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Abstract: The paper deals with form and periodicity of solutions of sstem

1
Xn+1 = Ty Ynt1 = Txor

, NnkeNg (1)

whereNg = NU {0} and the initial conditiong_x, X_k.1,---, X0, Y_k» Y_k+1-- -, Yo &re non zero real numbers.

Keywords: System of difference equations, general solution, pecitydi

1 Introduction 2.1 Periodicity of the solutions

There has been a great interest in studying difference

equations and systems. Solvable difference equationdheorem 1. Every solution {xa,yn},. , of system (1) is
attract attention of mathematicians for a long time. periodic of period 6k + 6, that is B

Recently, there has been an increasing interest in the topic

(see [J-[19 and the related references therein). Xt (6kt6) = X, Yy (6ki6) = Y,

Difference equations usually describe the evolution of

certain phenomena over the course of time. Indeedyheren= —k,—k+1,... for some natural number k.
difference equations have been applied in several

mathematical models in biology, economics, genetics

population dynamics, medicines and so forth. 'Proof. We have

In this paper and motivated by]} we deal with the 1 1
form of the solutions of the following systems of rational X, (ek+6) = 1 = I
difference equations ~Yniskis 1 T Xiakra
1
1 1 -1+ It 15055
Xn41 = 1ov. Yni1= 1 , nkeNg _ nak+d 1yn+3k+3
—Yn—k — Xn—k Xn+4k-+4 T Va3
where Ny = N U {0} with arbitrary nonzero initial 1
conditions. Y T T s
_ 1 _ 14V
. = T~
2 Main result 1-195 Yn-+ket1
1
We start-off this section by giving the periodicity of the _ o

1 == Xn.
—Xn

solutions of the systent). T3
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Similarly, we have

y 1 1
n+(6k+6) — 1 = 1
—X 1
n+5k+5 1 1-VYniaksa
_ 1
_ -1+ Yn+ak+4 _ 1+ 1—Xni3k+3
Yn+ak+4 m
“ 1
A TP
. 1 1+ Xnikea
= I =
_ X
1 T n+k+1
_ 1
B 1+ Ty
=— = Y-

[

—Yn

2.2 Form of the solutions

In the following theorem we give explicit formulas for the

solutions of systemy.

Theorem 2. Let {Xn,Yn},>_i be a solution of system (1).
Thenfor n=0,1,..., we have

1
-:77 |:1,,k—|—17 2
X6 (k+1)n+i 1oy s (2
1 .
Y6(k+1)n+i = ma i=1..,k+1, )
=14+ X ki .
Xo(k 1t = % i—kt2,..,2k+2 (4
—k+i—-1
—14Y ki .
yG(k+l)n+i = #7 I = k+2772k+27 (5)
Y—k+i-1
XG(kJrl)nJri = Y—kti-1, i = 2k+37 73k+37 (6)
yG(k+l)n+i = X kti—1s I = 2k+3753k+37 (7)
1
i=————  i=3k+4,..,4k+4, 8
XG(k+l)n+| 1—X jri1 ( )
1
i = ————, 1=3k+4,..,4k+4, 9
Y6(k+1)n+i 1y s 9)
RV )
Xefk i = —— AL — Akt 5, 5k+5, (10)
Ykti-1
=14+ X ki .
Voe s = % i =4k+5,...5k+ 5, (11)
—k+i-1
XG(kJrl)nJri = X kti-1, i = 5k+6776k+67 (12)
y6(k+l)n+i = Y—k+i-1, i= 5k+ 67 76k+ 67 (13)

where the initial values are arbitrary nonzero real
numbers with X X kil,--sX0 # 1 and
Y—k7Y—k+17 ce 7y0 # 1

Proof. 1) Letn=0,1,...,k. We get from systeml]

o — 1
1 1—y7k’
B 1
Y1 = T-x
« 1
2:
1-y k1
Vo = 1
2 1-X gk
B 1
Xk+1_ 1_y07
1
Yk+1 = —1—X0'

From Theorem) we get

1
X1 = Xo(k+1)+1 = Xe(k+1)2+1 = """ = 1-y ¢
1
Y1 = Yo(kr )+l = Yo(k1)241 = 0 = 7y k’
1
Xo = Xﬁ(k+1)+2 = Xﬁ(k+1)2+2: e = ma
1
Y2 = Yo(k+1)+2 = Yo(k+1)242 = " * = 1_x 1’
1
K1 = Xo(k1)+kt1 = Xo(k1)2+k1 = " 7 Yo'
1
Yt = Yo(kt 1)tk 1 = Yo(kt )2tkt1 = " 7 X0

Hence we have the formula®)@nd @).

2) Letn=k+1,k+2,....,2k+ 1. From () we have

« 1 1 —14+Xn-2k-1
1= = =
T I Yoy 1- e Xn—2k-1
(14)
and
Yoo = 1 B 1 _ 14y
n+1= = .
1_X(n—k—1)+1 1-— m Yn—2k-1
(15)
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Now from (14) and (L5), we get

_ Xk
X2 = I
_ ity
Yk+2 = X ,
_ ol Xk
X3 = Cr ,
-1+y_
Yi+3 = oYk
X_k+1
14%
Xok42 = ,
' X
—1+¥o
k2 = .
Yok4-2 %
From Theoreml), we get
—1+X_k
Xtz = Xoler) +h2 = XolerDz k2 = = 5
-1+ X_k
Yikt+2 = Yo(kt-1)+k+2 = Y6(k+1)2+k+2 = " = e
—1+X k41
X3 = Xo(kt1)+k+3 = Xo(k+1)2+k+3 = " = T
—1+X k41
Yit3 = Yo(k+1)+k+3 = Yo(k+1)2+k43 = " = T
—1+%
Xok+2 = Xg(k+1)+2k+2 = Xo(k+1)2+2k+2 = " = —
—1+Yo
Yok+2 = Yo(k+1)+2k+2 = Yo(ki1)212kt2 = """ = o

This complete the proof of formulad)(and 6).

3) Letn=2k+2,2k+3,...,3k+ 2. From (), (14) and
(15) we get

—1+ I 1 1yn—3k—2
—Yn—2k—2-k —Yn-3k-2
Xnt1 = 1n = nl = Yn—3k-2; (16)
1-Yn-2k—2-k 1-Yn-3k—2
and
1+ 1 Xn—3k—2
1-Xn—2k—2-k 1-Xp-3k—2
Yni1 = 1 = T =Xn_3k—2. (17)
1-Xn-2k—2-k 1-Xp-3k—2
Using (16) and (L7) we obtain
Xk+3 = Y—ks
Yok+3 = Xk,

Xok4+4 = Y—k+1,
Yok+4 = X—k+1,

Using the fact tha{x,} and{y,} are periodic with period
6(k+ 1), we get formulas®) and (7). That is

2423 = =Yk
2+2k+3 = " = Xk,
2+2k+4 = " = Yk+1
2+2k+4 =0 = Xkt

X2k+3 = X6(k+1)+2k+3 = X6(k+1
Y2k+3 = Y6(k+1)+2k+3 = Y6(k+1
Xok+4 = Xo(k41)+2k+4 = X6(k+1
Yok+4 = Y6(k+1)+2k+4 = Y6(k+1

= Z Z =

Xakt3 = X(k+1)+3k+3 = Xo(k+1)2+3k+3 = = Y0,
Yak+3 = Ye(k+1)+3k+3 = Ye(k+1)2+3k+3 = = Xo-

4) Letn=3k+3,3k+4,...,4k+3. From (), (16) and (L7),
we obtain

1
__r 18
Xn+1 1_ Xn74k73’ ( )
and 1
- 19
AR PV )
Hence we have
P S
3k+4 = Toxy’ Yak+4 = 1y
X : Y -
K = o . k- = 1Ty .
T L X T 1oy
R
Xgk+4 = T-x Yak+a = 1-vo
From TheoremY) we get
1
X3ki4 = Xo(k+1)+3k+4 = Xo(kt1)2+3k+4 = T T K
1
Yakta = Yo(kt1)+3k+4 = Yo(kt 1)2+3kt4 = " = 7 Yk’
1
X345 = Xp(k+1)+3k+5 = X6(k+1)2+3k+5 = ** = 1—X p1
1
Yakts = Yolkt)+3kt5 = Yo(ke1)243kt5 = " = 7y T
1
Xaker4 = Xo(ke 1)+ k4 = Xo(rD2+dkrd = = 7T
1
Yabcra = Yok 1) akea = Yoo rakea = 0 = 0

This complete the proof of formula8)(and ©).

5) Let n = 4k + 4,4k +5,...,5k+ 4. From (@), (18) and
(19 we have

Xak+3 = Yo 1 —1+4Yn_sk—4
+ y ’ Xnt1 = 1 = ) (20)
Ya3k+3 = Xo- -5 Yn-5k—4
(@© 2016 NSP
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and

1 —1+Xn 5k-4
Yni1 = 1 = :

(21)
1- T—%n_ak—4—k

Xn—5k—4

So, it follows that

-1
Xap5 = -y
1
Ya+5 = Tx
e — -1
k+6 1_y—k+17
B 1
Yaki6 = 77 X a
e 1
5k+5 = 1_y07
1
Yokis = 75 - o

Using Theorem1) we obtain formulas in10) and (1),
that is

—1
Xak+5 = Xg(k+1)+4k+5 = X6(k+1)2+4k+5 = " * = 1-y
1
Yaics = Yok 1) +4k+5 = Yo(ki1)2+4ki5 = 1 = 70—
-1
Keict6 = Xo(ker1) +4k+6 = Xo(kr 1246 = 1 = g
1
Yaler6 = Yo(ker1)+4k6 = Yolkt 12+ 46 = = T
-1
X6k+5 = Xg(k+1)+5k+5 = X6(k+1)2+5kt5 = " = 7 Yk’
1
Yoier5 = Yo(ker1)+5k5 = Yo(kt 1)2:+8kct5 = = T

6) Letn=5k+5,5k+6,...,6k+5.From (), (20) and @1)
we get

—1+7 1 Xn—6k-5

From this it follows that
Xsk+6 = X—k,

Yek+6 = Y—ks

Xok+7 = X—k+1,

Y5k+7 = Y—k+1,

Xek+6 = X0,
Yek+6 = Yo-
Now by TheoremZ) we get

XBk+6 = Xe(k1)+5k+6 = Xe(k1)2+5k+7 = "+ = Xk,
Ysk+6 = Yo(k+1)+5k+7 = Yo(k+1)2+5k+7 = " = Y-k
Xsk+7 = X6(k+1)+5k+7 = X6(k+1)2+5k+7 = "+ = X—ks
Ysk+7 = Yo(k+1)+5k+7 = Yo(k+1)245k+7 = " = Y-k
Xek+6 = Xo(k+1)+6k+6 = X6(k+1)2+6k+6 = " = X0,
Yek+6 = Yo(ic+1)+6k+6 = Y6(k+1)2+6k+6 = ~** = Y0

which are formulas inX2) and (3). The proof of the
theorem is complete.

Example 1. For confirming the results of this section, we
consider the following numerical example. Uet= 4 in
system 1), then we obtain the system

1
1_yn74’ Yni1= 1— Xn74.

Xn41 = (22)

Assumex_s5=1,X_4=16,X3=34,X2=6.1,x_1=
2,%=13,y5=07,y 4=42,y 3=03,y_» =24,
y_1 = 0.2 andyp = 5. (See Fig. (1)).

10 T T : ;
X(n)
Y(n)

—Xn—6k—5 1-X6k—5 2]
Xnt1 = 1 L = nl = Xn—6k—5;
1-X-6k-5 1-X1-6k-5 -4 i i i i
0 20 40 60 80 100
n
and
Fig. 1: This figure shows the periodicity of the solutions of
-1 1 Yn-—6k-5 system 22)
+15y, 1—
o h—6k-5 _ Yn—6k-5
Yni1= 1 = 1 = Yn—6k-5-
1-Yn6k-5 1-Yn-6k-5
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2.3 Other systems

Corollary 1. Let {Xn,Yn},~_ be asolution of system
_r _
1+yn7k 14Xk

where No = NU {0} and the initial values are arbitrary
nonzero real numbers with X_y,X ki1,...,X0 # 1 and
Yk Y_k+1,---, Yo # —1. Thenfor n=0,1,..., we have

1

Xn+1 = o Ynt1= , N ke NO

=, i=1..k+1
"Bller D 1+Y kti-1
= icikrt
Y6(k+1)n+i = 1—i—k+i—1’ =1.., )
— X_ -~ .
X6(kt-1)n+i = KL =kt 2,. 2k 2,
1+X>7k+|71
Y6(k+1)n+i = ﬁ, i=k+2,..,2k+2
Y—kti-1 .
Xe(ktDnti = —Y—k+i—1, I = 2k+3,...,3k+ 3.
Y6(k+1)n+i = X—k+i11, i=2k+3,...,3k+ 3.
X(k+Ln+i = 70 s i=3k+4,...,4k+ 4.
1_X1k+i71
== i=3k+4,.. 4k+4
Y6(k+1)n+i %iyfkﬂfl
X6(k+-1)n+i = %, i =4k+5,...,5k+5.
—k+i-1
=14+ X i .
Y6(k+1)n+i = ¢ i =4k+5,...,5k+5.
Xkti—1 )
X6(k+1)n+i = X—k+i—1, I = 5k+6,...,6k+ 6.
Ye(k+1)nri = —Y—k+i—1, i =5k+86,...,6Kk+6.

Proof. It follows from Theorem2) by replacingy, by —yn.
Corollary 2. Let {Xn,Yn},~_ beasolution of system

1
—1+VYn k 14+ Xn—k

where No = NU {0} and the initial values are arbitrary

nonzero real numbers with X_y,X_y1,...,X0 # —1 and

Y kY_k:i1,--,Yo # 1. Then for n = 0,1,..., we have
1

Xn+1 = ) Yn+1 = ) n7 k € NO

== i=1,.k+1
Blier Dt 1_y1k+i—1
i =T i=1,... k+1
y6(k+1)n+| %ixkarifl’ PR +
X ki ,
X6(kt- Dn+i = X7|@17 i=k+2,...,2k+2.
1Y
Y6(k+1)n+i = ¢ i=k+2,..,2k+2.
Ykti-1 .
Xe(kt D)nti = Y—k+i—15 I = 2k+3,...,3k+ 3.
Yo(k+1)n+i = —kaiifl, i=2k+3,...,3k+3.
=, i =3k+4,...,4k+ 4.
Xe(k+1)n+i 1+X1k+i—1
Yo(k+ln+i = 77— i =3k+4,...,4k+ 4.
11_)”_—k+|—;
Xe(kt1)nti = # i =4k+5,...,5k+5.
T4+ X ki .
Yo(t D+ = % i = 4k+5,...,5k+5.
—k+i—1 .
Xo(kt 1)nti = —X—kti—1, | =5k+6,....6k+6.
Yo(k+1)nt+i = Y—k+i-1, i =5k+86,...,6k+ 6.

Proof. It follows from Theorem2) by replacingg, by —xn.
Corollary 3. Let {Xn,Yn},>_ beasolution of system

1

Xntl= —F(/—"
—1-Ynk

1
=—— nkeN
) Yn+1 _1_Xn_k’ , K€ No

where No = NU {0} and the initial values are arbitrary
nonzero real numbers with X i, ¥k, X ki1, Y_ki1ye--1X0s

Yo # —1. Then for n = 0,1,.., we have
1
i=—— i=1..k+1
S S
P = # i=1..k+1
y6(k+1)n+| %ix—kﬂ—l’ yeney .
X ki ,
Xoks Dt = ——— =k 2,0, 2K+ 2,
1_)’(_—>I/<+|—_1
Y6(k+1)n+i = &, i=k+2,..,2k+2
Y—kti-1 ]
Xs(kt nti = —Y—k+i-1, I =2k+3,...,3k+3.
Y6(k+1)n+i = _kaJ]r-ifL i=2k+3,....3k+3.
== i=3k+4,..4k+4
XG(k-+1)n-+i 1+X1k+i71 + +
i=—————  i=3k+4,..,4k+4.
Y6(k+1)n+i %iyfkﬂfl
Xg(k+1)n+i = % i =4k+5,...,5k+5.
—k+i-1
14+ X gy i
Yo(kt Dn+i = w i =4k+5,...,5k+5.
X k+i-1 ]
Xe(k+1)n+i = —Xkti—1 I =5k+6,...,6k+ 6.
Ye(kt+-1)n+ti = —Y—k+i—1, i =5k+6,...,6k+ 6.

Proof. It follows from Theorem 2) by replacingx, by —x
andyn by —yn.

3 Conclusion

In this study, we mainly prove the periodicity and we
obtained the forme of the solutions of the system of
difference equationsl]. The results in this paper can be
extended to the following system of difference equations

X a y a
n+1= 5 ., n+1= 5 -
B— Yk’ B — yXn—k’

where No = NU {0} and the initial conditionsx_y,

X_kily--- X0r Y—k» Y—ki1s---» Yo, @nda, B,y are non zero
real numbers.

n,k € No
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