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Abstract: A new type of a non-linear entangled pair coherent state is introduced. Under a certain choice of the non-linear functions
the solution of the recurrence relation is obtained. Phenomenon of squeezing and the Poissonian distribution are examined. It is shown
that the eigenvalue of the photon number sum (theq-parameter) is responsible for some of nonclassical phenomenon. Furthermore, the
quasi-probability distribution functions (the Wigner andQ-functions) are discussed. For the Wigner function the nonclassical behaviour
is only displayed for odd values of theq-parameter in a restricted subspace. Finally the phase distribution in the framework of Pegg and
Barnett formalism is considered.
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1 Introduction

The number state|n〉 represents the corner stone to deal
with any problem related to the fields of quantum
mechanics and quantum optics [1,2]. In the meantime, the
appearance of the coherent state besides the thermal state
opened the door to discover other states which have
nonclassical properties [2,3,4,5,6]. In this sense one may
mention the binomial state, the generalized geometric
state and the logarithmic state, etc [7,8,9,10,11]. In fact
these states are intermediate states which interpolate
between either the number state and the coherent state
[7], or between the number state and pure thermal state
[9]. However, the logarithmic state can be viewed as an
interpolation between the generalized Bose-Einstein
states and the coherent state. The above mentioned states
are generated from quantum systems which describe
kinds of interaction between an atom and a field. For
example the binomial state can be generated from a
system consisting of the linear combination between two
raising and lowering operators related to the angular
momentum operators [12,13,14]. While the generalized
geometric state can be generated from the Hamiltonian
which describes the interaction between multiphoton
processes in finite level atomic system [9]. As one can see

the above mentioned states are just few of many other
intermediate states. Besides these intermediate states
there exist other states termed as correlated states [15].
For instance pair coherent states (PCS) |ζ ,q〉 represent an
important type of correlated two-mode states which
posses prominent nonclassical properties. These states
satisfy the following eigenvalue relations

â1â2|ζ ,q〉= ζ |ζ ,q〉 and (n̂1− n̂2) |ζ ,q〉= q|ζ ,q〉,
(1)

where ˆai(â
†
i ) i = 1,2 are the annihilation (creation)

operators and ˆni, i = 1,2 are the photon number operators
of the two field modes. The parameterq is an integer and
ζ may be a complex numbers. Also we may refer to
another type of correlated two-mode states that is a
finite-dimensional pair coherent state. In analogy to the
definition of the pair-coherent state, the finite dimensional
PCS is defined as the eigenstate of the pair of operators:
{

â†
1â2+

(

â1â†
2

)q
ζ q+1/(q!)2

}

with eigenvalueζ and the

sum of the photon number operators for the two modes
(n̂1+ n̂2) with eigenvalueq. In terms of the number states
of the two modes, thus state is given by [16,17]

|ζ ,q〉= Nq

q

∑
n=0

ζ n

√

(q− n)!
q!n!

|q− n,n〉, (2)
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whereζ is a complex parameter andq is an integer and
Nq is the a normalization constant, for more details one
may consult the above references. In fact the state in the
above equation has been introduced during the study of
the statistical properties of a two-photon cavity mode in
the presence of frequency converter.

As another example may be mentioned in this context,
the two mode nondegenerate entangled state. This state is
constructed from the eigenstate of the pair operators
(µ âb̂ + ν â†b̂† −√µν(ââ† + b̂†b̂)) and the difference of
the photon number operators(n̂a − n̂b) for two modes
[18].

In this paper, we address the problem of constructing
and discussing some properties of a new correlated two
mode states. The results that we are going to present states
that stem from an approach to a nonlinear PCS (NLPCS)
namely

(µ âb̂ f (n̂a) f (n̂b)+ν f (n̂a) f (n̂b)â†b̂†

−√µν(ââ† ( f (n̂a +1))2+ b̂†b̂ ( f (n̂b))
2))|ξ ,ζ ,q〉= ξ |ξ ,ζ ,q〉,

(â†â− b̂†b̂)|ξ ,ζ ,q〉= q|ξ ,ζ ,q〉,
(3)

whereζ reflects the squeeze parameter which is a result
of definingµ = cosh2 ζ andν = sinh2 ζ and satisfying the
conditionµ −ν = 1, ξ is a complex parameter of the state
while theq parameter is an integer number.

When we choose the non-linear function to take the
form f (n̂i) =

1√
n̂i
, i = a,b the state is given by

|ξ ,ζ ,q〉 =
√

1−|m|2
∞

∑
n=0

mn|q+ n,n〉,

m = tanhζ

[

(1+
ξ

sinh2ζ
)−

√

(1+
ξ

sinh2ζ
)2−1

]

(4)

(see Appendix)
Now in figure (1) we plotm againstξ and ζ which

shows that for small values ofζ the curve increases slowly
but then it shoots to become almost 1. By increasingξ the
curve shoots faster to reach almost its maximum.

It is clear that whenq = 0 the state (4) becomes two
mode vacuum state and when m approach to one the state
(4) become phase state.

Since we are concerned with some statistical
properties of the state (4), therefore we devote the next
section to consider some of the nonclassical properties.
Precisely we discuss the phenomenon of squeezing as
well as the correlation function. In Section2 we discuss
the quasi-probability distribution functions, namely the
Wigner andQ-functions. Section4 is devoted to consider
the phase properties which is followed by Section5
where our conclusion is given.

2 Nonclassical properties

A traditional task for the nonclassical properties is to
consider the phenomenon of the squeezing as well as the

Fig. 1: The coefficientm against the variableξ andζ .

Poissonian distribution. This can be discussed when one
uses the usual definition for the quadrature variances as
well as the Glauber second order correlation function,
respectively. Therefore we devote this section to consider
these phenomena in some details. For this reason we
divide this section into two subsections and start with the
phenomenon of squeezing.

2.1 The squeezing phenomenon

It is well known that squeezing means reduction in the
noise of an optical signal below the vacuum limit. The
phenomenon has wide applications in optical
communications networks and in the gravitational wave
detection [19,20,21,22]. From mathematical point of
view we can measure the squeezing if we calculate the
Hermitian quadrature varianceŝX and Ŷ . These
quadrature operators satisfy the commutation relation
[X̂ ,Ŷ ] = iĈ, whereĈ may be an operator orC-number
depending on which kind of squeezing we want to
discuss. For the present state it is most likely to observe
the phenomenon of the squeezing if we use the definition
of the frequency sum squeezing. Therefore, to facilitate
our discussion we introduce the frequency sum squeezing
quadratures defined by

X̂ =
âb̂+ â†b̂†

2
, Ŷ =

âb̂− â†b̂†

2i
(5)

which satisfy the commutation relation

[

X̂ ,Ŷ
]

= iĈ,

Ĉ =
1
2
(n̂a + n̂b +1) (6)
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thus leading to the uncertainty relation:

(∆ X̂)2(∆Ŷ )2 ≥ 1
4
< Ĉ >2 (7)

The variance is given in terms of annihilation and
creation operators expectation values by

〈(∆ X̂)2〉 =
1
4
+

1
4
(2Re < â2b̂2 >+2< n̂1n̂2 >+< n̂a + n̂b >)−

(

Re(< âb̂ >)
)2

〈(∆Ŷ)2〉 =
1
4
+

1
4
(2< n̂an̂b >−2Re < (â2b̂2)>+ < n̂a + n̂b >)+

(

Im(< âb̂ >)
)2

(8)

The model possesseŝY -quadrature frequency sum
squeezing if theS-factor defined by

S(m) =
〈(∆Ŷ )2〉−0.5< Ĉ >

0.5< Ĉ >
, (9)

has negative values.
In this case we note that frequency sum squeezing

persists for a considerable for different values ofq. It
should be noted that the phenomenon of squeezing for
this particular quadrature variances depends only on the
value ofq.

Fig. 2: The phenomenon of squeezing for the first quadrature Y
and different values ofq where the solid curve forq = 1, the dash
curve forq = 5 and the dot curve forq = 10

To illustrate our discussion we have plotted figures (2)
for q = 1,5 and 10. Fig. (2) display the squeezing in the
quadratureSy(m), where no squeezing can be seen in the
region close tom ≃ 0, however the amount of squeezing
starts to occur when the variablem develops. However, it
is observed that frequency sum squeezing is absent in the
quadratureSx(m). In general for large values of theq
parameter, the amount of squeezing in the quadrature
Sy(m) increases as observed in Fig. (2).

2.2 The correlation function

We devote the present section to consider an example of
the nonclassical effects that is the phenomenon of
sub-Poissonian distribution. This phenomenon can be
measured by photon detectors based on photoelectric
effect. The importance of the study comes up as a result
of several applications, e.g. quantum nondemolition
measurement, which can be generated in semiconductor
lasers [19] and in the microwave region using masers
operating in the microscopic regime [23]. It is well known
that, sub-Poissonian statistics is characterized by the fact
that the variance of the photon number〈(∆ n̂i(t))2〉 is less
than the average photon number〈â†

i (t)âi(t)〉 = 〈n̂i(t)〉.
This can be expressed by means of the normalized
second-order correlation function [24] as follows.

g(2)z (m) =
〈ξ ,ζ ,q|n̂z(n̂z −1)|ξ ,ζ ,q〉

〈ξ ,ζ ,q|n̂z|ξ ,ζ ,q〉2 , ∀ z = a,b (10)

where

〈ξ ,ζ ,q|n̂a(n̂a −1)|ξ ,ζ ,q〉 =
q(q−1)(1−m2)2+2qm2(1−m2)+2m4

(1−m2)2 ,

〈ξ ,ζ ,q|n̂a |ξ ,ζ ,q〉 = q−1+
1

(1−m2)
, (11)

and

〈ξ ,ζ ,q|n̂b(n̂b −1)|ξ ,ζ ,q〉 = 2m4

(1−m2)2 .

〈ξ ,ζ ,q|n̂b|ξ ,ζ ,q〉 =
m2

(1−m2)
(12)

Fig. 3: The correlation functiong(2)z (ζ ) against the parameterm
and for the first mode whereq = 1 for (solid curve),q = 2 for (
dot curve) andq = 10 for (dash curve).

The functiong(2)z (m) given by (10) for the modez
serves as a measure of the deviation from the Poissonian
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distribution that corresponds to coherent states with

g(2)z (m) = 1. If g(2)z (m)< 1(> 1), the distribution is called

sub (super)-Poissonian, ifg(2)z (m) = 2 the distribution is

called thermal and wheng(2)z (m) > 2 it is called
super-thermal.

Before we go further let us point out that, in our
examination for the case in whichq = 0, we find the two
mode having the same behaviour, the correlation function

g(2)2 (m) represents thermal state as expected from
equation (12). It is to be observed that the state (4) for
the first mode and for different values of the parameter
q = 1,2,10, starts full sub-Poisson distribution for large
region consideration and the distribution increases
gradually when the variablem develops and reach to
Poissonian and super-Poissonian distribution see Fig. (3).
Also we find that the function starts at 0, 1

2 and 9
10

respectively. This is because it looks as that we have the
Fock state|ξ ,ζ ,q〉 = |q,0〉 present in this case when

m → 0 so g(2)a (m) = q−1
q as shown in [16]. We note that

the same behaviour can be seen on increasing the
parameterq, however there is one main difference. The
difference is that the maximum values of the correlation
function on the start depends on the parameterq, so for

large values ofq the function g(2)a (m) starts almost
Poissonian. For a large value ofm, the distribution
reaches the thermal distribution as we get the limit

g(2)b (m) = 2 as depicted in Fig. (3) form ≫ 1.

3 Quasiprobability distribution

It is well known that there are three quasiprobability
distribution functions:P-representation,W -Wigner, and
Q-function [25]. These functions are regarded as
important tools to provide insight into the nonclassical
features of the radiation fields. In the meantime they have
advantages and disadvantages connected with their use.
As a marked disadvantage theP-function (which
describes a quantum state in terms of the probability that
the system is in a given coherent state) is highly singular
or negative for quantum states with no classical
analogues. While the Wigner function may become
negative for some quantum states, but it has the
considerable advantage for squeezed states that its
contour map out the variances in the field quadratures.
The Q-function is a positive-definite quasiprobability
distribution, but its simple relation to anti-normal operator
products makes it difficult to interpret in terms of
conventional photon counting or squeezing measurements
[26,27]. The s-parameterized characteristic function (CF)
for the two-mode states is defined as follows

C(λ1,λ2,s) = Tr[ρ̂D̂(λ1)D̂(λ2)]exp{ s
2
(|λ1|2+ |λ2|2)},

(13)

With the s-parameterized quasi-probability
distribution functions (QDF) for the two-mode case given
by

F(β1,β2,s) = ( 1
π2 )

2∫ ∫

C(λ1,λ2,s)exp(λ ∗
1 β1+λ ∗

2 β2− λ1β ∗
1 − λ2β ∗

2 )d
2λ1 d2λ2,

(14)
We consider a phase space QDF for our states. To

begin the state (4) will be written in the form

|ξ ,ζ ,q〉=
∞

∑
n=0

Bn(ζ ,ξ )|q+ n,n〉, (15)

where

Bn(ζ ,ξ ) =
√

1−|m|2.mn (16)

It is clear that, the probability of findingn+ q photons
in the 1st mode, andn photons in the 2nd mode in the state
|ξ ,ζ ,q〉 is given by

P(n+ q,n) = |Bn(ζ , f ,q)|2. (17)

In what follows we consider the Wigner, and the
Q-function and for this reason we have to evaluate the
integral in equation (14) for s = 0 and s = −1,
respectively. This can be achieved if one manages to
calculate the characteristic function. From equation (14)
and after minor algebra we have

C(λ1,λ2,s) = exp[{− (1−s)
2 }(|λ1|2+ |λ2|2)]∑∞

n=0 |Bn(ζ ,ξ )|2Ln+q[|λ1|2]Ln[|λ2|2],
(18)

F(β1,β2,s) = ( 2
π(1−s))

2exp[−2(|β1|2+|β2|2)
(1−s) ]∑∞

n=0∑n+q
j=0 ∑n

k=0 |Bn(ζ ,ξ )|2
(n+q

j

)(n
k

)

×( −2
(1−s))

j+kL j[
2|β1|2
(1−s) ]Lk[

2|β2|2
(1−s) ]

(19)
whereLq

n(x) are the associated Laguerre polynomials
given by

Lq
n(x) =

n

∑
r=0

(

n+ q
n− r

)

(−1)r

r!
xr (20)

Having obtained the parameterized characteristic
function, we are therefore in a position to discuss the
Wigner, andQ-function. This will be exhibited in the next
subsections

3.1 The Wigner function

To obtain the Wigner functionW (α,β ) we inserts = 0 in
equation (19) we obtain

W (β1,β2) =
4

π2 exp[−2(|β1|2+ |β2|2)]∑∞
n=0 ∑n+q

j=0 ∑n
k=0 |Bn(ζ ,ξ )|2

(n+q
j

)(n
k

)

×(−2) j+kL j[2|β1|2]Lk[2|β2|2]

(21)
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a b

c d

Fig. 4: The Wigner function against Re(α) and Im(α) for fixed
values ofm = 0.5. (a)-q = 0, (b)-q = 1, (c)q = 2, (d)q = 5

In order to visualize the behaviour of this function we
choose a subspace in whichβ1 = β1 = α say. In figure (4)
we have plotted the Wigner function againstRe(α) and
Im(α) for fixed values ofm = 0.5. In the meantime we
examined the function for the cases in whichq = 0,1,2
and 5. When we consider the case in whichq = 0, the
function displays Gaussian shape with a symmetrical
behaviour around the origin. In this case one can see a
sharp peak centered at the middle of the bases, see
Fig.(4a). As soon as we consider the value of the
q-parameter and takeq = 1, the peak of the function gets
upside down and the nonclassical effect becomes
pronounced. This is clear from Fig. (4b) where the
negative values of the function are apparent. The
spreading of Wigner over the plane is shown asq
increases, this is seen for the case in whichq = 2.

In this case the oscillatory behavior starts to appear
for large values of theq-parameter. This indicates that the
function gets more sensitive to the variation in the
q-parameter and this of course reflects the change from
Gaussian to non-Gaussian states; see Fig. (4c). Forq = 5
the function displays the same shape, however, it changes
its direction downward and exhibits negative values, see
Fig.(4d). This indicates that the nonclassical behaviour
appears only for the odd numbers of theq-parameter
while it disappears for even numbers. This means that the
q-parameter plays a role of changing the nonclassical
behaviour.

3.2 The Q-function

Now if we sets =−1 in equation (19), then theQ-function
has the form

Q(β1,β2) = ( 1
π )

2 exp[−(|β1|2+ |β2|2)]∑∞
n=0∑n+q

j=0 ∑n
k=0 |Bn(ζ ,ξ )|2

(n+q
j

)(n
k

)

×(−1) j+kL j[β1|2]Lk[β2|2]

(22)

a b

c d

Fig. 5: TheQ- function againstRe(α) andIm(α) for fixed values
of m = 0.5, (a)-q = 0, (b)-q = 1, (c)q = 3, (d) q = 5

whereβ1,β2 ∈ C , with |β1〉 and|β2〉 being the usual
coherent states. Since we have four variables associated
with the real and imaginary parts ofβ1 andβ2. Therefore,
we confine ourselves to a subspace determined byβ1 =
β2 = β , [28]. In this subspace theQ-function for the state
(4) is expressed in the equivalent form

Q(x,y) =
1

π2 exp[−2(x2+ y2)]

×
∣

∣

∣

∣

∣

∞

∑
n=0

Bn(ζ ,ξ )
β 2n+q

√

(q+ n)!n!

∣

∣

∣

∣

∣

2

, (23)

whereβ = x+ iy.
Since the maximization or minimization of the

Q-function depends on the parameterq. Therefore, our
main task is to examine the behaviour of theQ-function
due to the variation in theq-parameter. For this reason we
plot Q(α) in figure (5) for different values of the

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


14 A. S.-F. Obada et. al. : Some Statistical Properties of a Non-linear...

q-parameter keeping all other parameters unchanged as
for the Wigner function case. For fixedm = 0.5 and for
instance when we considerq = 0, the function exhibits
Gaussian shape but with squeezing apparent on the
contours of the base where it is elliptically shaped, see
Fig.(5a). Forq = 1, we note that the peak splits into two
peaks but they are joined near of the base, see Fig.(5b).
More increase in the value ofq leads to a split of the two
peaks and a spread out of the bases. Each base has a
crescent like shape as shown clear for the cases in which
q = 3,5, see Fig.(4c,d). It is also noted that there is a very
slight difference between the heights of the peaks. This
means that there is a slight asymmetry in the function
shape which reflects the effect of the squeezing.

4 Phase properties

We devote this section to discuss the phase distribution
for the present state. For this reason it is convenient to use
the phase distribution formalism introduced by Barnett
and Pegg [29,30]. It is well known that the phase operator
is defined as the projection operator on a particular phase
state multiplied by the corresponding value of the phase.
Therefore, for the present state one can cast the
Pegg-Barnett phases distribution functionP(θ1,θ2) in the
following form:

P(θ1,θ2) =
1

4π2 ∑∞
n,m=0 Bn(ζ ,ξ )B∗

m(ζ ,ξ )exp{i(n−m)(θ2+θ1)} .
(24)

In other word the phase distribution function can be
rewritten in the form

P(θ ) =
(1−m2)

4π2

∣

∣

∣

∣

∣

∞

∑
n=0

B(n)exp[inθ ]

∣

∣

∣

∣

∣

2

, −π ≤ θ ≤ π

(25)
where θ = θ2 + θ1 and the function is normalized
according to

∫ π
−π

∫ π
−π P(θ1,θ2)dθ1dθ2 = 1. As a result of

the correlation between the two modes we find that, the
phase distribution will depend on the sum of the phases of
the two modes. In this context we have plotted in figures
(6) the functionPζ ,q(θ ) against the angleθ = θ2+ θ1 for
a fixed value ofq = 3 but for different values of the
parameterm.

Here, we restrict our discussion to the cases in which
q = 3 and m = 0.3,0.5 and 0.7 where partial coherent
phase states result and the phase distribution shows
one-peak structure. This peak is centered atθ = 0 with a
symmetrical distribution around the central peak. For
m = 0.3, it is observed that the functionP(θ ) starts at
P(−π) = 0.02 for m = 0.3, 0.015 for m = 0.5 and 0.05
for m = 0.7, respectively, see Fig.(6). It is also noted that
the value of the distribution function atθ = 0 for the case
in whichm = 0.3, is smaller than that the case ofm = 0.7.
As one can see the range of the peak in this case is wider

Fig. 6: The phase distributionP(θ ) againstθ for fixedq = 3 and
the solid curve form = 0.3, the dash curve form = 0.5 and the
dot for m = 0.7.

than that the case in whichm = 0.3. In the meantime, the
function P(θ ) for a large value of them-parameter the
function P(θ ) increases its maximum as observed in
Fig.(6). It is to be noted that asm → 1, the coherent phase
state is realized and we get a delta function distribution.

5 Conclusion

In the present paper we have introduced a new nonlinear
entangled pair coherent state under a particular choice of
the nonlinearity functions the resulting recurrence relation
is solved and a feasible state is considered. For a
particular definition of the quadrature variances, the
phenomenon of squeezing is observed where the amount
of the squeezing depends on the values of them and q
parameters. In the meantime we have employed the
Glauber second order-correlation function to examine the
nonclassical properties of the state. We have shown that
the nonclassical as well as the classical behaviour are
apparent in both modes for different values ofm.
However, the nonclassical effect is more pronounced in
the first mode while the classical behaviour is pronounced
in the first mode. We have also considered the
quasiprobability distribution functions (the Wigner and
Q-functions) where observation of nonclassical properties
is reported for the odd values of theq-parameter. In the
meantime theQ-function displays Gaussian behaviour
and tends split up into two shapes asq increases. Finally
we have examined the properties of the present state in
terms of the phase distribution function introduced by
Barnett and Pegg. In this case the function shown a
symmetry peak around zero whatever the value of them
andq parameters. However, as them-parameter increases

c© 2015 NSP
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the maximum value of the function increases but without
breaking the symmetry.

Appendix:
Here we shall briefly derive the state given by equation

(4). To do so we use the equation (3)

â1â2 = (µ âb̂ f (n̂a) f (n̂b)+ν f (n̂a) f (n̂b)â†b̂†−√µν(ââ† ( f (n̂a +1))2+ b̂†b̂ ( f (n̂b))
2)),

(26)
whereµ = cosh2 ζ andν = sinh2 ζ . Since the operators ˆab̂
andâ†â+ b̂b̂† commute, therefore we can introduce a new
state|φ〉 which is simultaneously an eigenstates for both
operators. In this case we have

|φ〉=
q

∑
n=0

Cn|q+ n,n〉, so that ˆa1â2|φ〉= ξ |φ〉.

(27)
Therefore we use equations (26) and (27) then the

recurrence relation among the coefficientsCn is obtained
in the form

µ
√

(n+1)(q+ n+1)f (n+1) f (q+ n+1)Cn+1

+ν
√

n (q+ n) f (n) f (q+ n)Cn−1

−√µν((q+ n+1) f 2(q+ n+1)+ n f 2(n))Cn = ξCn,
(28)

Choosing f (n̂) = 1√
n̂

and using equations (26) and
(27), one can write the recurrence relation in the form

µCn+1+νCn−1−2
√

µνCn = ξCn (29)

By using the transformation

Cn = (
ν
µ
)

n
2 Sn

The recurrence relation becomes

Sn+1+ Sn−1−β Sn = 0

Whereβ = 2+ ξ√µν , now we introduce the solution on
the form

Sn = kn, and|k|< 1 (30)

from which the characteristic equation of (29) takes the
form,

k2−β k+1= 0, (31)

as one can see the solution of equation (31) under the
condition|k|< 1 is

k =
β
2
−
√

(
β
2
)2−1.

Whence we can write the new state in the form

|φ〉 = |q,ζ ,ξ 〉

|ξ ,ζ ,q〉 =
√

1−|m|2
∞

∑
n=0

mn|q+ n,n〉 (32)

wherem = k tanhζ .
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