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Abstract: In this paper, introducing a generalized random variabke obtained a new relationship between fractional calcuhas a
statistics. With this definition, the domain of shape par@mspace for some of distributions, such as Gamma, Beta a&ilolily were
expanded frong0, o) to (—1, ). It is shown that the expectation of such random varialBig(x), coincides with the fractional integral
of probability density function (PDF), at the origin, far> 0, and also the fractional derivative of PDF, at the origam, 1 < a < 0.
We also, presented PDFs of such distributions as a producactfonal derivation of Dirac delta function of shape paeder order,
6<">(.). Finally, we showed that the Liouville fractional differagral operator on the moment generating function (MGF) sftpe
random variable, at the origin, gives fractional moments.
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1 Introduction Dirac delta function which is defined as:

The study of generalized functions is now widely used in 6:X=C
applied mathematics and engineering sciences. /5 dx= (0
Generalized functions are defined as a linear functional ()¢ (x)cx = (0)

on a spac& of conveniently chosen test functions. . . .
For every locally integrable functiof € .Z1 (R), there for every test functiop € X. The test function spack is

exists a distributior; : X — C defined by: usually chosen as a subspace @H(R), the space of
infinitely differentiable functionsd].

® In the present work, we suppose thétis a positive
Ff(¢)=<f,¢>=/ f(X) ¢ (x)dx (1)  random variable anda is the shape parameter of
- distribution. The new random variable is represented as

where¢ € X is test function from a suitable spa#eof  the function®,(x) and defined by®y(x) = % The
test funct!ons. A distribution that qurgqunds to funesio ¢, ction @4 (x) can be extended to all complex values of
via equation {) are called regular distributions. Examples

A . a as a pseudo function and is a distribution whose
for regular distributions are the convolution kernkf$ € support is[0, ) except for the case = 0,1, .... Since

Z5c(R) defined as: distributions or generalized functions in mathematical
analysis are not really functions in the classical sense, we
also call our proposed random variable a generalized

) random variable. The expectation of this generalized
random variable coincides with Riemann-Liouville left
fractional integral of the PDF, at the origin, far> 0 and

for a > 0 andH (x) is a Heaviside unit step function. Marchaud fractional derivative of the PDF, at the origin,

Distributions that are not regular are sometimes calledfor —1 < o < 0. The generalized random variable

singular. An example for a singular distribution is the appears in some distributions that belong to the

:l:del

K{ =H(%x) (o)
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exponential family like Weibull, Gamma, Beta, Binomial wherea > —1 andf8 > —1 such thatr + 3 > —1 and we
and poisson distributions. By this generalized randomused the star notation for the convolution operation.
variable, we more expand the domain of shape parametefhe proof is easy foo > 0 andf > 0, as instance, see
space. For example, the domain of shape parameter whicf2]. Other values ofr andf can be proved using analytic
has been already expanded for Gamma and Weibultontinuation.

distributions ofa > 0 to a > —1 and for Beta distribution

from (0,0) x (0,00) to (—1,00) x (0,%). In case of (e) If Xq,Xa,...,%n bei.i.d. W(x;a, 8) then
negative values of the shape parameter space, the
relationship between fractional derivatives and stasisti Pa1(X) ~ T (1,7 (a+1)6),

theory can be obtained, this means we can write the PDF
of distributions like Gamma, Weibull, Beta as a product 2"d

of fractional derivatives of Dirac delta function. The ®
L X : . a-+1(X)
characteristics of this generalized random variable are as =~ ~B(1,n-1).
LI, Zl (Dor-&-l(xl)
following:

- ) . . o . Also, we demonstrate that tleeh momenta € R, of the
(@) By rewriting Binomial and poisson distributions in ositive random variabl¥ can be obtained directly from

terms of the generalized random variable, they arepe Ljouville fractional derivation and integrations okth
respectively transformed into Gamma and BetapGF at the origin.

distributions with a discrete parameter space, that is

POGA); @3 (9] = [F (A% 1); B(A)], x=0,1,... 2 Preliminaries
and In this section, we introduce notations, definitions and
preliminary facts which are used throughout this paper.
[Bin(X; p); @p(X)] = [B(P; X, N— X+ 2); @(p)] We need some basic definitions and properties of the

fractional calculus theory and the generalized functions
wherex = 1,2,...,n and [., @] is the rewriting form of  theory which are used further in this paper. As mentioned
generalized random variable. in references ] and [3], the definitions 1 and 2 of
fractional calculus are as following:
(b) The expectation of this generalized random
variable, ®q(x), coincides with Riemann-Liouville left  pefinition 1. For a functionf defined on an intervah, b,
fractional integral of the PDF at the origin for >0 and  the Riemann-Liouville (R-L) integrals?, f and Ig_ f of

Marchaud fractional derivative of the PDF at the origin  qarq < (%(a) > 0) are defined, respectively, by
for —1 < a < 0, that is, we have T ' '

1800 =z [(- O (Ede @

a

(a)
_Jaef)(o), a>0
E[®a(X)] = {(D"f)(O), —1<a<0 @) and
1 b
where 1500 = gy | €07 H@de @
t
1 © -1
(1260 = I‘(a)/o T (xt)dt ) Also, the left and right R-L fractional derivatiori3g, f
and Dg f of ordera € C, (#(a) > 0) are defined,
is the Riemann-Liouville left fractional integral, while respectively, by
1 o d
a _ —a-1 _ a _ (Z\n/n—a
(P20 = gy f, COHIHD TG}t (5) (D, (1) = () 12 1)), (©)
is the Marchaud fractional derivative. and d
. : o . (B5-F)(®) = ()" Hv). (10)
(c) The integer and fractional derivatives of this
generalized random variable are the generalized randorf in above definition, respectivelg = —co andb = oo,
variable, too. then we get Liouville fractional differintegral.
(d) Another property is Definition 2. The Liouville fractional differintegraD{ is
defined by
Pq(t—a) .« Pg(t) = Py p(t—a), (6)
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forO< a < 1.[6]

" | fraclr (—a) X (x—t)"91f (t)dt, Now if f € CP(R)’ with suppf c R*, then
D+{f(x)} - {dd_:n{Di—n{f(X)}

(1) D, f=Dg. (1) = (K;¥-KO)- f=5@.f (20

where the first expression satisfies ##(a) < 0 and forall a € C. Also. the differentiation rule

the second expression satisfies for
1 holds for all3,a € C. It contains
= f (=) (),
DY {f(x} =4 M9 (12) DKP —kP1
EUE peng o) -
dx" - for all B € C as a special casé]

with Z(a) < 0 for the first expression an#(a) > 0

such thatn = [Z(a)] + 1, for the second expression . . .
satisfies. In particular, whem = n € No, then 3 The generalized Weibull random variable

Dg{ f(x)} = f(x),DL{f(x)} = £(n) (x), (13) The Wiebull distribution was originally used for modeling
fatigue data and is at present used extensively in
and engineering problems for modeling, the distribution of the
0 lifetime of an object which consists of several parts and
DO{f(x)} = f(x),D"{f(x)} =(-1)"f™W(x). (14) thatfails if any component part fail3];
It is important to note that the fractional calculus has also

Definition 3. Let f be a generalized functiohe Cg (R)’ been applied in describing several PDFs in mathematical
with suppf C R*. Then its fractional integral is the statistics in terms of fractional integral and derivativie o
distributionl§, f defined as: exponential functions. For instance, the Wiebull
distribution can be writtean in terms of the fractional
(I8, f.¢) =19, 9)=(K{ . f,¢) (15)  derivative or integral o0&~  as
for Z(a) > 0 [6]. Also, the fractional derivative of order 01T (o + 1) Dy () (DY ,ae ") (), (22)
a with lower limit O is the distributiorD?{ f (z) }defined o
as: or
(D, f.9) = (D7f,¢) = (K;“f,¢)  (16) O (a+1)@a(X)(1%ae ") (x),  (23)
wherea € Cand where the subscript® indicates fractional derivative or

integral with respect to the variable”. In this way
representation of the PDF might introduce novel

xa-1 statistical interpretations in the study of statistical
H(x) , Z(a) >0 problems involving such these PDFs (at least in some
Ki(x) dn I_(CY) a+n-1 cases).
—[H (X)Xi]’ Z(a)+n>0;neN We will define the Weibull distribution as a
dx? Ir(a+n) two-parameter family of distribution functions, in which

(17)  the paramete® > 0 is the scale parameter and < o is

) o ) the shape parameter. So, this distribution can be defined
is the kernel distribution. Foor = 0 one can finds 4q

KO (x) = (&)H(X) = 5(x) and DY, =1 as the identity
operator. For ther = —n; ne N, one can finds F2(0 + 1)@y 1(8)D Py yq (x)e " (0D Pa1(6)Para()

K:"(x) = 6 (x) (18)  On the other hand, the scale paramefiercan also be
considered as a random variable. This means that,
whered™ is thenth derivative of thed distribution. The  depending on the variable which is being differentiated,
kernel distribution in equatiorl{) is given by: we have the distribution of that random variable.
g " g Therefore, the PDF can be written as follows:
-
KE0) = xH (X)m] = &Ki (19 Dy AP a(0)Pu 1), (24)
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And also, ifX be random variable of Wiebull distribution 4 The generalized Gamma random variable
as following:

2 I 2(@41) Dy 1(0) Py 1(X In this section, we will define the Gamma distribution as

F2(@+1) @12 (0)D Py (e eral®) +1<()2’5) a two-parameter family of distribution functions, in which
the parameteB > 0 is the scale parameter, and < a is

by using equation1) with 8 = 0 and equation1(7), we  the shape parameter. This distribution is defined as

can rewrite the PDF in terms of the fractional derivation

of Dirac delta function, as following definition. I (a+1)@q.1(B)DPq 1 (x)e 2P P21,

Definition 3.1. Suppose thak be a random variable of The scale parametgB, can also be considered as a
Weibull distribution as a two-parameter family of random variable. This means that, depending on which
distribution functions, in which the parametéris the  variable is under differentiation, we have the distribatio
scale parameter anwlis the shape parameter. Th&DF of that random variable; that is, the PDF can be rewritten
of this distribution can be defined as as:

f(x) = {”(a +1) Py 1(0)KI ()& 2@+ Pa11(6) @110 (@ +1)@ar1(B)DxPa+1(X)exp — @o(B) P2(x), (28)

r2(1— o)y (0)5@ (x)e 10 ®P1-a(B)P1a() or as
. N (26)
where the frist expression satisfies fox0or and the I (0 +1)Dg®Pai1(B) Par1(x)e 2B (29)

second expression satisfies forl < o < 0 (For
comfortable  computationally, we are showing Similarly as a general case of Weibull distributionXibe

—1<a <0with—a.). It can write, for 0O< a < 1, a random variable, by using equati@i) with 3 = 0 and
_ _r2 equation 17), we can write its PDF as following
fx(X) = () @ ()39 (x)e (@) Pa(@)Pal, definition:

Now we are showing thafy fx(x)dx = 1, for the case

—1<a <0,too. We have Definition 4.1. Suppose thaK be a random variable of
Gamma distribution as a two-parameter family of
distribution functions, in which the parametgris the
scale parameter aralis the shape parameter. Th&DF

/0 fx(¥)dx =T (1— a)e“’/o 3(x) of this distribution can be defined as
% efl'(lfa)efa r><<1’70’) dX, 2
. . a — ®2(B)KE(X)
by using equation(©) f(X) = I (a+1)®q.1(B)KS (x)e"*2 '
o F(1—a)®y a(B)d® (x)e PR
— F(l—a)ef"/ 5(@) (x).e T (1-@)8 76" Vo) gy (30)
0
under the substitution = 6@~ (x), where the first expression satisfies forxQr and the
® 0 ap-a second expression satisfies fet < a < 0.
=r(1- a)@“”/o e M-8 ugy, It can write, for 0< a < 1,

=r1-a)0 %r11-a)e°,

which proves our result.
Also the failure rate (or hazard function) for distributisn ~ The MGF of the Gamma generalized random variable is as

x(X) = I (0) @ (B)3( Y (e P2,

given by following:
— — —a a —
h(x) B {r2(0+1)¢a+1(9)K$(X), a>0 MX( t) B (t+B) s l<a<O. (31)
=9r2
r(1-a)®q(6)8%(x), -1<a<o. Since L{3@(x)} — <, which implied that

(27) S fx(x)dx =1 for -1 < a < 0 and the MGF be as

So, we succeed to represent the PDF of Weibull@POVe, such that we have
distribution with the extended shape parameter space,
—1 < a, as a product of fractional derivation of Dirac o o
delta function of shape parameter order. Also the scale / fx (x)dx = Bfa/ 3@ (x).e PXdx  (32)
parameter can be considered as a random variable. 0 p-a ;a (33)
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which proves our result. And also by using equationg) witht = 1 anda = 0; we have
e BX g-tx L yxa-1 (1-xpB-1t
—B /’5 e Pedx  (34) FB_a , dx
PO ) rea e ™
—p [(6 e Eax (35) —r(B-a)rYB-a),
=B %(B+1)°. (36)  which proves our result. This result has obtained with

similar way for—-1 < 3 <0, 0 < a and O0< o+ the
Since the Fourier transforfi{d(®)(x)} = (iw)?, which  case.
implied that the characteristic function (CF) of this
distribution equals t@ (it + )9, for —1 < a < 0. Therefore, as previous cases, we represented the PDF
Therefore, this form of the PDF of Gamma distribution of Beta distribution as the product of fractional derivatio
indicates that the extended shape parameter appears thé Dirac delta function. Also, we extended the parameter
relationship between fractional calculus and Statistics.space from(0, ) x (0,) to (—1,) x (0, ).
Also, it allows the representation of the PDF as a product
of fractional derivation of Dirac delta function of shape
parameter order. Also, the scale parameter can also be

considered as a random variable. 6 the Liouville fractional differintegral
operator on the MGF of positive random
variable, at the origin, is giving fractional

5 The generalized Beta random variable moments
The Beta distribution is a two-parameter éndg) family ~ Recently, fractional moments of the tyjpeX™], where
_ _ xa-1(1— x)B-1 ne N and 0< q < 1, have been introducedy], such
of density functions fx(x) = “Bap) for  quantiies have important characteristics: (i) they are
’ : exact natural generalization of integer moments as like as

0 <x<1[7]. Itis often used to represent the proportions
and percentages. It has the following probability density
function:

fractional differential operators generalize the claalsic
differential calculus; (ii) the interesting point is the
relationship between fractional moments and the
I (a+B)Dx®Pa1(X)Dx®p4(y), y=1-x (37) fractional special functions. Also, ip] it was shown that
complex fractional moments, which are complex
The PDF by using equatio2{) with f = 0 and equation moments of ordemqth of a certain distribution, are
(17), can be written as following definition. equivalent to Caputa fractional derivation of generalized
characteristic function in origin, such that whgg- 1 the
Definition 5.1. suppose thaX be a random variable of case was reduced to the complex moments. The fractional
Beta distribution as a two-parameter family of distribntio moments mentioned above are moments of positive real
functions, in which the paramet@randa are the shape order, butin here, they are moments of real order.
parameters. TheRDF of this distribution can be defined Now we demonstrate that the fractional moments of a
as positive random variable, theth moments ofX, can be
obtained directly from Liouville fractional integrals and
derivations of the MGF at the origin, as in following

I (a+BKI(KE (y), theorem.
f(x) =4 r(B—a)s@xK(y), (38)
I (a—B)6P) (y)Ka(x), Theorem 6.1.Suppose thaX be a positive and continuous

random variable and its MGF be infinite. then foxQx,

where the first expression satisfies for<Oa and  the ath moments oK can be obtained as following:
0 < B. The second expression satisfies for

—1<a<0, 0<pBand 0O<a-+p. 19 {Mx (1)} [i=o=1T{Mx(—t)} [i=o=E[X" %], a >0
(39)
The third expression satisfies ferl < 3 <0, 0< q
and 0< a +f3. an
DI {Mx ()} o= D {Mx (1)} |i—o=E[X?], O0<a
To show thatf;’ fx(x)dx = 1 for —1 < a < 0, by +{Mx(t)} k-0 {Mx(Z0)} o= EX7] (40)

considering-1< a <0, 0< B and 0< a -+ 3, we get
in particular whero =n € N,

1 xB 1
/ Px(x Fp-a / 5 (B) A DT {Mx(t)} [t=o=M L) eo=EX"),  (41)
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and

D" {Mx (1)} reo= (—1)"M" (~t) —o= E[X"]. (42)

Proof. We have:

—|“{/ e % fy (X)dx}

1 ° a1 % —xu
:W/t (u—t) 1/0 ey (x)dxdu

1 e a—1,—xu
—m/tfo(u—t) L £y (x)dxdl,

by using the the Fubini theorem, we get

under the substitution—t = z—(/,

G{MX

Te~fy (x)dudx,
we have

—i / / Yo Iy e Ve fy (x)dydx

—/X e’“fx

=E[X %,
then
[9{Mx(—t)} [i=o=E[X™ @
for a > 0,X > 0. With similar way we get
|${Mx(t)}=|g{/o & fy (X)dx}

:%/t (t—u)o- 1/ eV fy (x)dxdu

/ / (t — )7 16y (x)dxdl,

again, by using the Fubini theorem, we have

rah Lt

and under the substitutidn- u = x

X o= E[X ],

)~ 1e fy (x)dudx,

— %/Om/omy"’1x"’eyeXt fiy (X)dydx

= /Omx"’ex‘fx(x)dx

fora > 0,X > 0. Also, we have

d

D {Mx(~1)} = (~ ()M M (-0}
= MM [ e i an)
d 1

= (—1)m(a)mm

x / (u—t)™a-1 / e U fy (x)dxdu
t 0

— (M

)
SN

m a-1 7xu]c ( )dXdU,
and by using the Fubini theorem, we have

G

[

under the substitution—t = x

ym-a-leg=XUfy (x)dudx,

m d m 1
=(-1) (a) Fim—a)

% e —a—lxa—me—
hb
:/ xTe " fy (x)dx
0
:E[)<C(e—>(t]7

Ye ™ fy (x)dydx

then

DY {My(— e ] h=o= E[X7],

)} lk=o= E[X*

for X > 0andm—1< a < m. Also similarly

(ST (1))
:(%)mli‘*“{/‘) & i (x)dlx}
Cd, 1
_(&) r(m-a)

® o \m-a-1 ° u
x /t (t—u) /O &ty (x)dxdu

DY {Mx(t)} =

=E[X e, dy 1
then = (& r(m—a)
|${Mx(t)} |t=O: E[X—ant] |t=O: E[X_a], X /t /0 (t — U)m_a_lexu f)( (X)dXdU,
(@© 2015 NSP
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by using the Fubini theorem, we have

_d

= (St

rm—a)
v /O ) / " (t— u)™ a1y (x)dudx,
t

m

under the substitution—u =

m 1
) rm-—a)

x /O /O Y™ Ly@-MeYeX £y (x)dydx
:/wa"e?“fx(x)dx
= E[X%eN,
then
DY {Mx (1)} [i=o= E[X“ €] |r-o= E[X°],

for X >0andm—-1<a <m0

7 Perspective

In this paper, we obtained a new relationship between

fractional calculus and statistics by introducing a
generalized random variable. With this definition, the

domain of shape parameter space of distributions such as

Gamma, Weibull and Beta were expanded fr(@yr) to
(—1,). Also, we showed that the Liouville fractional
differintegral operator on the MGF of a positive random
variable, at the origin, gives fractional moments.
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