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Abstract: In this paper, we establish a class of retarded iterated integral inequalities, which includes a nonconstant term outside the
integrals. By adopting novel analysis techniques, the upper bound of the embedded unknown function is estimated explicitly. The
derived result can be applied in the study of solutions of ordinary differential equations and integral equations.
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1 Introduction

It is well known that differential equations and integral
equations are important tools to discuss the rule of natural
phenomena. In the study of the existence, uniqueness,
boundedness, stability, oscillation and other qualitative
properties of solutions of differential equations and
integral equations, one often deals with certain integral
inequalities. One of the best known and widely used
inequalities in the study of nonlinear differential
equations is Gronwall-Bellman inequality [1,2], which
can be stated as follows: Ifu and f are non-negative
continuous functions on an interval[a,b] satisfying

u(t)≤ c+
∫ t

a
f (s)u(s)ds, t ∈ [a,b],

for some constantc ≥ 0, then

u(t)≤ cexp

(

∫ t

a
f (s)ds

)

, t ∈ [a,b]. (1)

In 1956, Bihari [3] studied a new nonlinear integral
inequality

u(t)≤ a+
∫ t

0
f (s)w(u(s))ds, t > 0, (2)

wherea > 0 is a constant. Replacing the upper limitt of
the integral with a functionα(t) in (2), Lipovan [6]
improved Bihari’s results by investigating the following
so-called retarded Gronwall-like inequalities

u(t)≤ a+
∫ α(t)

α(t0)
f (s)w(u(s))ds, t0 ≤ t < t1,

and

u(t)≤ a+
∫ t

t0
f (s)w(u(s))ds+

∫ α(t)

α(t0)
g(s)w(u(s))ds, t0

≤ t < t1.

Pachpatte [5] investigated the retarded inequality

u(t) ≤ k+
∫ t

a
g(s)u(s)ds+

∫ α(t)

a
h(s)u(s)ds, (3)

wherek is a constant. Replacingk by a nondecreasing
continuous function f (t) in (1), Rashid [12] studied the
following retarded inequality

u(t) ≤ f (t)+
∫ t

a
g(s)u(s)ds+

∫ α(t)

a
h(s)u(s)ds, (4)

Their results were further generalized by Agarwal, Deng
and Zhang [8] to the inequality

v(t)≤ a(t)+
n

∑
i=1

∫ bi(t)

bi(t0)
gi(t,s)wi(u(s))ds, t0 ≤ t < t1,

(5)
In 2011, Abdeldaim et al. [10] studied a new iterated
integral inequality of Gronwall-Bellman-Pachpatte type

u(t)≤ u0+

∫ t

0
f (s)u(s)

[

u(s)+
∫ s

0
h(τ)

[

u(τ)+
∫ τ

0
g(ξ )

u(ξ )dξ
]

dτ
]

ds. (6)

In 2014, El-Owaidy, Abdeldaim, and El-Deeb[13]
investigated some new retarded nonlinear integral
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inequalities

u(t) ≤ f (t)+
∫ t

a
g(s)up(s)ds+

∫ α(t)

a
h(s)up(s)ds, (7)

up(t) ≤ f p(t)+
∫ α1(t)

a
g(s)u(s)ds

+

∫ α2(t)

a
h(s)u(s)ds, (8)

u(t) ≤ f (t)+
∫ α1(t)

a
g(s)w1(u(s))ds

+

∫ α2(t)

a
h(s)w2(u(s))ds, (9)

u(t) ≤ f (t)+
∫ α1(t)

a
g(s)u(s)w1(lnu(s))ds

+

∫ α2(t)

a
h(s)u(s)w2(lnu(s))ds, (10)

u(t) ≤ f (t)+
∫ α(t)

a
g(s)u(s)ds+

∫ α(t)

a
g(s)u(s)[u(s)

+
∫ α(t)

a
h(λ )u(λ )dλ ]ds. (11)

During the past few years, some investigators have
established a lot of useful and interesting integral
inequalities in order to achieve various goals; see [3-15]
and the references cited therein.

In this paper, on the basis of [10,13], we discuss a
new retarded nonlinear Volterra-Fredholm type integral
inequality

u(t) ≤ f (t)+
∫ α(t)

a
g(s)w1(lnu(s))ds

+

∫ α(t)

a
g(s)w1(lnu(s))

[

u(s)

+
∫ s

a
h(τ)u(τ)w2(lnu(τ))dτ

]

ds. (12)

2 Result

Throughout this paper, let
R+ = [0,+∞), I = [a,+∞).C1(M,S) denotes the class of
continuously differentiable functions defined on setM
with range in the setS, C(M,S) denotes the class of
continuously functions defined on setM with range in the
setS, α ′(t) denotes the derivative function of a function
α(t).

For the sake of convenience, we define three functions

W1(u) =
∫ u

ln(1+ f (a))

dr
w1(r)

,u > ln(1+ f (a)),u ∈ R+, (13)

W2(u) =
∫ u

0

w1(W
−1
1 (r))dr

w2(W
−1
1 (r))

,u >W1(ln(1+ f (a))),u ∈ R+,

(14)

W3(u) =
∫ u

ln(1+ f (a))

dr
w2(r)

,u > ln(1+ f (a)),u ∈ R+. (15)

Theorem 1 Suppose thatg,h ∈ C(I,R+),α ∈ C1(I, I) is
nondecreasing withα(a) = a and α(t) ≤ t on I. Let
f ∈ C1(R+,R+) be nondecreasing functions with
f (u) > 0 for u > 0, and w1,w2 ∈ C(R+,R+) be
nondecreasing functions with
uw1(lnu) > 1,w2(u) > 1,w2(u)/w1(u) > 1 for u > 0.
Suppose thatW1(+∞) = +∞,W2(+∞) = +∞. If u(t)
satisfies(12), then

u(t) ≤ exp
{

W−1
1

[

W−1
2

(

∫ t

a
f (s)ds

+

∫ α(t)

a
(g(s)+ h(s))ds

)]}

, t ∈ I, (16)

whereW1,W2 are defined by (13) and (14), respectively.
Proof. Define a functionz(t) by the right hand side of the
inequality (12), i.e.

z(t) = f (t)+
∫ α(t)

a
g(s)w1(lnu(s))ds

+

∫ α(t)

a
g(s)w1(lnu(s))

[

u(s)

+
∫ s

a
h(τ)u(τ)w2(lnu(τ))dτ

]

ds. (17)

which is a positive and nondecreasing function onI. From
(12) and (17) we have

u(t) ≤ z(t),u(α(t)) ≤ z(α(t))≤ z(t), t ∈ I, (18)

z(a) = f (a). (19)

Differentiatingz(t) with respect tot, using (18) we have

z′(t) = f ′(t)+α ′(t)g(α(t))w1(lnu(α(t)))

+α ′(t)g(α(t))w1(lnu(α(t)))
[

u(α(t))

+

∫ α(t)

a
h(τ)u(τ)w2(lnu(τ))dτ

]

= f ′(t)+α ′(t)g(α(t))w1(lnu(α(t)))
[

1+ u(α(t))

+

∫ α(t)

a
h(τ)u(τ)w2(lnu(τ))dτ

]

≤ f ′(t)+α ′(t)g(α(t))w1(lnz(α(t)))
[

1+ z(α(t))

+

∫ α(t)

a
h(τ)z(τ)w2(lnz(τ))dτ

]

≤ f ′(t)+α ′(t)g(α(t))w1(lnz(t))
[

1+ z(t)

+

∫ α(t)

a
h(τ)z(τ)w2(lnz(τ))dτ

]

≤ f ′(t)+α ′(t)g(α(t))w1(lnz(t))r1(t), (20)

where

r1(t) = 1+ z(t)+
∫ α(t)

a
h(τ)z(τ)w2(lnz(τ))dτ, (21)

which is a positive and nondecreasing function onI. From
(20) and (21) we have

z(t) ≤ r1(t),z(α(t)) ≤ r1(α(t))≤ r1(t), t ∈ I, (22)

r1(a) = 1+ f (a). (23)
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Differentiatingr1(t) with respect tot and using (20) and
(22), we have

r′1(t) = z′(t)+α ′(t)h(α(t))z(α(t))w2(ln z(α(t)))

≤ f ′(t)+α ′(t)g(α(t))w1(lnz(t))r1(t)

+α ′(t)h(α(t))z(α(t))w2(lnz(α(t)))

≤ f ′(t)+α ′(t)g(α(t))w1(lnr1(t))r1(t)

+α ′(t)h(α(t))r1(t)w2(lnr1(t)). (24)

Sincew1(lnr1(t))r1(t) is a positive function. From (24) we
have

r′1(t)
w1(lnr1(t))r1(t)

≤
f ′(t)

w1(lnr1(t))r1(t)
+α ′(t)g(α(t))

+α ′(t)h(α(t))
w2(lnr1(t))
w1(lnr1(t))

≤ f ′(t)+α ′(t)g(α(t))

+α ′(t)h(α(t))
w2(lnr1(t))
w1(lnr1(t))

. (25)

Integrating the inequality (25) from a to t, and making the
change of variable we have

W1(lnr1(t)) ≤ W1(ln(1+ f (a))+ f (t)− f (a)+
∫ α(t)

a
g(s)ds

+
∫ t

a
α ′(s)h(α(s))

w2(lnr1(s))
w1(lnr1(s))

ds

≤ f (t)− f (a)+
∫ α(t)

a
g(s)ds

+

∫ t

a
α ′(s)h(α(s))

w2(lnr1(s))
w1(lnr1(s))

ds. (26)

Define a functionr2(t) by

r2(t) = f (t)− f (a)+
∫ α(t)

a
g(s)ds

+
∫ t

a
α ′(s)h(α(s))

w2(lnr1(s))
w1(lnr1(s))

ds. (27)

which is a positive and nondecreasing function onI. From
(27) we have

r1(t)) ≤ exp(W−1
1 (r2(t))), (28)

r2(a) = 0. (29)

Differentiatingr2(t) with respect tot and using (28), we
have

r′2(t) = f ′(t)+α ′(t)g(α(t))+α ′(t)h(α(t))
w2(lnr1(t))
w1(lnr1(t))

≤ f ′(t)+α ′(t)g(α(t))

+α ′(t)h(α(t))
w2(W

−1
1 (r2(t)))

w1(W
−1
1 (r2(t)))

(30)

Sincew2(u)/w1(u)> 1 for anyu > 0, from (30) we have

w1(W
−1
1 (r2(t)))dr2

w2(W
−1
1 (r2(t)))

=
[

f ′(t)+α ′(t)g(α(t))

+α ′(t)h(α(t))
]

dt (31)

Integrating the inequality (31) from a to t and making the
change of variable we have

W2(r2(t)) = W2(r2(a))+
∫ t

a
f (s)ds+

∫ α(t)

a
(g(s)+ h(s))ds

=

∫ t

a
f (s)ds+

∫ α(t)

a
(g(s)+ h(s))ds. (32)

From (18), (22), (28) and (32), we obtain

u(t) ≤ z(t)≤ r1(t)≤ exp(W−1
1 (r2(t)))

= exp
{

W−1
1

[

W−1
2

(

∫ t

a
f (s)ds

+

∫ α(t)

a
(g(s)+ h(s))ds

)]}

. (33)

We get the required estimation (16). The proof is complete.

Theorem 2 Suppose thath(t) ∈ C(I,R+),α ∈ C1(I, I) is
nondecreasing withα(a) = a and α(t) ≤ t on I. Let
f ∈ C1(R+,R+) be nondecreasing functions with
f (u) > 0 for u > 0, and w1,w2 ∈ C(R+,R+) be
nondecreasing functions withuw1(lnu) > 1,w2(u) > 1
for u > 0. Suppose thatW1(+∞) = +∞,W3(+∞) = +∞.

If u(t) satisfies(12) andw1(u)> w2(u), then

u(t) ≤ exp
{

W−1
1

[

f (t)− f (a)

+

∫ α(t)

a
[g(s)+ h(s)]ds

]}

, t ∈ I. (34)

If u(t) satisfies(12) andw1(u)< w2(u), then

u(t) ≤ exp
{

W−1
3

[

f (t)− f (a)

+

∫ α(t)

a
[g(s)+ h(s)]ds

]}

, t ∈ I. (35)

Proof. Similarly to proof of Theorem 1. Performing the
same procedure as in (17), (18), (19), (20), (21), (22) and
(36), we have

r′1(t) ≤ f ′(t)+α ′(t)g(α(t))w1(lnr1(t))r1(t)

+α ′(t)h(α(t))r1(t)w2(lnr1(t)). (36)

If w1(u)> w2(u), then from (36) we have

r′1(t) ≤ f ′(t)+ [α ′(t)g(α(t))

+α ′(t)h(α(t))]r1(t)w1(lnr1(t)). (37)

Sincew1(lnr1(t))r1(t) > 1 is a positive function. From
(37) we have

r′1(t)
w1(lnr1(t))r1(t)

≤
f ′(t)

w1(lnr1(t))r1(t)

+[α ′(t)g(α(t))+α ′(t)h(α(t))]

≤ f ′(t)+ [α ′(t)g(α(t))

+α ′(t)h(α(t))]. (38)

Integrating the inequality (38) from a to t and making the
change of variable we have

W1(lnr1(t)) ≤ f (t)− f (a)+
∫ α(t)

a
[g(s)+ h(s)]ds. (39)
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From (18), (22) and (39), we obtain

u(t) ≤ z(t)≤ r1(t)

= exp
{

W−1
1

[

f (t)− f (a)

+

∫ α(t)

a
[g(s)+ h(s)]ds

]}

. (40)

We get the required estimation (34).
If w1(u) < w2(u). Performing the same procedure as

in (37)-(40). From (36) we can get the required estimation
(35). The proof is complete.

3 Application

In this section, similar to the applications in [14], we apply
our result in Theorem 1 to study of solutions of retarded
integral equation

x(t) = y(t)+
∫ α(t)

a
A(s,x(s))ds

+

∫ α(t)

a
A(s,x(s))B(s,

∫ s

a
C(τ,x(τ))dτ)ds,∀t ∈ I.

(41)

Assume that

|y(t)| ≤ f (t), (42)

|A(t,x(t))| ≤ g(t)w1(ln |x(t)|), (43)

|C(t,x(t))| ≤ h(t)|x(t)|w2(ln |x(t)|), (44)

|B(t,
∫ t

a
C(τ,x(τ))dτ)| ≤ |x(s)|+

∫ t

a
|C(τ,x(τ))|dτ, (45)

where f ,g,h,w1,w2,α are as defined in Theorem 1. From
(42)-(45) and (41), we have

|x(t)| ≤ f (t)+
∫ α(t)

a
g(s)w1(ln |x(s)|)ds

+

∫ α(t)

a
g(s)w1(ln |x(s)|)

[

|x(s)|

+

∫ s

a
h(τ)|x(τ)|w2(ln |x(τ)|)dτ

]

ds,∀t ∈ I. (46)

By Theorem 1 we get an explicit bound on an unknown
function|(x(t)| in the retarded integral equation (41) such
that

|x(t)| ≤ exp
{

W−1
1

[

W−1
2

(

∫ t

a
f (s)ds

+

∫ α(t)

a
(g(s)+ h(s))ds

)]}

, t ∈ I, (47)

whereW1,W2 are as defined in Theorem 1.

4 Conclusion

This paper establish a class of retarded iterated integral
inequalities.

u(t)≤ f (t)+
∫ α(t)

a
g(s)ω1(lnu(s))ds

+
∫ α(t)

a
g(s)ω1(lnu(s))[u(s)

+

∫ s

a
h(τ)u(τ)ω2(lnu(τ))dτ]ds.

Which includes a nonconstant termf (t) outside the
integrals. By adopting novel analysis techniques, the
upper bound of the embedded unknown function.

u(t)≤ expW−1
1 [W−1

2 (W2(W1(ln(1+ f (a))))+
∫ t

a
f (s)ds+

∫ α(t)

a
(g(s)+h(s))ds)],

t ∈ I,

Is estimated explicitly, where . The derived result can be
applied in the study of solutions of ordinary differential
equations and integral equations.
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