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Abstract: The paper deals with form and periodicity of solutions of thesystem

xn+1 =
1

1−yn−k
, yn+1 =

1
1−xn−k

, n,k ∈ N0 (1)

whereN0 = N∪{0} and the initial conditionsx−k, x−k+1, . . ., x0, y−k, y−k+1, . . ., y0 are non zero real numbers.

Keywords: System of difference equations, general solution, periodicity.

1 Introduction

There has been a great interest in studying difference
equations and systems. Solvable difference equations
attract attention of mathematicians for a long time.
Recently, there has been an increasing interest in the topic
(see [1]-[15] and the related references therein).
Difference equations usually describe the evolution of
certain phenomena over the course of time. Indeed
difference equations have been applied in several
mathematical models in biology, economics, genetics,
population dynamics, medicines and so forth.

In this paper and motivated by [2], we deal with the
form of the solutions of the following systems of rational
difference equations

xn+1 =
1

1− yn−k
, yn+1 =

1
1− xn−k

, n,k ∈ N0

where N0 = N ∪ {0} with arbitrary nonzero initial
conditions.

2 Main result

We start-off this section by giving the periodicity of the
solutions of the system (1).

2.1 Periodicity of the solutions

Theorem 1. Every solution
{

xn,yn
}

n≥−k of system (1) is
periodic of period 6k+6, that is

xn+(6k+6) = xn, yn+(6k+6) = yn,

where n =−k,−k+1, . . . for some natural number k.

Proof. We have

xn+(6k+6) =
1

1− yn+5k+5
=

1

1− 1
1−xn+4k+4

=
−1+ xn+4k+4

xn+4k+4
=

−1+ 1
1−yn+3k+3
1

1−yn+3k+3

= yn+3k+3 =
1

1− xn+2k+2

=
1

1− 1
1−yn+k+1

=
−1+ yn+k+1

yn+k+1

=
−1+ 1

1−xn
1

1−xn

= xn.
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Similarly, we have

yn+(6k+6) =
1

1− xn+5k+5
=

1

1− 1
1−yn+4k+4

=
−1+ yn+4k+4

yn+4k+4
=

−1+ 1
1−xn+3k+3
1

1−xn+3k+3

= xn+3k+3 =
1

1− yn+2k+2

=
1

1− 1
1−xn+k+1

=
−1+ xn+k+1

xn+k+1

=
−1+ 1

1−yn
1

1−yn

= yn.

2.2 Form of the solutions

In the following theorem we give explicit formulas for the
solutions of system (1).

Theorem 2. Let {xn,yn}n≥−k be a solution of system (1).
Then for n = 0,1, ..., we have

x6(k+1)n+i =
1

1− y−k+i−1
, i = 1, ...,k+1, (2)

y6(k+1)n+i =
1

1− x−k+i−1
, i = 1, ...,k+1, (3)

x6(k+1)n+i =
−1+ x−k+i−1

x−k+i−1
, i = k+2, ...,2k+2, (4)

y6(k+1)n+i =
−1+ y−k+i−1

y−k+i−1
, i = k+2, ...,2k+2, (5)

x6(k+1)n+i = y−k+i−1, i = 2k+3, ...,3k+3, (6)

y6(k+1)n+i = x−k+i−1, i = 2k+3, ...,3k+3, (7)

x6(k+1)n+i =
1

1− x−k+i−1
, i = 3k+4, ...,4k+4, (8)

y6(k+1)n+i =
1

1− y−k+i−1
, i = 3k+4, ...,4k+4, (9)

x6(k+1)n+i =
−1+ y−k+i−1

y−k+i−1
, i = 4k+5, ...,5k+5, (10)

y6(k+1)n+i =
−1+ x−k+i−1

x−k+i−1
, i = 4k+5, ...,5k+5, (11)

x6(k+1)n+i = x−k+i−1, i = 5k+6, ...,6k+6, (12)

y6(k+1)n+i = y−k+i−1, i = 5k+6, ...,6k+6, (13)

where the initial values are arbitrary nonzero real
numbers with x−k,x−k+1, . . . ,x0 6= 1 and
y−k,y−k+1, . . . ,y0 6= 1.

Proof. 1) Let n = 0,1, . . . ,k. We get from system (1)

x1 =
1

1− y−k
,

y1 =
1

1− x−k
,

x2 =
1

1− y−k+1
,

y2 =
1

1− x−k+1
,

...

xk+1 =
1

1− y0
,

yk+1 =
1

1− x0
.

From Theorem (1) we get

x1 = x6(k+1)+1 = x6(k+1)2+1 = · · ·=
1

1− y−k
,

y1 = y6(k+1)+1 = y6(k+1)2+1 = · · ·=
1

1− x−k
,

x2 = x6(k+1)+2 = x6(k+1)2+2 = · · ·=
1

1− y−k+1
,

y2 = y6(k+1)+2 = y6(k+1)2+2 = · · ·=
1

1− x−k+1
,

...

xk+1 = x6(k+1)+k+1 = x6(k+1)2+k+1 = · · ·
1

1− y0
,

yk+1 = y6(k+1)+k+1 = y6(k+1)2+k+1 = · · ·
1

1− x0
.

Hence we have the formulas (2) and (3).

2) Let n = k+1,k+2, ...,2k+1. From (1) we have

xn+1 =
1

1− y(n−k−1)+1
=

1

1− 1
1−xn−k−1−k

=
−1+ xn−2k−1

xn−2k−1
,

(14)
and

yn+1 =
1

1− x(n−k−1)+1
=

1

1− 1
1−yn−k−1−k

=
−1+ yn−2k−1

yn−2k−1
.

(15)
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Now from (14) and (15), we get

xk+2 =
−1+ x−k

x−k
,

yk+2 =
−1+ y−k

x−k
,

xk+3 =
−1+ x−k+1

x−k
,

yk+3 =
−1+ y−k

x−k+1
,

...

x2k+2 =
−1+ x0

x0
,

y2k+2 =
−1+ y0

x0
.

From Theorem (1), we get

xk+2 = x6(k+1)+k+2 = x6(k+1)2+k+2 = · · ·=
−1+ x−k

x−k
,

yk+2 = y6(k+1)+k+2 = y6(k+1)2+k+2 = · · ·=
−1+ x−k

x−k
,

xk+3 = x6(k+1)+k+3 = x6(k+1)2+k+3 = · · ·=
−1+ x−k+1

x−k+1
,

yk+3 = y6(k+1)+k+3 = y6(k+1)2+k+3 = · · ·=
−1+ x−k+1

x−k+1
,

...

x2k+2 = x6(k+1)+2k+2 = x6(k+1)2+2k+2 = · · ·=
−1+ x0

x0
,

y2k+2 = y6(k+1)+2k+2 = y6(k+1)2+2k+2 = · · ·=
−1+ y0

y0
.

This complete the proof of formulas (4) and (5).

3) Let n = 2k + 2,2k + 3, ...,3k + 2. From (1), (14) and
(15) we get

xn+1 =
−1+ 1

1−yn−2k−2−k
1

1−yn−2k−2−k

=

yn−3k−2
1−yn−3k−2

1
1−yn−3k−2

= yn−3k−2, (16)

and

yn+1 =
−1+ 1

1−xn−2k−2−k

1
1−xn−2k−2−k

=

xn−3k−2
1−xn−3k−2

1
1−xn−3k−2

= xn−3k−2. (17)

Using (16) and (17) we obtain

x2k+3 = y−k,

y2k+3 = x−k,

x2k+4 = y−k+1,

y2k+4 = x−k+1,

...

x3k+3 = y0,

y3k+3 = x0.

Using the fact that{xn} and{yn} are periodic with period
6(k+1), we get formulas (6) and (7). That is

x2k+3 = x6(k+1)+2k+3 = x6(k+1)2+2k+3 = · · ·= y−k,

y2k+3 = y6(k+1)+2k+3 = y6(k+1)2+2k+3 = · · ·= x−k,

x2k+4 = x6(k+1)+2k+4 = x6(k+1)2+2k+4 = · · ·= y−k+1,

y2k+4 = y6(k+1)+2k+4 = y6(k+1)2+2k+4 = · · ·= x−k+1,

...

x3k+3 = x6(k+1)+3k+3 = x6(k+1)2+3k+3 = · · ·= y0,

y3k+3 = y6(k+1)+3k+3 = y6(k+1)2+3k+3 = · · ·= x0.

4) Let n= 3k+3,3k+4, ...,4k+3.From (1), (16) and (17),
we obtain

xn+1 =
1

1− xn−4k−3
, (18)

and

yn+1 =
1

1− yn−4k−3
. (19)

Hence we have

x3k+4 =
1

1− x−k
, y3k+4 =

1
1− y−k

,

x3k+5 =
1

1− x−k+1
, y3k+5 =

1
1− y−k+1

,

...

x4k+4 =
1

1− x0
, y4k+4 =

1
1− y0

.

From Theorem (1) we get

x3k+4 = x6(k+1)+3k+4 = x6(k+1)2+3k+4 = · · ·=
1

1− x−k
,

y3k+4 = y6(k+1)+3k+4 = y6(k+1)2+3k+4 = · · ·=
1

1− y−k
,

x3k+5 = x6(k+1)+3k+5 = x6(k+1)2+3k+5 = · · ·=
1

1− x−k+1
,

y3k+5 = y6(k+1)+3k+5 = y6(k+1)2+3k+5 = · · ·=
1

1− y−k+1
,

...

x4k+4 = x6(k+1)+4k+4 = x6(k+1)2+4k+4 = · · ·=
1

1− x0
,

y4k+4 = y6(k+1)+4k+4 = y6(k+1)2+4k+4 = · · ·=
1

1− y0
.

This complete the proof of formulas (8) and (9).

5) Let n = 4k + 4,4k + 5, ...,5k + 4. From (1), (18) and
(19) we have

xn+1 =
1

1− 1
1−yn−4k−4−k

=
−1+ yn−5k−4

yn−5k−4
, (20)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


82 Y. Halim: Form and periodicity of solutions of some systems...

and

yn+1 =
1

1− 1
1−xn−4k−4−k

=
−1+ xn−5k−4

xn−5k−4
. (21)

So, it follows that

x4k+5 =
−1

1− y−k
,

y4k+5 =
1

1− x−k
,

x4k+6 =
−1

1− y−k+1
,

y4k+6 =
1

1− x−k+1
,

...

x5k+5 =
1

1− y0
,

y5k+5 =
1

1− x0
.

Using Theorem (1) we obtain formulas in (10) and (11),
that is

x4k+5 = x6(k+1)+4k+5 = x6(k+1)2+4k+5 = · · ·=
−1

1− y−k
,

y4k+5 = y6(k+1)+4k+5 = y6(k+1)2+4k+5 = · · ·=
1

1− x−k
,

x4k+6 = x6(k+1)+4k+6 = x6(k+1)2+4k+6 = · · ·=
−1

1− y−k
,

y4k+6 = y6(k+1)+4k+6 = y6(k+1)2+4k+6 = · · ·=
1

1− x−k
,

...

x5k+5 = x6(k+1)+5k+5 = x6(k+1)2+5k+5 = · · ·=
−1

1− y−k
,

y5k+5 = y6(k+1)+5k+5 = y6(k+1)2+5k+5 = · · ·=
1

1− x−k
.

6) Let n= 5k+5,5k+6, ...,6k+5.From (1), (20) and (21)
we get

xn+1 =
−1+ 1

1−xn−6k−5
1

1−xn−6k−5

=

xn−6k−5
1−xn−6k−5

1
1−xn−6k−5

= xn−6k−5,

and

yn+1 =
−1+ 1

1−yn−6k−5
1

1−yn−6k−5

=

yn−6k−5
1−yn−6k−5

1
1−yn−6k−5

= yn−6k−5.

From this it follows that

x5k+6 = x−k,

y5k+6 = y−k,

x5k+7 = x−k+1,

y5k+7 = y−k+1,

...

x6k+6 = x0,

y6k+6 = y0.

Now by Theorem (1) we get

x5k+6 = x6(k+1)+5k+6 = x6(k+1)2+5k+7 = · · ·= x−k,

y5k+6 = y6(k+1)+5k+7 = y6(k+1)2+5k+7 = · · ·= y−k,

x5k+7 = x6(k+1)+5k+7 = x6(k+1)2+5k+7 = · · ·= x−k,

y5k+7 = y6(k+1)+5k+7 = y6(k+1)2+5k+7 = · · ·= y−k,

...

x6k+6 = x6(k+1)+6k+6 = x6(k+1)2+6k+6 = · · ·= x0,

y6k+6 = y6(k+1)+6k+6 = y6(k+1)2+6k+6 = · · ·= y0

which are formulas in (12) and (13). The proof of the
theorem is complete.

Example 1. For confirming the results of this section, we
consider the following numerical example. Letk = 4 in
system (1), then we obtain the system

xn+1 =
1

1− yn−4
, yn+1 =

1
1− xn−4

. (22)

Assumex−5 = 1, x−4 = 1.6, x−3 = 3.4, x−2 = 6.1, x−1 =
2, x0 = 1.3, y−5 = 0.7, y−4 = 4.2, y−3 = 0.3, y−2 = 2.4,
y−1 = 0.2 andy0 = 5. (See Fig. (1)).
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Fig. 1: This figure shows the periodicity of the solutions of
system (22)
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2.3 Other systems

Corollary 1. Let {xn,yn}n≥−k be a solution of system

xn+1 =
1

1+ yn−k
, yn+1 =

1
−1+ xn−k

, n,k ∈N0

where N0 = N∪ {0} and the initial values are arbitrary
nonzero real numbers with x−k,x−k+1, ...,x0 6= 1 and
y−k,y−k+1, ...,y0 6=−1. Then for n = 0,1, ..., we have

x6(k+1)n+i =
1

1+ y−k+i−1
, i = 1, ...,k+1.

y6(k+1)n+i =
1

1− x−k+i−1
, i = 1, ...,k+1.

x6(k+1)n+i =
−1+ x−k+i−1

x−k+i−1
, i = k+2, ...,2k+2.

y6(k+1)n+i =
1+ y−k+i−1

y−k+i−1
, i = k+2, ...,2k+2.

x6(k+1)n+i =−y−k+i−1, i = 2k+3, ...,3k+3.
y6(k+1)n+i = x−k+i−1, i = 2k+3, ...,3k+3.

x6(k+1)n+i =
1

1− x−k+i−1
, i = 3k+4, ...,4k+4.

y6(k+1)n+i =
1

1+ y−k+i−1
, i = 3k+4, ...,4k+4.

x6(k+1)n+i =
1+ y−k+i−1

y−k+i−1
, i = 4k+5, ...,5k+5.

y6(k+1)n+i =
−1+ x−k+i−1

x−k+i−1
, i = 4k+5, ...,5k+5.

x6(k+1)n+i = x−k+i−1, i = 5k+6, ...,6k+6.
y6(k+1)n+i =−y−k+i−1, i = 5k+6, ...,6k+6.

Proof. It follows from Theorem (2) by replacingyn by−yn.

Corollary 2. Let {xn,yn}n≥−k be a solution of system

xn+1 =
1

−1+ yn−k
, yn+1 =

1
1+ xn−k

, n,k ∈N0

where N0 = N∪ {0} and the initial values are arbitrary
nonzero real numbers with x−k,x−k+1, ...,x0 6= −1 and
y−k,y−k+1, ...,y0 6= 1. Then for n = 0,1, ..., we have

x6(k+1)n+i =
1

1− y−k+i−1
, i = 1, ...,k+1.

y6(k+1)n+i =
1

1+ x−k+i−1
, i = 1, ...,k+1.

x6(k+1)n+i =
1+ x−k+i−1

x−k+i−1
, i = k+2, ...,2k+2.

y6(k+1)n+i =
−1+ y−k+i−1

y−k+i−1
, i = k+2, ...,2k+2.

x6(k+1)n+i = y−k+i−1, i = 2k+3, ...,3k+3.
y6(k+1)n+i =−x−k+i−1, i = 2k+3, ...,3k+3.

x6(k+1)n+i =
1

1+ x−k+i−1
, i = 3k+4, ...,4k+4.

y6(k+1)n+i =
1

1− y−k+i−1
, i = 3k+4, ...,4k+4.

x6(k+1)n+i =
−1+ y−k+i−1

y−k+i−1
, i = 4k+5, ...,5k+5.

y6(k+1)n+i =
1+ x−k+i−1

x−k+i−1
, i = 4k+5, ...,5k+5.

x6(k+1)n+i =−x−k+i−1, i = 5k+6, ...,6k+6.
y6(k+1)n+i = y−k+i−1, i = 5k+6, ...,6k+6.

Proof. It follows from Theorem (2) by replacingxn by−xn.

Corollary 3. Let {xn,yn}n≥−k be a solution of system

xn+1 =
1

−1− yn−k
, yn+1 =

1
−1− xn−k

, n,k ∈ N0

where N0 = N∪ {0} and the initial values are arbitrary
nonzero real numbers with x−k, y−k, x−k+1, y−k+1,...,x0,
y0 6= −1. Then for n = 0,1, ..., we have

x6(k+1)n+i =
1

1+ y−k+i−1
, i = 1, ...,k+1.

y6(k+1)n+i =
1

1+ x−k+i−1
, i = 1, ...,k+1.

x6(k+1)n+i =
1+ x−k+i−1

x−k+i−1
, i = k+2, ...,2k+2.

y6(k+1)n+i =
1+ y−k+i−1

y−k+i−1
, i = k+2, ...,2k+2.

x6(k+1)n+i =−y−k+i−1, i = 2k+3, ...,3k+3.
y6(k+1)n+i =−x−k+i−1, i = 2k+3, ...,3k+3.

x6(k+1)n+i =
1

1+ x−k+i−1
, i = 3k+4, ...,4k+4.

y6(k+1)n+i =
1

1+ y−k+i−1
, i = 3k+4, ...,4k+4.

x6(k+1)n+i =
1+ y−k+i−1

y−k+i−1
, i = 4k+5, ...,5k+5.

y6(k+1)n+i =
1+ x−k+i−1

x−k+i−1
, i = 4k+5, ...,5k+5.

x6(k+1)n+i =−x−k+i−1, i = 5k+6, ...,6k+6.
y6(k+1)n+i =−y−k+i−1, i = 5k+6, ...,6k+6.

Proof. It follows from Theorem (2) by replacingxn by−xn
andyn by−yn.

3 Conclusion

In this study, we mainly prove the periodicity and we
obtained the forme of the solutions of the system of
difference equations (1). The results in this paper can be
extended to the following system of difference equations

xn+1 =
α

β − γyn−k
, yn+1 =

α
β − γxn−k

, n,k ∈N0

where N0 = N ∪ {0} and the initial conditionsx−k,
x−k+1, . . ., x0, y−k, y−k+1, . . ., y0, andα,β ,γ are non zero
real numbers.
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