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Abstract: In this paper, the maximum likelihood and Bayesian estimation are developed based on pooled sample of two independent
Type-II censored samples from the inverse exponential distribution. The Bayesian estimation is discussed using different loss functions.
The problem of predicting the failure times from a future sample from the sample population is also discussed from a Bayesian
viewpoint. A Monte Carlo simulation study is conducted to compare the maximum likelihood estimator with the Bayesian estimators.
Finally, illustrative example is presented to illustrate the different inference methods discussed here.
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1 Introduction

In reliability analysis, experiments often get terminatedbefore all units on test fail based on cost and time considerations.
In such cases, failure information is available only on partof the sample, and only partial information on all units thathad
not failed. Such data are called censored data. There are several forms of censored data. One of the most common forms
of censoring is Type-II right censoring which can be described as follows: Consider n identical units under observationin
a life-testing experiment and suppose only the firstr ≤ n failure timesX1:n, ...,Xr:n are observed and the rest of the data
are only known to be larger thanXr:n.

In Type-II censoring scheme, ifr is small andn is relatively large compared to r, the precision of the estimates of
parameters obtained from such a censored data will be very low. In such a situation, if it will be possible and convenient
to take an additional Type-II right censored data from another independent sample (possibly of small sizes), it might
be possible to use the combined ordered sample from these twoType-II right censored samples in order to increase the
precision of the estimation. There are a variety of scenarios wherein one can obtain combined ordered sample from two
independent Type-II censored samples arising from a commonparent distribution. One possible situation is when the
number of items placed on a life test per run are limited, so that several independent runs need to be done. Another
scenario is in the context of a meta-analysis when similar life-testing experiments from different facilities need to be
pooled together.

Balakrishnan et al in [1] considered the situation in which two independent Type-II right censored samples are
pooled, and demonstrated the advantage of pooling samples and expressed the joint distribution of order statistics from
the pooled sample as a mixture of progressively Type-II censored samples. Using these mixture forms, they then derived
nonparametric prediction intervals for order statistics from a future sample. Recently, Mohie El-Din et al. [2] considered
the pooled sample of two independent Type-II censored samples from the left truncated exponential distribution and
derived the maximum likelihood (ML) and Bayesian estimators for the unknown parameters, and then they discussed the
problem of predicting the failure times from a future samplefrom a Bayesian viewpoint. In this paper, we discuss the
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same problem when the observed sample is a pooled sample fromtwo independent Type-II right censored samples from
the inverse exponential distribution.

The role of inverse exponential distributions is indispensable in many applications of reliability theory, for its
memoryless property and its constant failure rate, see; [3], [4]. In the life distribution, if the random variableX has an
exponential distribution then the random variableT = (1/X) has an inverse exponential distribution. The later inverse
exponential distribution has been considered by Killer andKamath in [5], and Duran and Lewis in [6] among many
others. The probability density (PDF) and cumulative (CDF)functions of the inverse exponential distribution can be
given by

f (x;θ ) =
θ
x2 exp

(
−

θ
x

)
and F (x;θ ) = exp

(
−

θ
x

)
, x ≥ 0, (1)

respectively.
For the Bayesian estimation in this context, we consider here three types of loss functions. The first is the squared

error (SE) loss function which is a symmetric function that gives equal importance to overestimation and underestimation
in the parameter estimation. The second is the linear-exponential (LINEX) loss function, introduced by Varian in [7],
which is asymmetric and gives differing weights to overestimation and underestimation. This function rises approximately
exponentially on one side of zero and approximately linearly on the other side. These loss functions have been used by
many authors; see, for example, [8], [9], [10], [11], [12], [13], and [14]. The third loss function is the generalizationof the
entropy (GE) loss used by several authors (see, for example,[15]). This more general version allows for different shapes
of the loss function.

The rest of this paper is organized as follows. In Section 2, the description of the model of the pooled sample from
two independent Type-II censored samples is presented. TheML estimator and the Bayesian estimators of the unknown
parameters under SE, LINEX, and GE loss functions are derived in Section 3. The problem of predicting the order statistics
from a future sample then is discussed in Section 4. Finally,in Section 5, some computational results are presented for
illustrating all the inferential methods developed here.

2 The model description

Let X1:n, ...,Xr:n andY1:m, ...,Ys:m be independent right Type-II censored samples from two independent random samples
X1, ...,Xn andY1, ...,Ym, respectively, drawn from a population with distribution functionF . In the following, the pooled
sample fromX1:n, ...,Xr:n;Y1:m, ...,Ys:m will be denoted byZ = (Z(1), ...,Z(r+s)) whereZ(1) ≤ ...≤ Z(r+s).

Balakrishnan et al.in [1] derived the joint density function of Z=(Z(1), ...,Z(r+s)) as a mixture of progressively Type-II
censored samples given by

fZ(z) =
r−1

∑
i=0

βi fTi(z)+
s−1

∑
j=0

β ∗
j fT∗

j
(z), (2)

where z = (z1, ...,zr+s) is a vector of realizations,Ti = (T Ri
1:r+s:n+m, ...,T

Ri
r+s:r+s:n+m) for i = 0, ...,r − 1, and

T∗
j = (T

R
∗
j

1:r+s:n+m, ...,T
R

∗
j

r+s:r+s:n+m) for j = 0, ...,s − 1, are progressively Type-II censored samples from the same
population based on the progressive censoring schemes

Ri = (0, . . . ,0,m− s︸ ︷︷ ︸
s+i

,0, . . . ,0,n− r︸ ︷︷ ︸
r−i

),

R
∗
j = (0, . . . ,0,n− r︸ ︷︷ ︸

r+ j

,0, . . . ,0,m− s︸ ︷︷ ︸
s− j

),

respectively, and the constantsβi andβ ∗
j are given by

βi =

(s+i−1
s−1

)(n+m−s−i
n−i

)
(n+m

n

) for i = 0,1, ...,r−1,

β ∗
j =

(r+ j−1
r−1

)(n+m−r− j
m− j

)
(n+m

m

) for j = 0,1, ...,s−1.

By using the joint density function of the progressively Type-II censored sample [ see Balakrishnan and Aggarwala (2000)
and Balakrishnan (2007)], the joint density function in (2)becomes

fZ (z) =
r−1

∑
i=0

Ai [1−F (zs+i)]
m−s [1−F (zr+s)]

n−r
r+s

∏
q=1

f (zq)+
s−1

∑
j=0

A∗
j [1−F (zr+ j)]

n−r [1−F (zr+s)]
m−s

r+s

∏
q=1

f (zq) , (3)

c© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.4, No. 2, 239-246 (2015) /www.naturalspublishing.com/Journals.asp 241

where

Ai =
(n+m)!(n− i)!

(n+m− s− i)!(n− r)!
βi , for i = 0, ...,r−1,

and

A∗
j =

(n+m)!(m− j)!
(n+m− r− j)!(m− s)!

β ∗
j , for j = 0, ...,s−1.

Using (1) and (3), we obtain the likelihood function ofθ based on the combined ordered sampleZ = (Z(1), ...,Z(r+s))
as

L(θ | z) =
1

r+s
∏

q=1
z2

q

{
r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

AiCh1,h2θ r+s exp[−θ (ui)]+
s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

A∗
jCh1,h2θ r+s exp[−θ (ui)]

}
, (4)

where

ui =
h1

zs+i
+

h2

zr+s
+

r+s

∑
q=1

1
zq
, for i = 1, ...,r−1,

u∗j =
h2

zr+ j
+

h1

zr+s
+

r+s

∑
q=1

1
zq

, for j = 1, ...,s−1,

and

Ch1,h2 = (−1)h1+h2
(m− s)! (n− r)!

(m− s− h1)! (n− r− h2)!h1!h2!
for h1 = 0, ...,m− s, h2 = 0, ...,n− r.

3 ML and Bayesian estimation

In this section, we derive the ML estimator and the Bayesian estimators for the unknown parameterθ . when the observed
sample is the ordered pooled sampleZ = (Z(1), ...,Z(r+s)).From (4), the log-likelihood function ofθ is given by

logL(θ | z) = log





1
r+s
∏

q=1
z2

q

{
r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

AiCh1,h2θ r+s exp(−θui)+
s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

A∗
jCh1,h2θ r+s exp

(
−θu∗j

)
}



, (5)

and so the ML estimator̂θML of θ is readily obtained by solving the following equation

r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

AiCh1,h2 (r+ s−θui)exp(−θui)+
s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

A∗
jCh1,h2

(
r+ s−θu∗j

)
exp
(
−θu∗j

)
= 0. (6)

In the Bayesian approach,θ is viewed as realization of a random variable distributed according toπ (θ ) onΘ , which is
the prior distribution. For this purpose, we consider here the conjugate gamma

π (θ ;a,b) =
ba

Γ (a)
θ a−1exp(−b θ ) , θ > 0, (7)

wherea andb are positive hyperparameters that could be chosen, for example, from a prior knowledge of the mean and
variance ofθ , andΓ (.) denotes the complete gamma function.

Upon combining (4) and (7), the posterior density function of θ , givenZ = z, is obtained as

π∗ (θ |z) = I−1

{
r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

AiCh1,h2θ G exp(−θHi)+
s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

A∗
jCh1,h2θ G exp

(
−θH∗

j

)
}
, (8)

whereG = r+ s+ a−1,Hi = ui + b, H∗
j = u∗j + b, andI is the normalizing constant given by

I = Γ (G+1)

{
r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

AiCh1,h2 [Hi]
−(G+1)+

s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

A∗
jCh1,h2

[
H∗

j

]−(G+1)

}
. (9)
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Hence, the Bayesian estimator ofθ under the SE loss function is given by

θ̂BS = E[θ ]

= I−1Γ (G+1)

{
r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

AiCh1,h2 [Hi]
−(G+2)+

s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

A∗
jCh1,h2

[
H∗

j

]−(G+2)

}
. (10)

The LINEX loss function can be expressed as

LBL
(
θ̂ ,θ

)
= exp

[
−ν
(
θ̂ −θ

)]
−ν

(
θ̂ −θ

)
−1, (11)

where ν 6= 0. The sign and magnitude of the shape parameterν represent the direction and degree of asymmetry,
respectively. The problem of choosing the value of the parameterν has been discussed by Calabria and Pulcini in [18].
The Bayesian estimator ofθ under the LINEX loss function is given by

θ̂BL =
−1
ν

log{E [exp(−νθ )]}

=
−1
ν

log

{
I−1Γ (G+1)

{
r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

AiCh1,h2 [Hi +ν]−(G+1)+
s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

A∗
jCh1,h2

[
H∗

j +ν
]−(G+1)

}}
. (12)

The GE loss function, is given by

LBE
(
θ̂ ,θ

)
∝

(
θ̂
θ

)d

− d ln

(
θ̂
θ

)
−1. (13)

It may be noted that whend > 0, a positive error is regarded as more serious than a negative error; on the other hand,
whend < 0, a negative error is regarded as more serious than a positive error. The Bayesian estimator ofθ under the GE
loss function is given by

θ̂BE =
[
E
(

θ−d
)]−1

d

=

{
I−1Γ (G+1)

{
r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

AiCh1,h2 [Hi +ν]−(G+1)+
s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

A∗
jCh1,h2

[
H∗

j +ν
]−(G+1)

}}−1
d

. (14)

4 Bayesian prediction of order statistics from a future sample

LetW1:ρ , ...,Wρ :ρ be the order statistics from a future random sample of sizeρ from the same population. We discuss here
the Bayesian prediction ofWq:ρ , for q = 1, ...,ρ , based on the observed pooled sampleZ =

(
Z(1), ...,Z(r+s)

)
. We derive

the Bayesian predictive distribution forWq:ρ and then find the Bayesian point predictor and prediction interval forWq:ρ .
It is well known that the marginal density function of theq-th order statistic from a sample of sizeρ from a continuous

distribution with cdfF(x) and pdf f (x) is given by

fWq:ρ (w|θ ) =
ρ !

(q−1)! (ρ − q)!
[F (w)]q−1 [1−F (w)]ρ−q f (w) , w ≥ 0, (15)

for 1≤ q ≤ ρ ; see [19].
Upon substituting (1) in (15), the marginal density function of theWq:ρ becomes

fWq:ρ (w|θ ) =
ρ−q

∑
h3=0

Kh3

θ
w2 exp

(
−θ
w

(q− h3)

)
, 1≤ q ≤ ρ , (16)

whereKh3 = (−1)h3 ρ !(ρ−q)!
(q−1)!(ρ−q)!(ρ−q−h3)!h3! for h3 = 0, ...,ρ − q.
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Upon combining (8) and (16), the Bayesian predictive density function ofWq:ρ , givenZ = z, is then

f ∗Wq:ρ (w|z) =

∞∫

0

π∗ (θ |z) fWq:ρ (w|θ )dθ

= I−1Γ (G+2)

{
r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

ρ−q

∑
h3=0

AiCh1,h2Kh3

w2

[
Hi +

(q+ h3)

w

]−(G+2)

+
s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

ρ−q

∑
h3=0

A∗
jCh1,h2Kh3

w2

[
H∗

j +
(q+ h3)

w

]−(G+2)
}
. (17)

From (17), we simply obtain the predictive survival function of Wq:ρ , givenZ = z, as

F̄∗
Wq:ρ (t|z) =

∫ ∞

t
f ∗Wq:ρ (w|z)dw

= I−1Γ (G+1)

{
r−1

∑
i=0

m−s

∑
h1=0

n−r

∑
h2=0

ρ−q

∑
h3=0

AiCh1,h2Kh3

(q+ h3)

{
(Hi)

−(G+1)−

[
Hi +

(q+ h3)

t

]−(G+1)
}

+
s−1

∑
j=0

m−s

∑
h1=0

n−r

∑
h2=0

ρ−q

∑
h3=0

A∗
jCh1,h2Kh3

(q+ h3)

{
(
H∗

j

)−(G+1)
−

[
H∗

j +
(q+ h3)

t

]−(G+1)
}}

. (18)

The Bayesian point predictor ofWq:ρ , under SEL is obtained as the mean of the predictive density,given by (17). We have
no closed-form expression for the point predictor but it is not difficult to carry out a numerical integration for this propose.
The Bayesian predictive bounds of a two-sided equi-tailed 100(1− γ)% interval forWq:ρ ,1≤ q ≤ ρ can be obtained by
solving the following two equations:

F̄∗
Wq:ρ (L | z) = 1−

γ
2

andF̄∗
Wq:ρ (U | z) =

γ
2
,

whereF̄∗
Wq:ρ (t | z) is as in (18), andL andU denote the lower and upper bounds, respectively.

For the highest posterior density (HPD) method, we need to solve the following two equations

F̄∗
Wq:ρ

(
LWq:ρ | z

)
− F̄∗

Wq:ρ

(
UWq:ρ | z

)
= 1− γ

and
f ∗Wq:ρ

(
LWq:ρ | z

)
− f ∗Wq:ρ

(
UWq:ρ | z

)
= 0.

where f ∗Wq:ρ (w | z) is as in (17), andLWq:ρ andUWq:ρ denote the HPD lower and upper bounds,respectively.

5 Numerical results and an illustrative example

In this section, the ML and Bayesian estimates based on the SE, LINEX and GE loss functions are all compared by
means of a Monte Carlo simulation study. A numerical exampleis finally presented to illustrate all the inferential results
established in the preceding sections.

5.1 Monte Carlo simulation

A simulation study is carried out for evaluating the performance of the ML estimate and all the Bayesian estimates
discussed in Section 4. We chose the parameterθ to be 0.1, 0.5 and 1 and the two sample sizes(m,n) = (10,10) with
different choices ofr ands. For these cases, we computed the ML estimate and the Bayesian estimates ofθ under the
SE, LINEX (with ν = 0.5) and GE (withd = 0.5) loss functions using informative priors (IP) and non-informative prior
(NIP). We repeated this process 1000 times and computed, foreach estimate, the estimated bias (EB) and the estimated
risk (ER) by using the root mean square error. The EB and ER of all the estimates ofθ are summarized in Tables 1.

From Table 1, we observe that, for the different choices ofθ , the estimated bias and risk of the Bayesian estimates
based on the SE, LINEX and GE loss functions are smaller than those of the ML estimates. We also observe that the
estimated bias and risk of all the estimates decrease with increasingr ands. Moreover, a comparison of the results for the
informative priors with the corresponding ones for non-informative priors reveals that the former produce more precise
results, as we would expect.
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Table 1: Values of EB and ER of the ML and Bayes estimators forθ with different choices ofr ands.

θ̂ML θ̂BS θ̂BL θ̂BE
θ r s EB ER EB ER EB ER EB ER

0.5 4 4 0.4242 0.7866 IP 0.0025 0.0230 0.0023 0.0227 0.0017 0.0221
– – NIP 0.0080 0.0268 0.0080 0.0272 0.0039 0.0250

6 4 0.3691 0.5845 IP 0.0024 0.0225 0.0023 0.0224 0.0016 0.0216
– – NIP 0.0079 0.0261 0.0078 0.0260 0.0037 0.0244

6 6 0.1262 0.5236 IP 0.0024 0.0224 0.0022 0.0224 0.0015 0.0215
– – NIP 0.0078 0.0261 0.0076 0.0259 0.0037 0.0243

8 6 0.1028 0.4936 IP 0.0023 0.0223 0.0021 0.0223 0.0015 0.0214
– – NIP 0.0077 0.0259 0.0076 0.0257 0.0035 0.0240

8 8 0.0146 0.1763 IP 0.0022 0.0219 0.0017 0.0222 0.0014 0.0210
– – NIP 0.0076 0.0256 0.0074 0.0257 0.0032 0.0238

1 4 4 0.4096 1.4118 IP 0.0387 0.1575 0.0292 0.1531 0.0119 0.1513
– – NIP 0.0796 0.2682 0.0639 0.2566 0.0402 0.2471

6 4 0.3722 1.3250 IP 0.0378 0.1565 0.0288 0.1520 0.0115 0.1486
– – NIP 0.0789 0.2613 0.0628 0.2504 0.0368 0.2431

6 6 0.3637 1.3199 IP 0.0378 0.1552 0.0287 0.1507 0.0112 0.1474
– – NIP 0.0776 0.2606 0.0624 0.2494 0.0368 0.2422

8 6 0.3111 1.1482 IP 0.0369 0.1541 0.0278 0.1496 0.0108 0.1463
– – NIP 0.0772 0.2586 0.0622 0.2476 0.0351 0.2404

8 8 0.0222 0.4132 IP 0.0364 0.1509 0.0270 0.1462 0.0105 0.1425
– – NIP 0.0758 0.2565 0.0606 0.2450 0.0344 0.2390

5 4 4 1.9896 5.5699 IP 0.3466 1.2985 0.0192 1.0861 0.1378 1.2080
– – NIP 0.3978 1.3406 0.0371 1.1115 0.1952 1.2395

6 4 1.6327 4.6798 IP 0.3440 1.2642 0.0133 1.0650 0.1378 1.1810
– – NIP 0.3942 1.3067 0.0347 1.0895 0.1838 1.2156

6 6 0.4020 4.2442 IP 0.3385 1.2596 0.0093 1.0590 0.1367 1.1760
– – NIP 0.3886 1.3031 0.0340 1.0838 0.1774 1.2079

8 6 0.3182 2.4480 IP 0.3370 1.2503 0.0068 1.0530 0.1304 1.1678
– – NIP 0.3859 1.2928 0.0277 1.0770 0.1756 1.2020

8 8 0.2037 2.0131 IP 0.3297 1.2381 0.0037 1.0341 0.1284 1.1503
– – NIP 0.3789 1.2823 0.0233 1.0583 0.1661 1.1904

5.2 Illustrative example

In order to illustrate all the inferential results established in the preceding sections, we simulated two samples withsizes
(m,n) = (10,10) from the inverse exponential distribution withθ = 1, and then applied The right Type-II censoring
scheme withr = 6 ands = 4. The two right Type-II censored samples are as follows:

GroupX 0.2633 0.6081 1.0516 1.0786 1.1286 1.1769 ∗ ∗ ∗ ∗
GroupY 0.4465 0.6425 0.9016 1.0807 ∗ ∗ ∗ ∗ ∗ ∗

These two samples are now assumed to have come from the inverse exponential distribution, with parameterθ being
unknown. Based on Type-II pooled sampleZ = (0.2633,0.4465,0.6081,0.6425,0.9016,1.0516,1.0786,1.0807,1.1286,
1.1769) from these two samples, we computed the ML estimate and the Bayesian estimates ofθ based on the SE, LINEX
(with ν = 0.5) and GE (withd = 0.5) loss functions using informative prior with(a,b) = (10,10) and non-informative
prior with (a,b) = (0,0). Also, we computed the point predictors as well as the boundsof the equi-tailed prediction
intervals for the order statisticsWq:ρ , q = 1, ...,10 from a future sample with sizeρ = 10 from the same population. All
these results are summarized in Tables 2 and 3.

5.3 Conclusion and discussion

In this paper, the Bayesian estimation based on the SE, LINEXand GE loss functions for the unknown parameter of
inverse exponential distributions has been discussed based on Pooled Type-II Censored Samples. Both Bayesian point
and interval predictions of the future failures have been developed based on the observed Pooled Type-II Censored data.
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Table 2: The ML and Bayes estimates forθ .

θ̂ML θ̂BS θ̂BL θ̂BE

1.0726 IP 1.0474 1.0381 1.0206
– NIP 1.0746 1.0598 1.0328

Table 3: Bayesian prediction ofWq:10 for q = 1, ...,10.
Point predictor Equi-tailed interval HPD interval

q IP NIP IP NIP IP NIP
1 0.3545 0.3154 (0.154,1.690) (0.146,1.801) (0.150,1.510) (0.155,1.803)
2 0.6586 0.6245 (0.280,2.355) (0.298,2.424) (0.123,1.890) (0.127,2.163)
3 1.0694 0.9001 (0.397,3.035) (0.309,3.256) (0.269,2.566) (0.273,2.879)
4 1.2224 1.1124 (0.581,3.777) (0.570,4.600) (0.389,3.318) (0.410,3.651)
5 1.2021 1.1985 (0.795,4.912) (0.719,5.001) (0.565,4.210) (0.580,4.582)
6 1.6541 1.5325 (1.151,6.101) (1.003,6.322) (0.789,5.227) (0.795,5.757)
7 1.9154 1.7254 (1.415,7.566) (1.312,8.114) (1.014,6.773) (1.064,7.358)
8 2.9120 3.0654 (1.424,7.241) (1.254,8.012) (1.058,7.562) (1.074,7.954)
9 5.4005 5.3258 (1.845,9.154) (1.754,10.562) (1.413,8.254) (1.437,11.124)
10 5.9245 5.8457 (2.745,15.246) (2.621,17.321) (1.820,12.669) (1.965,15.268)

The ML and Bayesian estimates have then been compared through a Monte Carlo simulation study and a numerical
example has also been presented to illustrate all the inferential results established here.

The computational results show that the Bayesian estimation based on the SE, LINEX and GE loss functions is more
precise than the ML estimation. Also, the ERs of all the estimates decrease with increasing r and s even when the sample
sizes m and n are small. Moreover, a comparison of the resultsfor the informative priors with the corresponding ones
for non-informative priors reveals that the former producemore precise results, as we would expect. Finally, the HPD
prediction intervals seem to be more precise than the equi-tailed prediction intervals.
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