xα−1

Γ (α)
(2)

for α > 0 andH(x) is a Heaviside unit step function.
Distributions that are not regular are sometimes called
singular. An example for a singular distribution is the

Dirac delta function which is defined as:

δ : X →C
∫

δ (x)ϕ(x)dx = ϕ(0)

for every test functionϕ ∈ X . The test function spaceX is
usually chosen as a subspace ofC∞(R), the space of
infinitely differentiable functions [6].
In the present work, we suppose thatX is a positive
random variable andα is the shape parameter of
distribution. The new random variable is represented as

the functionΦα(x) and defined byΦα(x) =
Xα−1
+

Γ (α)
. The

functionΦα(x) can be extended to all complex values of
α as a pseudo function and is a distribution whose
support is[0,∞) except for the caseα = 0,−1, ... . Since
distributions or generalized functions in mathematical
analysis are not really functions in the classical sense, we
also call our proposed random variable a generalized
random variable. The expectation of this generalized
random variable coincides with Riemann-Liouville left
fractional integral of the PDF, at the origin, forα > 0 and
Marchaud fractional derivative of the PDF, at the origin,
for −1 < α < 0. The generalized random variable
appears in some distributions that belong to the
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exponential family like Weibull, Gamma, Beta, Binomial
and poisson distributions. By this generalized random
variable, we more expand the domain of shape parameter
space. For example, the domain of shape parameter which
has been already expanded for Gamma and Weibull
distributions ofα > 0 to α >−1 and for Beta distribution
from (0,∞) × (0,∞) to (−1,∞) × (0,∞). In case of
negative values of the shape parameter space, the
relationship between fractional derivatives and statistics
theory can be obtained, this means we can write the PDF
of distributions like Gamma, Weibull, Beta as a product
of fractional derivatives of Dirac delta function. The
characteristics of this generalized random variable are as
following:

(a) By rewriting Binomial and poisson distributions in
terms of the generalized random variable, they are
respectively transformed into Gamma and Beta
distributions with a discrete parameter space, that is

[P(x;λ );Φλ (x)] = [Γ (λ ;x,1);Φx(λ )], x = 0,1, ...

and

[Bin(x; p);Φp(x)] = [B(p;x,n− x+2);Φx(p)]

where x = 1,2, ...,n and [.,Φ] is the rewriting form of
generalized random variable.

(b) The expectation of this generalized random
variable, Φα(x), coincides with Riemann-Liouville left
fractional integral of the PDF at the origin forα > 0 and
Marchaud fractional derivative of the PDF at the origin
for −1< α < 0, that is, we have

E[Φα(X)] =

{

(Iα
− f )(0), α > 0

(Dα
− f )(0), −1< α < 0

(3)

where

(Iα
− f )(x) =

1
Γ (α)

∫ ∞

0
tα−1 f (x+ t)dt (4)

is the Riemann-Liouville left fractional integral, while

(Dα
− f )(x) =

1
Γ (−α)

∫ ∞

0
t−α−1{ f (x+ t)− f (x)}dt (5)

is the Marchaud fractional derivative.

(c) The integer and fractional derivatives of this
generalized random variable are the generalized random
variable, too.

(d) Another property is

Φα(t − a) ∗ Φβ (t) = Φα+β (t − a), (6)

whereα >−1 andβ >−1 such thatα +β >−1 and we
used the star notation for the convolution operation.
The proof is easy forα > 0 andβ > 0, as instance, see
[2]. Other values ofα andβ can be proved using analytic
continuation.

(e) If X1,X2, ...,Xn bei.i.d. W (x;α,θ ) then

Φα+1(x)∼ Γ (1,Γ (α +1)θ ),

and

Φα+1(x)
Σn

1Φα+1(xi)
∼ B(1,n−1).

Also, we demonstrate that theαth moment,α ∈ R, of the
positive random variableX can be obtained directly from
the Liouville fractional derivation and integrations of the
MGF at the origin.

2 Preliminaries

In this section, we introduce notations, definitions and
preliminary facts which are used throughout this paper.
We need some basic definitions and properties of the
fractional calculus theory and the generalized functions
theory which are used further in this paper. As mentioned
in references [1] and [3], the definitions 1 and 2 of
fractional calculus are as following:

Definition 1. For a functionf defined on an interval[a,b],
the Riemann-Liouville (R-L) integralsIα

a+ f and Iα
b− f of

orderα ∈ C , (R(α)> 0) are defined, respectively, by

(Iα
a+ f )(t) =

1
Γ (α)

∫ t

a
(t − ξ )α−1 f (ξ )dξ (7)

and

(Iα
b− f )(t) =

1
Γ (α)

∫ b

t
(ξ − t)α−1 f (ξ )dξ . (8)

Also, the left and right R-L fractional derivationsDα
a+ f

and Dα
b− f of order α ∈ C , (R(α) > 0) are defined,

respectively, by

(Dα
a+ f )(t) = (

d
dt
)n(In−α

a+ f )(t), (9)

and

(Dα
b− f )(t) = (

−d
dt

)n(In−α
a+ f )(t). (10)

If in above definition, respectively,a = −∞ and b = ∞,

then we get Liouville fractional differintegral.

Definition 2. The Liouville fractional differintegralDα
± is

defined by
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Dα
+{ f (x)} =

{

f rac1Γ (−α)
∫ x
−∞(x− t)−α−1 f (t)dt,

dn

dxn {Dα−n
+ { f (x)}

(11)

where the first expression satisfies forR(α) < 0 and
the second expression satisfies for
R(α)> 0;n = [R(α)]+1. Also

Dα
−{ f (x)} =











1
Γ (−α)

∫ ∞
x (x− t)−α−1 f (t)dt,

(−1)ndn

dxn {Dα−n
− { f (x)}

(12)

with R(α) < 0 for the first expression andR(α) > 0
such thatn = [R(α)] + 1, for the second expression
satisfies. In particular, whenα = n ∈ N0, then

D0
+{ f (x)} = f (x),Dn

+{ f (x)} = f (n)(x), (13)

and

D0
−{ f (x)} = f (x),Dn

−{ f (x)} = (−1)n f (n)(x). (14)

Definition 3. Let f be a generalized functionf ∈ C∞
0 (R)

′

with supp f ⊂ R+. Then its fractional integral is the
distributionIα

0+ f defined as:

〈Iα
0+ f ,ϕ〉 = 〈Iα f ,ϕ〉 = 〈Kα

+ ∗ f ,ϕ〉 (15)

for R(α) > 0 [6]. Also, the fractional derivative of order
α with lower limit 0 is the distributionDα{ f (z)}defined
as:

〈Dα
0+ f ,ϕ〉= 〈Dα f ,ϕ〉 = 〈K−α

+ f ,ϕ〉 (16)

whereα ∈ C and

Kα
+(x) =















H(x)
xα−1

Γ (α)
, R(α)> 0

dn

dxn [H(x)
xα+n−1

Γ (α + n)
], R(α)+ n > 0;n ∈ N

(17)

is the kernel distribution. Forα = 0 one can finds
K0
+(x) = ( d

dx )H(x) = δ (x) and D0
0+ = I as the identity

operator. For theα =−n; n ∈ N, one can finds

K−n
+ (x) = δ (n)(x) (18)

whereδ (n) is thenth derivative of theδ distribution. The
kernel distribution in equation (17) is given by:

Kα
+(x) =

d
dx

[H(x)
x−α

Γ (1−α)
] =

d
dx

K1−α
+ (x) (19)

for 0< α < 1. [6]

Now if f ∈C∞
0 (R)

′ with supp f ⊂ R
+
, then

Dα
0+ f = Dα

0+(I f ) = (K−α
+ ·K0

+) · f = δ (α) · f (20)

for all α ∈ C. Also, the differentiation rule

Dα
0+Kβ

+ = Kβ−α
+ (21)

holds for allβ ,α ∈C. It contains

DKβ
+ = Kβ−1

+

for all β ∈ C as a special case [6].

3 The generalized Weibull random variable

The Wiebull distribution was originally used for modeling
fatigue data and is at present used extensively in
engineering problems for modeling, the distribution of the
lifetime of an object which consists of several parts and
that fails if any component part fails [7].
It is important to note that the fractional calculus has also
been applied in describing several PDFs in mathematical
statistics in terms of fractional integral and derivative of
exponential functions. For instance, the Wiebull
distribution can be written in terms of the fractional
derivative or integral ofe−θxα

, as

θ 1−αΓ (α +1)Φα(x)(D
α
−;xα e−θtα

)(x), (22)

or

θ 1+αΓ (α +1)Φα(x)(I
α
−;xα e−θtα

)(x), (23)

where the subscriptxα indicates fractional derivative or
integral with respect to the variablexα

. In this way
representation of the PDF might introduce novel
statistical interpretations in the study of statistical
problems involving such these PDFs (at least in some
cases).
We will define the Weibull distribution as a
two-parameter family of distribution functions, in which
the parameterθ > 0 is the scale parameter and−1< α is
the shape parameter. So, this distribution can be defined
as

Γ 2(α +1)Φα+1(θ )DΦα+1(x)e
−Γ 2(α+1)Φα+1(θ)Φα+1(x).

On the other hand, the scale parameterθ , can also be
considered as a random variable. This means that,
depending on the variable which is being differentiated,
we have the distribution of that random variable.
Therefore, the PDF can be written as follows:

−Dxe−Γ 2(α+1)Φα+1(θ)Φα+1(x). (24)
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And also, ifX be random variable of Wiebull distribution
as following:

Γ 2(α +1)Φα+1(θ )DΦα+1(x)e
−Γ 2(α+1)Φα+1(θ)Φα+1(x),

(25)

by using equation (21) with β = 0 and equation (17), we
can rewrite the PDF in terms of the fractional derivation
of Dirac delta function, as following definition.

Definition 3.1. Suppose thatX be a random variable of
Weibull distribution as a two-parameter family of
distribution functions, in which the parameterθ is the
scale parameter andα is the shape parameter. Then,PDF
of this distribution can be defined as

f (x) =

{

Γ 2(α +1)Φα+1(θ )Kα
+(x)e

−Γ 2(α+1)Φα+1(θ)Φα+1(x)

Γ 2(1−α)Φ1−α(θ )δ (α)(x)e−Γ 2(1−α)Φ1−α(θ)Φ1−α (x)

(26)
where the frist expression satisfies for 0< α and the

second expression satisfies for−1 < α ≤ 0 (For
comfortable computationally, we are showing
−1< α ≤ 0 with −α.). It can write, for 0< α < 1,

fX (x) = Γ 2(α)Φα (θ )δ (α−1)(x)e−Γ 2(α)Φα (θ)Φα (x).

Now we are showing that
∫ ∞

0 fX (x)dx = 1, for the case
−1< α ≤ 0, too. We have

∫ ∞

0
fX (x)dx = Γ (1−α)θ−α

∫ ∞

0
δ (α)(x)

× e
−Γ (1−α)θ−α x−α

Γ (1−α) dx,

by using equation (19)

= Γ (1−α)θ−α
∫ ∞

0
δ (α)(x).e−Γ (1−α)θ−α δ (α−1)(x)dx,

under the substitutionu = δ (α−1)(x),

= Γ (1−α)θ−α
∫ ∞

0
e−Γ (1−α)θ−α udu,

= Γ (1−α)θ−α
.Γ −1(1−α)θ α

,

which proves our result.
Also the failure rate (or hazard function) for distributionis
given by

h(x) =

{

Γ 2(α +1)Φα+1(θ )Kα
+(x), α > 0

Γ 2(1−α)Φ1−α(θ )δ (α)(x), −1< α ≤ 0.

(27)

So, we succeed to represent the PDF of Weibull
distribution with the extended shape parameter space,
−1 < α, as a product of fractional derivation of Dirac
delta function of shape parameter order. Also the scale
parameter can be considered as a random variable.

4 The generalized Gamma random variable

In this section, we will define the Gamma distribution as
a two-parameter family of distribution functions, in which
the parameterβ > 0 is the scale parameter, and−1< α is
the shape parameter. This distribution is defined as

Γ (α +1)Φα+1(β )DΦα+1(x)e
−Φ2(β )Φ2(x),

The scale parameterβ , can also be considered as a
random variable. This means that, depending on which
variable is under differentiation, we have the distribution
of that random variable; that is, the PDF can be rewritten
as:

Γ (α +1)Φα+1(β )DxΦα+1(x)exp−Φ2(β )Φ2(x), (28)

or as

Γ (α +1)Dβ Φα+1(β )Φα+1(x)e
−Φ2(β )Φ2(x). (29)

Similarly as a general case of Weibull distribution, ifX be
a random variable, by using equation (21) with β = 0 and
equation (17), we can write its PDF as following
definition:

Definition 4.1. Suppose thatX be a random variable of
Gamma distribution as a two-parameter family of
distribution functions, in which the parameterβ is the
scale parameter andα is the shape parameter. Then,PDF
of this distribution can be defined as

fX (x) =

{

Γ (α +1)Φα+1(β )Kα
+(x)e

−Φ2(β )K2
+(x)

Γ (1−α)Φ1−α(β )δ (α)(x)e−Φ2(β )K2
+(x)

(30)

where the first expression satisfies for 0< α and the
second expression satisfies for−1< α ≤ 0.
It can write, for 0< α < 1,

fX (x) = Γ (α)Φα (β )δ (α−1)(x)e−Φ2(β )K2
+(x).

The MGF of the Gamma generalized random variable is as
following:

MX(−t) = β−α(t +β )α
, −1< α ≤ 0. (31)

Since L{δ (α)(x)} = sα , which implied that
∫ ∞

0 fX (x)dx = 1 for −1 < α ≤ 0 and the MGF be as
above, such that we have

∫ ∞

0
fX (x)dx = β−α

∫ ∞

0
δ (α)(x).e−β xdx (32)

= β−α
.β α

, (33)
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which proves our result. And also

E[e−tX ] = β−α
∫ ∞

0
δ (α)(x).e−β x

.e−txdx (34)

= β−α
∫ ∞

0
δ (α)(x).e−(β+t)xdx (35)

= β−α(β + t)α
. (36)

Since the Fourier transformF{δ (α)(x)} = (iw)α , which
implied that the characteristic function (CF) of this
distribution equals toβ−α(it +β )α

, for −1< α ≤ 0.
Therefore, this form of the PDF of Gamma distribution
indicates that the extended shape parameter appears the
relationship between fractional calculus and Statistics.
Also, it allows the representation of the PDF as a product
of fractional derivation of Dirac delta function of shape
parameter order. Also, the scale parameter can also be
considered as a random variable.

5 The generalized Beta random variable

The Beta distribution is a two-parameter (α andβ ) family

of density functions fX (x) =
xα−1(1− x)β−1

B(α,β )
for

0≤ x ≤ 1 [7]. It is often used to represent the proportions
and percentages. It has the following probability density
function:

Γ (α +β )DxΦα+1(x)DxΦβ+1(y), y = 1− x (37)

The PDF by using equation (21) with β = 0 and equation
(17), can be written as following definition.

Definition 5.1. suppose thatX be a random variable of
Beta distribution as a two-parameter family of distribution
functions, in which the parameterβ andα are the shape
parameters. ThenPDF of this distribution can be defined
as

f (x) =











Γ (α +β )Kα
+(x)K

β
+(y),

Γ (β −α)δ (α)(x)Kβ
+(y),

Γ (α −β )δ (β )(y)Kα
+(x),

(38)

where the first expression satisfies for 0< α and
0 < β . The second expression satisfies for
−1< α ≤ 0, 0< β and 0< α +β .

The third expression satisfies for−1< β ≤ 0, 0 < α
and 0< α +β .

To show that
∫ ∞

0 fX (x)dx = 1 for −1 < α ≤ 0, by
considering−1< α ≤ 0, 0< β and 0< α +β , we get

∫ ∞

0
fX (x)dx = Γ (β −α)

∫ 1

0
δ (α)(x)

(1− x)β−1

Γ (β )
dx,

by using equation (6) with t = 1 anda = 0; we have

= Γ (β −α)
∫ 1

0

x−α−1

Γ (−α)
.
(1− x)β−1

Γ (β )
dx,

= Γ (β −α).Γ −1(β −α),

which proves our result. This result has obtained with
similar way for−1 < β ≤ 0, 0 < α and 0< α + β the
case.

Therefore, as previous cases, we represented the PDF
of Beta distribution as the product of fractional derivation
of Dirac delta function. Also, we extended the parameter
space from(0,∞)× (0,∞) to (−1,∞)× (0,∞).

6 the Liouville fractional differintegral
operator on the MGF of positive random
variable, at the origin, is giving fractional
moments

Recently, fractional moments of the typeE[Xnq], where
n ∈ N and 0< q ≤ 1, have been introduced [4], such
quantities have important characteristics: (i) they are
exact natural generalization of integer moments as like as
fractional differential operators generalize the classical
differential calculus; (ii) the interesting point is the
relationship between fractional moments and the
fractional special functions. Also, in [5] it was shown that
complex fractional moments, which are complex
moments of ordernqth of a certain distribution, are
equivalent to Caputa fractional derivation of generalized
characteristic function in origin, such that whenq = 1 the
case was reduced to the complex moments. The fractional
moments mentioned above are moments of positive real
order, but in here, they are moments of real order.
Now we demonstrate that the fractional moments of a
positive random variable, theαth moments ofX , can be
obtained directly from Liouville fractional integrals and
derivations of the MGF at the origin, as in following
theorem.

Theorem 6.1.Suppose thatX be a positive and continuous
random variable and its MGF be infinite. then for 0≤ α,

theαth moments ofX can be obtained as following:

Iα
+{MX(t)} |t=0= Iα

−{MX(−t)} |t=0= E[X−α ], α > 0
(39)

and

Dα
+{MX(t)} |t=0= Dα

−{MX(−t)} |t=0= E[Xα ], 0≤ α
(40)

in particular whenα = n ∈ N,

Dn
+{MX(t)} |t=0= M(n)

X (t) |t=0= E[Xn], (41)
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and

Dn
−{MX(−t)} |t=0= (−1)nM(n)

X (−t) |t=0= E[Xn]. (42)

Proof. We have:

Iα
−{MX(−t)}= Iα

−{

∫ ∞

0
e−xt fX (x)dx}

=
1

Γ (α)

∫ ∞

t
(u− t)α−1

∫ ∞

0
e−xu fX (x)dxdu

=
1

Γ (α)

∫ ∞

t

∫ ∞

0
(u− t)α−1e−xu fX (x)dxdu,

by using the the Fubini theorem, we get

=
1

Γ (α)

∫ ∞

0

∫ ∞

t
(u− t)α−1e−xu fX (x)dudx,

under the substitutionu− t =
y
x
, we have

=
1

Γ (α)

∫ ∞

0

∫ ∞

0
yα−1x−α e−ye−xt fX (x)dydx

=

∫ ∞

0
x−α e−xt fX (x)dx

= E[X−αe−Xt ],

then

Iα
−{MX(−t)} |t=0= E[X−αe−Xt ] |t=0= E[X−α ],

for α > 0,X > 0. With similar way we get

Iα
+{MX(t)}= Iα

+{

∫ ∞

0
ext fX (x)dx}

=
1

Γ (α)

∫ t

−∞
(t − u)α−1

∫ ∞

0
exu fX (x)dxdu

=
1

Γ (α)

∫ t

−∞

∫ ∞

0
(t − u)α−1exu fX (x)dxdu,

again, by using the Fubini theorem, we have

=
1

Γ (α)

∫ ∞

0

∫ t

−∞
(t − u)α−1exu fX (x)dudx,

and under the substitutiont − u =
y
x

=
1

Γ (α)

∫ ∞

0

∫ ∞

0
yα−1x−α e−yext fX (x)dydx

=

∫ ∞

0
x−αext fX (x)dx

= E[X−αeXt ],

then

Iα
+{MX(t)} |t=0= E[X−αeXt ] |t=0= E[X−α ],

for α > 0,X > 0. Also, we have

Dα
−{MX(−t)}= (−1)m(

d
dt
)mIm−α

− {MX(−t)}

= (−1)m(
d
dt
)mIm−α

− {

∫ ∞

0
e−xt fX (x)dx}

= (−1)m(
d
dt
)m 1

Γ (m−α)

×
∫ ∞

t
(u− t)m−α−1

∫ ∞

0
e−xu fX (x)dxdu

= (−1)m(
d
dt
)m 1

Γ (m−α)

×

∫ ∞

t

∫ ∞

0
(u− t)m−α−1e−xu fX (x)dxdu,

and by using the Fubini theorem, we have

= (−1)m(
d
dt
)m 1

Γ (m−α)

×
∫ ∞

0

∫ ∞

t
(u− t)m−α−1e−xu fX (x)dudx,

under the substitutionu− t =
y
x

= (−1)m(
d
dt
)m 1

Γ (m−α)

×
∫ ∞

0

∫ ∞

0
ym−α−1xα−me−ye−xt fX (x)dydx

=

∫ ∞

0
xα e−xt fX (x)dx

= E[Xαe−Xt ],

then

Dα
−{MX(−t)} |t=0= E[Xα e−Xt ] |t=0= E[Xα ],

for X > 0 andm−1≤ α < m. Also similarly

Dα
+{MX (t)}= (

d
dt
)mIm−α

+ {MX(t)}

= (
d
dt
)mIm−α

+ {
∫ ∞

0
ext fX (x)dx}

= (
d
dt
)m 1

Γ (m−α)

×

∫ ∞

t
(t − u)m−α−1

∫ ∞

0
exu fX (x)dxdu

= (
d
dt
)m 1

Γ (m−α)

×
∫ ∞

t

∫ ∞

0
(t − u)m−α−1exu fX (x)dxdu,

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.3, No. 2, 61-67 (2015) /www.naturalspublishing.com/Journals.asp 67

by using the Fubini theorem, we have

= (
d
dt
)m 1

Γ (m−α)

×
∫ ∞

0

∫ ∞

t
(t − u)m−α−1exu fX (x)dudx,

under the substitutiont − u =
y
x

= (
d
dt
)m 1

Γ (m−α)

×

∫ ∞

0

∫ ∞

0
ym−α−1xα−me−yext fX (x)dydx

=

∫ ∞

0
xα ext fX (x)dx

= E[XαeXt ],

then

Dα
+{MX(t)} |t=0= E[Xα eXt ] |t=0= E[Xα ],

for X > 0 andm−1≤ α < m.�

7 Perspective

In this paper, we obtained a new relationship between
fractional calculus and statistics by introducing a
generalized random variable. With this definition, the
domain of shape parameter space of distributions such as
Gamma, Weibull and Beta were expanded from(0,∞) to
(−1,∞). Also, we showed that the Liouville fractional
differintegral operator on the MGF of a positive random
variable, at the origin, gives fractional moments.
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