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Abstract: We discuss the quantum rotation gates in tripod system. We show that Stimulated Raman Adiabatic Passage (STIRAP)
requires high Rabi frequencies to have a perfect rotation gate. Moreover, we improve this process by using superadiabatic approach.
This approach requires additional Hamiltonian that can be implemented by driving the tripod with additional fields. Furthermore, we
show that it is robust to the decay of the excited state, but not to the dephasing caused by collisions or phase fluctuationsof the driving
fields.
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1 Introduction

Shor proposed an efficient quantum algorithm for
factorizing prime numbers [1] demonstrating that
quantum computer can perform interesting computations
much faster than any classical computer. The physical
realization of quantum computer requires universally
quantum gates to perform quantum operations. The most
common quantum gate is the Hadamard gate, which is
defined in the computational basis{|0〉, |1〉} by the
transformation

U =
1√
2

[

1 1
1 −1

]

. (1)

The realization of this gate can be implemented
adiabatically by combining two loops in parameter space
or non-adiabatically by a single pulse pair [2]. The
adiabatic implementation of the gate is based on
stimulated Raman adiabatic passage (STIRAP). This
STIRAP requires strong fields which is a disadvantage in
many experiments. To overcome this requirement
superadiabatic or transitionless approach have been
recently proposed [3–6]. L Giannelli and E Arimondo [6]
have discussed the robustness of superadiabatic transfer
in three-level systems. They have shown that
superadiabatic transfer overcome the difficulties
associated with the adiabatic transfer (STIRAP).

In this paper we show how to generate single qubit
rotation gates using superadiabatic approach. We begins
in Section 2 by reviewing the basic concepts of quantum
rotation gates. Section 3 describes the close system where
all damping rates are neglected. In section 4, we study the
effect of dephasing on the performance of the rotation
gate. At the end a conclusion is given in section 5.

2 Background

The process of stimulated Raman adiabatic passage is one
of the important techniques used to implement quantum
gates. It is based on the adiabatic theorem which states
that if the time-dependent Hamiltonian varies slowly and
the system starts in one of its eigenstates, it will follow
adiabatically this eigenstate [7]. Lacour et. al. [8] proposed
an elegant experiment technique to implement generalized
single-qubit Rotation gates in three-level lambda systems

R(a,φ) =
[

cosa eiφ sina
−e−iφ sina cosa

]

, (2)

wherea is the angle of rotation andφ is the phase of the
gate. This technique uses two STIRAPs. The first
STIRAP is a reversed STIRAP, while the second STIRAP
is a standard STIRAP. Each STIRAP has two pulses
separated in time. The driving fields have large Rabi
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frequencies and large detuning so that the excited state
can be adiabatically eliminated, and the system is left
with only two states which form the desired qubit. If the
two STIRAPs have the same pulse shapes with the same
delay, the rotation gate (2) can be obtained up to a global
phase. We extend their idea and use a tripod system rather
than a three-level lambda system. The tripod consists of
four-level system driven by three resonant laser fields
with Rabi frequenciesΩ0, Ω1, Ω2. These laser fields
couple the three lower levels|0〉, |1〉, and|2〉 to the upper
level |e〉 as depicted in Fig.1. The laser fields are
modulated by Gaussian pulses with widthδ , amplitudes
A j, phaseφ j, and time delayt j

Ω j(t − t j) = A jeiφ j e
− (t − t j)

2

δ 2 . (3)

In this paper, all parameters are scaled with respect to the
width of the Gaussian pulses.

Fig. 1: Energy level for a four-level tripod. The three ground
levels|0〉, |1〉 and|2〉 are coupled to the excited level|e〉 by three
different lasers. The two ground states|0〉 and |1〉 are the states
of the desired qubit.

Following Ref. [8], the two Rabi frequenciesΩ0 and
Ω1 are given by

Ω0 = Ω(t +T − τ)+Ω(t +T + τ)cosa,

Ω1 = Ω(t +T + τ)sina. (4)

These fields represent two STIRAP processes separated
by T in time, and each STIRAP has two pulses separated
by τ in time. The first STIRAP is a reversed STIRAP
starting with a constant ratioΩ0/Ω1 → cota, while The
second STIRAP process is a standard STIRAP where the
pulses are switched on counter-intuitively and switched
off in a given constant ratioΩ0/Ω1 → tana. In addition to
these STIRAP processes another STIRAP which consists
of two pulses separated in time such that it starts before
the two STIRAPs and ends after them (see Fig.2).

-6 -4 -2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

R
a
b
i
F

re
q
u
e
n
c
y

Fig. 2: The Rabi frequenciesΩ0 (solid line),Ω1 (dashed line),
andΩ2 (dotted line), as a function of time. The parameters are:
A0 = A1 = A2 = 1, τ = 0.5, T = 2, a = π/8. The time delay of
the first(second) pulse ofΩ2 is −3.5(3.57).

3 Close system

Closed system is a system which does not interact with the
environment. That is, the decay rates of all atomic levels
are ignored. In the close system, the time evolution of a
quantum system is governed by the Schrodinger equation

i
d
dt
|ψ(t)〉= H(t) |ψ(t)〉. (5)

where the HamiltonianH. In the next section we describe
the STIRAP process and show that the rotation gates can
be obtained only for High Rabi frequencies.

3.1 STIRAP

In the close system the HamiltonianH is given by

H =
1
2







0 0 Ω0 0
0 0 −Ω1 0

Ω0 −Ω1 0 Ω2e−iφ2

0 0 Ω2eiφ2 0






, (6)

Where are the Rabi frequenciesΩi are real numbers. This
Hamiltonian was considered in Ref. [9]. Its has four
eigenvalues. They are called the instantaneous adiabatic
eigenvalues [9]

λ± =±1
2

√

Ω2
0 +Ω2

1 +Ω2
2 , λi = 0 (i = 1,2). (7)

The eigenstate corresponds to zero energy is a degenerate
state. It is composed of two dark states

|D1〉 = −cosθ1sinθ0 |0〉+ cosθ1cosθ0 |1〉+ sinθ1eiφ2 |2〉,
|D2〉 = cosθ0 |0〉+ sinθ0 |1〉, (8)

where

tanθ0 =
Ω0

Ω1
, tanθ1 =

√

Ω2
0 +Ω2

1

Ω2
. (9)
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The eigenstate that corresponds to non zero eigenvalue is
called bright state. So, there are two bright states which
correspond to the non zero eigenvaluesλ±

|±〉 = 1√
2
[−sinθ1sinθ0 |0〉− sinθ1cosθ0 |1〉

±|e〉+ cosθ1eiφ2 |2〉 ] . (10)

According the adiabatic theorem [7], a system remains in
its instantaneous eigenstate if its time-dependent
Hamiltonian varies slowly compared with the energy
difference between eigenstates. If the tripod system starts
in the superposition of the two dark states it remains in a
superposition of these dark states at later time.

To measure the performance of the rotation gate we use
the fidelity which is given by

F =
∣

∣〈ψ(t f )|R(a,φ)|ψ(ti)〉
∣

∣ , (11)

where |ψ(ti)〉 represents the initial state at timeti and
|ψ(t f )〉 is the final state at timet f . The final state is
obtained by solving the Schrodinger equation (5) at the
end of the evolution. For numerical computations we
focus on the generation of the rotation gateR(π/4,0) and
we setφ2 = 0.

In Figure 3 we plot the Maximum, minimum and
average fidelity as a function of common amplitudeA of
the Gaussian pulses for the rotation gate with angle
a = π/4 and phaseφ = 0. The fidelity are computed
numerically for 1000 initial random states uniformly
distributed on the Bloch Sphere as follows.

|ψ(ti)〉= cos(πu)|0〉+ sin(πu)eiarccos(2v−1)|1〉,
where u and v are two random numbers uniformly
distributed on[0,1]. It is clear that the fidelity is close to 1
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Fig. 3: Fidelity for rotation gateR(π/4,0). The Maximum (solid
line), the average (dotted line) and the minimum (dashed line)
fidelity as a function ofA. The fidelity for the STIRAP process
approaches 1 only for high Rabi frequencies.

only for large values of A. Large Rabi frequencies is a

disadvantage in many experimental applications. In the
next section we show how to implement the rotation gate
R(π/4,0) with small Rabi frequencies by introducing
superadiabatic approach (sa-STIRAP).

3.2 Superadiabatic process

The process of superadiabatic or transitionless adiabatic
passage is a process in which there is not transition
between the adiabatic states. In recent paper [6] different
superadiabatic corrections were discussed for three-level
lambda systems. These corrections require the application
of additional pulse which couples between the two lower
states. This additional coupling can be implemented using
magnetic field which hasπ-area or nearπ-area. They
have shown that the application of sa-STIRAP will
produce the desired transfer and its robustness is much
larger than STIRAP.

In the superadiabatic approach the total Hamiltonian is
given by

H = H0+H1, (12)

whereH0 is given by eq. (6) andH1 is the superadiabatic
correction [3,5,6]

H1 = i∑
n
[|∂tn〉〈n|− 〈n|∂tn〉|n〉〈n|] (13)

where the sum is over all the instantaneous eigenstates.
This Hamiltonian can be written in a matrix form as

H1 =





0 h0,1 0 h0,2
h∗0,1 0 0 h1,2

h∗0,2 h∗1,2 0 0



 . (14)

where

h0,1 = i
Ω0Ω̇1−Ω1Ω̇0

Ω2
0 +Ω2

1

,

h0,2 = iΩ0
(Ω0Ω̇0+Ω1Ω̇1)Ω2− (Ω2

0 +Ω2
1)Ω̇2

(Ω2
0 +Ω2

1)(Ω
2
0 +Ω2

1 +Ω2
2)

,

h1,2 = iΩ1
(Ω0Ω̇0+Ω1Ω̇1)Ω2− (Ω2

0 +Ω2
1)Ω̇2

(Ω2
0 +Ω2

1)(Ω2
0 +Ω2

1 +Ω2
2)

.

With our Gaussian pulses the termh0,1 = 0. That is, the
HamiltonianH1 is equivalent to additional driving fields
which couple the two lower levels|0〉 and|1〉 to the level
|1〉.

In Figure. 4 we plot the fidelity as function of the
amplitudeA. It shows that sa-STIRAP leads to a perfect
rotation gates for all Rabi frequencies. This is an
important improvement over STIRAP which needs high
Rabi frequencies.

4 Open system

Close system is an ideal system. In reality the tripod is
interacting with the environment and its subject to decays.
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Fig. 4: Fidelity for rotation gateR(π/4,0) as a function ofA. The
fidelity is 1 for all Rabi frequencies.

In the presence these decays the evolution of the system is
given now by the Lindblad master equation

ρ̇ =−i [H,ρ ]+
1
2 ∑

i

(

2CiρC†
i −C†

i Ciρ −ρC†
i Ci

)

, (15)

where ρ is the atomic density operator,H is the
Hamiltonian operator for the closed system, andCi are the
Lindblad operators associated with the decoherence.

Figure5 shows the evolution of the population when
the initial state is|0〉 and Figure6 when the initial state is
|1〉. Both of them do not show any difference between
close system and open system in the presence of the
decay rate of the excited state (we have used the damping
rate of the excited state equal to 10). Thus, The rotation
gate is robust under the loss of the excited state because
the excited state is unpopulated during the evolution. This
means that the decay rate of the exited state has a
negligible effect.
So, it is interesting to check the robustness in the presence
of dephasing caused by collisions or phase fluctuations of
the fields. The effect of dephasing on the STIRAP has
been explored by various authors. Ivanovel al [10] found
that the population transfer efficiency of the STIRAP is
found to decrease exponentially with the dephasing rate.
Here we restrict ourselves to the dephasing of the ground
state |0〉 which can be described by the Lindblad
operatorsC0 =

√
2Γ0|0〉〈0|, where Γ0 is the dephasing

rate. Figure7 shows the fidelity as a function of the
dephasing rateΓ0 for A = 1. One can see that the fidelity
decrease linearly and the rotation gate become imperfect.
So, the dephasing caused by collisions or phase
fluctuations of the fields produces significant effect on the
performance of the rotation gate.

5 Conclusion

In this paper we have discussed the generation of single
qubit rotation gates.We have focused on the rotation gate
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Fig. 5: Population of the atomic states. The atom is initially in the
state|0〉. At the end of the evolution the population of the each
of the lower states is 0.5. The excited state is unpopulated. There
is no difference between the close system and the open system
when the excited state loss is considered.
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Fig. 6: Same as Figure.5 except the atom is initially in the state
|1〉.
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Fig. 7: Fidelity for rotation gate. The Maximum, the average and
the minimum fidelity as a function ofΓ0 for A = 1.
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with anglea = π/4 and phaseφ = 0. This study have
shown that the STIRAP requires high Rabi frequencies to
implement the rotation gates. To overcome this
disadvantage we use superadiabatic approach that leads to
a perfect gate for small Rabi frequencies.Furthermore,we
have explored the effect of dephasing on the performance
of the gate. We have shown that is robust to the decay rate
of the excited state because the excited state is
unpopulated during the evolution. However, the
dephasing which cause by collisions or phase fluctuations
of the field can leads to imperfect gate. Therefore, to get a
perfect gate one must keep the dephasing as small as
possible.
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