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Abstract: In this paper, the maximum likelihood and Bayesian estiomaire developed based on pooled sample of two independent
Type-ll censored samples from the inverse exponentiaiibiigion. The Bayesian estimation is discussed using miffeloss functions.

The problem of predicting the failure times from a future p&nfrom the sample population is also discussed from a Bayes
viewpoint. A Monte Carlo simulation study is conducted tonmare the maximum likelihood estimator with the Bayesiamegors.
Finally, illustrative example is presented to illustrate tifferent inference methods discussed here.
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1 Introduction

In reliability analysis, experiments often get terminabedore all units on test fail based on cost and time consiides

In such cases, failure information is available only on pathe sample, and only partial information on all units thadl

not failed. Such data are called censored data. There ageaséorms of censored data. One of the most common forms
of censoring is Type-II right censoring which can be desatibs follows: Consider n identical units under observation

a life-testing experiment and suppose only the firstn failure timesX; ., ..., X;:n are observed and the rest of the data
are only known to be larger thaf-n.

In Type-Il censoring scheme, ifis small andn is relatively large compared to r, the precision of the eatés of
parameters obtained from such a censored data will be veryidcsuch a situation, if it will be possible and convenient
to take an additional Type-Il right censored data from aepthdependent sample (possibly of small sizeit might
be possible to use the combined ordered sample from thes&ypes |l right censored samples in order to increase the
precision of the estimation. There are a variety of scesasioerein one can obtain combined ordered sample from two
independent Type-Il censored samples arising from a compaoent distribution. One possible situation is when the
number of items placed on a life test per run are limited, sd #everal independent runs need to be done. Another
scenario is in the context of a meta-analysis when simifartésting experiments from different facilities need ® b
pooled together.

Balakrishnan et al in [1] considered the situation in whialo tindependent Type-Il right censored samples are
pooled, and demonstrated the advantage of pooling sampieexaressed the joint distribution of order statisticsrfro
the pooled sample as a mixture of progressively Type-ll emtssamples. Using these mixture forms, they then derived
nonparametric prediction intervals for order statisticsf a future sample. Recently, Mohie EI-Din et al. [2] cores&t
the pooled sample of two independent Type-Il censored ssripbm the left truncated exponential distribution and
derived the maximum likelihood (ML) and Bayesian estimatior the unknown parameters, and then they discussed the
problem of predicting the failure times from a future samfpfam a Bayesian viewpoint. In this paper, we discuss the
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same problem when the observed sample is a pooled samplaviimmdependent Type-Il right censored samples from
the inverse exponential distribution.

The role of inverse exponential distributions is indisgie in many applications of reliability theory, for its
memoryless property and its constant failure rate, see[4B]In the life distribution, if the random variabl¢ has an
exponential distribution then the random variable= (1/X) has an inverse exponential distribution. The later inverse
exponential distribution has been considered by Killer &agnhath in [5], and Duran and Lewis in [6] among many
others. The probability density (PDF) and cumulative (CHUf)ctions of the inverse exponential distribution can be
given by

f(x0)= X%exp(—%) and F (x;60) = exp(—%) , X>0, 1)

respectively.

For the Bayesian estimation in this context, we considee liegree types of loss functions. The first is the squared
error (SE) loss function which is a symmetric function thiseg equal importance to overestimation and underestmati
in the parameter estimation. The second is the linear-exqtal (LINEX) loss function, introduced by Varian in [7],
which is asymmetric and gives differing weights to overestion and underestimation. This function rises approxéiga
exponentially on one side of zero and approximately linean the other side. These loss functions have been used by
many authors; see, for example, [8], [9], [10], [11], [LA3], and [14]. The third loss function is the generalizatibthe
entropy (GE) loss used by several authors (see, for exafislg, This more general version allows for different shepe
of the loss function.

The rest of this paper is organized as follows. In Sectiom@ description of the model of the pooled sample from
two independent Type-Il censored samples is presentedMLhestimator and the Bayesian estimators of the unknown
parameters under SE, LINEX, and GE loss functions are dinivBection 3. The problem of predicting the order statstic
from a future sample then is discussed in Section 4. Finallection 5, some computational results are presented for
illustrating all the inferential methods developed here.

2 The model description

Let Xin, ..., X:n @and Yo, ..., Ysm be independent right Type-Il censored samples from twopaddent random samples
X1, ..., Xy andYy, ..., Ym, respectively, drawn from a population with distributiam€tionF. In the following, the pooled
sample fronXy, ..., Xr:n; Yom, ..., Yam Will be denoted byZ = (Z(l), ...,Z(r+s)) whereZ(l) < <Zggy).

Balakrishnan et al.in [1] derived the joint density funatef Z = (Z(y), ..., Z,s)) as a mixture of progressively Type-lI
censored samples given by

r-1 s—1
fz(z) = Z} Bifr () + ZDBJ* fr:(2), 2
i= j=
where z = (z,...,z4s) is a vector of realizations]T; = (Tiffi+sn+m,...,Tr‘igisr+sn+m) for i =0,...,r —1, and

x A
— ] J F— i

Ti = (Tirisnyme - Trasresnim) for j =0,...,s—1, are progressively Type-Il censored samples from the same
population based on the progressive censoring schemes

%i:(07"'707m_s707""O’n_r)’

S+i r—i
%#; =(0,...,00n—r,0,...,0,m—s),
r+j S

respectively, and the constaifisand ;" are given by

G ()

("5")
r+j—1y (nm-r—j
B = (rhs ()n(er;” ) for j=0,1,....,s— 1.
m
By using the joint density function of the progressively &yibcensored sample [ see Balakrishnan and Aggarwala §2000
and Balakrishnan (2007)], the joint density function in §2romes

Gi = fori=0,1,....r—1,

r+s s—1 r+s

r—1
fz(2) = i;Aa [1—F(ze)]™ P [1-F (249" q|:|1f (zg) + JZOAT 1-F@p)""[1-F (Zr+s)]m*sq|:|1f (z), ®)
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where ( o
n+m!(n—i)! .
A= (n+m—S—i)!(n—r)!Bl , for i=0,....r—1,
and | N
A= (n+m).(m—l). B for 120,51

(n+m—r—j)(m—s)!
Using (1) and (3), we obtain the likelihood function@based on the combined ordered saniple (Zy), ..., Z(11))

as
1 r—1m-s n—r —1 m— —
L@l =513 5 3 AChn0'*exp-0 zo z z AiChyn, 6" exp-0(U)] . (4)
|-| 2(2] hl 0h2 : :
g=1
where .
r+s
ui=£+ hZjtziforl_l -1
st L4s =1
hy hy s1
uj=—"-+4+—+Y —,forj=1,...,s— 1
J Zij  Zrys Z =
and

(m—9s)!(n—r)!
(m—s— hl)! (n— r— hz)!hl!hz!

Chy i, = (—1)M T2 forhy=0,..,m—s h,=0,....n—r.

ey

3 ML and Bayesian estimation

In this section, we derive the ML estimator and the Bayesg&imators for the unknown paramet&r when the observed
sample is the ordered pooled sample- (Z(y), ..., Z)).From (4), the log-likelihood function dd is given by

1 r—1m-s n—r s—1m-s n—r
logL (68| 2) =logq +—5 Z) > z ACh, n, 0" Sexp(—6u;) +zo > > AjChn8 Sexp(—6uj) p o, (5)
|-| 2(2] hl 0h2 = hl Oh2—0
=1
and so the ML estimatdiy, of 6 is readily obtained by solving the following equation
r—1m-s n—r s—1m-s n—r
20 > z ACh, h, (T +5— Bu;) exp(—6u;) + Zo > > AChn, (r+s—6uj) exp(—6uj) =0. (6)
h1=0hy=0 j=0h;=0hy=0

In the Bayesian approach,is viewed as realization of a random variable distributezbading torr(6) on ©, which is
the prior distribution. For this purpose, we consider hbeedonjugate gamma

. _ b* a—1
m(6;a,b) = @9 exp(—b8), 6 >0, 7
wherea andb are positive hyperparameters that could be chosen, for geafnom a prior knowledge of the mean and
variance of9, andrl” (.) denotes the complete gamma function.
Upon combining (4) and (7), the posterior density functib®pgivenZ = z, is obtained as

us (6lz) = It {rz: mzs nzr A|Ch1 hzeGeXp —06H;) SZZ)mZS nzr A*Chl hzeeexp( 6H; )} (8)
i=0h;=0h=0 h;=0hy=0
whereG=r +s+a—1,H =ui+b,H = uj +b, andl is the normalizing constant given by
G+ 1){2 mz_s nzr AChy 1, [Hi](CY fizm_s nzr A Con ] <e+1>}, ©)
i=0hi=0h>=0 h1 0hy=0
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Hence, the Bayesian estimatoréfinder the SE loss function is given by

bes = E[6]
r-1m-s n—r ~(G+2) s—1m-s n—r ~(G+2)
= 17r (G+1) > Z AChyhy, [ 2 +% > Z AiChy, | : (10)
=0h;=0h=0 J h;=0hy,=0
The LINEX loss function can be expressed as
Le (6.08) =exp[-v(6—-8)] —v(6-0)-1, (11)

wherev #£ 0. The sign and magnitude of the shape parameteepresent the direction and degree of asymmetry,
respectively. The problem of choosing the value of the patanv has been discussed by Calabria and Pulcini in [18].
The Bayesian estimator éfunder the LINEX loss function is given by

o =~ log {E [expi—v)))

. r— 1m—s n—r Gl s—1m-s n—r ~(G+1)
:—Iog 17 (G+1) 20 Z AChyp, [Hi+ V] +>+zo S Y AChun, [H +V] N )
h=0hz=0 j=0h=0h=0

The GE loss function, is given by

AN d A~
. ) ]
Lee (6,6) O <5> —din <5> ~1 (13)

It may be noted that whed > 0, a positive error is regarded as more serious than a negatigr; on the other hand,
whend < 0, a negative error is regarded as more serious than a ositior. The Bayesian estimator ®@funder the GE
loss function is given by

b - g0 )

r—1m-s n—r s—1m-s n-r
{I Ir( G+1{ S ZA.Ch o [Hi+ V] G+1+ZO ZA*Ch o | +v]<G“>}} . (14)
hy =

hi=0h3=0 0h3=0

4 Bayesian prediction of order statisticsfrom a future sample

LetWi.,...,Wp:p be the order statistics from a future random sample of@ize@m the same population. We discuss here
the Bayesian prediction o¥\,, for g=1,..., 0, based on the observed pooled sanipte (Z<1), ...,Z<r+s)). We derive
the Bayesian predictive distribution fd;, and then find the Bayesian point predictor and predictioeruai for\,.

Itis well known that the marginal density function of tgeh order statistic from a sample of sipdrom a continuous
distribution with cdfF (x) and pdff (x) is given by

p!

G-Dlp—q! [FW)]" [1—FW)]Pf(w), w>0, (15)

fngp (W8) =

for1 <q< p;see[19].
Upon substituting (1) in (15), the marginal density funatad theW, becomes

6 6
fwg, (WO) = Z K 2e><|0( Chs ha)) ,1<qg<p, (16)
whereKp, = (—1)" (qfl)!<p8!q(>’!)(7pc?!qfh3>!h3! forhs3=0,...,p0—q.
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Upon combining (8) and (16), the Bayesian predictive dgrigitction ofWgp, givenZ = z, is then
by (WI2) = [ 77 (812) g, (W]6) A6
0

r-lm-sn—r P-4 poc K, h —(G+2)
:'_1F(G+2){Z> SS S A“i*“*? L [Hi+—(q+ 3)}
iSonizong=ons=0 W w

s n ! p 4 AChy hyKng HF + (Q+hs) |~ (G+2
22 e Mt ~
1= h1:0h2:0h3:

From (17), we simply obtain the predictive survival functiof Wg.p, givenZ =z, as

iy (112) = [ T, (Wl2)cw

- r_im-s n-r P-4 AC | K { B (q-+ ha) -(G+1)
1 rG+1 —— L2 8 (H (G+1) _ [Hi + 7:|
( ) {20 hlzormzzomz (a-+ha) ) t

(17)

slmsnrpQA*Ch

N 2ho K (H7) @Y _ [H-*+ ((H—hs)](eu) | (19)
zbhl ohs= 0h3 C(athy M J t

The Bayesian point predictor ¥, ,, under SEL is obtained as the mean of the predictive demsign by (17). We have
no closed-form expression for the point predictor but itasdifficult to carry out a numerical integration for this pase.
The Bayesian predictive bounds of a two-sided equi-tai@@{(1— y) % interval forWy,,1 < q < p can be obtained by
solving the following two equations:

— % 4 — % y
Fig (L 12) = 12 andRg, (U |2 =

whereF_V*(,q:p (t]2z) isasin (18), and. andU denote the lower and upper bounds, respectively.
For the highest posterior density (HPD) method, we needlt@ ¢be following two equations

F\;\}q:p (LWq:p | Z) - F\l*\/q:p (UWq:p | Z) =1-y
and
f\;kvq:p (LWq:p | Z) — f\qu:p (UWq:p | Z) =0.
wherefv*\,q:p (w|z)is asin (17), andw,, andUy,, denote the HPD lower and upper bounds,respectively.

5 Numerical resultsand an illustrative example

In this section, the ML and Bayesian estimates based on the IBEEX and GE loss functions are all compared by
means of a Monte Carlo simulation study. A numerical exarigfimally presented to illustrate all the inferential reésul
established in the preceding sections.

5.1 Monte Carlo simulation

A simulation study is carried out for evaluating the perfarme of the ML estimate and all the Bayesian estimates
discussed in Section 4. We chose the param@terbe 0.1, 0.5 and 1 and the two sample si@es) = (10,10) with
different choices of ands. For these cases, we computed the ML estimate and the Bayestisnates oB under the

SE, LINEX (with v = 0.5) and GE (withd = 0.5) loss functions using informative priors (IP) and nonsimhative prior
(NIP). We repeated this process 1000 times and computedafdr estimate, the estimated bias (EB) and the estimated
risk (ER) by using the root mean square error. The EB and ER tifeaestimates ob are summarized in Tables 1.

From Table 1, we observe that, for the different choice§,ahe estimated bias and risk of the Bayesian estimates
based on the SE, LINEX and GE loss functions are smaller thaset of the ML estimates. We also observe that the
estimated bias and risk of all the estimates decrease vatkasing ands. Moreover, a comparison of the results for the
informative priors with the corresponding ones for noreimfiative priors reveals that the former produce more peecis
results, as we would expect.
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Table 1: Values of EB and ER of the ML and Bayes estimators&avith different choices of ands.

OmL Os OsL OsE

0 r s EB ER EB ER EB ER EB ER
05 4 4 Q4242 07866 IP 0.0025 00230 00023 00227 00017 00221
- - NIP  0.0080 00268 00080 00272 00039 00250
6 4 03691 (05845 P 0.0024 00225 00023 00224 00016 00216
- - NIP 0.0079 00261 00078 00260 00037 00244
6 6 01262 05236 1P 0.0024 00224 00022 00224 00015 00215
- - NIP 0.0078 00261 00076 00259 00037 00243
8 6 01028 04936 1P 0.0023 00223 00021 00223 00015 00214
- - NIP 0.0077 00259 00076 Q0257 00035 00240
8 8 00146 01763 1P 0.0022 00219 00017 00222 00014 00210
- - NIP 0.0076 00256 00074 00257 00032 00238
1 4 4 Q4096 14118 1P 0.0387 01575 00292 01531 00119 01513
- - NIP 0.0796 02682 00639 02566 00402 02471
6 4 03722 13250 1P 0.0378 01565 00288 01520 00115 01486
- - NIP 0.0789 02613 00628 02504 00368 02431
6 6 03637 13199 P 0.0378 01552 00287 01507 00112 01474
- - NIP 0.0776 02606 00624 02494 00368 02422
8 6 03111 11482 1P 0.0369 01541 00278 01496 00108 01463
- - NIP 0.0772 02586 00622 02476 00351 02404
8 8 00222 04132 IP 0.0364 01509 00270 01462 00105 01425
- - NIP 0.0758 02565 00606 02450 00344 02390
5 4 4 19896 55699 IP 0.3466 12985 00192 10861 01378 12080
- - NIP 0.3978 13406 00371 11115 01952 12395
6 4 16327 46798 IP 0.3440 12642 00133 10650 01378 11810
- - NIP 0.3942 13067 00347 10895 01838 12156
6 6 04020 42442 1P 0.3385 12596 00093 10590 01367 11760
- - NIP 0.3886 13031 00340 10838 01774 12079
8 6 03182 24480 P 0.3370 12503 00068 10530 01304 11678
- - NIP 0.3859 12928 00277 10770 01756 12020
8 8 02037 20131 1P 0.3297 12381 00037 10341 01284 11503

- - NIP 0.3789 12823 00233 10583 01661 11904

5.2 Illustrative example

In order to illustrate all the inferential results estaléid in the preceding sections, we simulated two samplessiziés
(m,n) = (10,10) from the inverse exponential distribution with= 1, and then applied The right Type-II censoring
scheme withr = 6 ands= 4. The two right Type-Il censored samples are as follows:

GroupX 0.2633 06081 10516 10786 11286 11769 =« * =
GroupY 0.4465 06425 (09016 10807 * * * kK

These two samples are now assumed to have come from theammgosnential distribution, with paramet@rbeing
unknown. Based on Type-Il pooled samgle= (0.2633 0.44650.6081 0.64250.9016 1.05161.0786 1.0807,1.1286
1.1769) from these two samples, we computed the ML estimate and thedgan estimates @& based on the SE, LINEX
(with v = 0.5) and GE (withd = 0.5) loss functions using informative prior witla, b) = (10,10) and non-informative
prior with (a,b) = (0,0). Also, we computed the point predictors as well as the bowfidhe equi-tailed prediction
intervals for the order statistid&,, g = 1,...,10 from a future sample with size= 10 from the same population. All
these results are summarized in Tables 2 and 3.

5.3 Conclusion and discussion

In this paper, the Bayesian estimation based on the SE, LIHMBEXGE loss functions for the unknown parameter of
inverse exponential distributions has been discussedlb@s®ooled Type-ll Censored Samples. Both Bayesian point
and interval predictions of the future failures have beerettged based on the observed Pooled Type-Il Censored data.
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Table 2: The ML and Bayes estimates fér
OmL Bs OL Bse
1.0726 IP 1.0474 1.0381 1.0206
- NIP 1.0746 1.0598 1.0328
Table 3: Bayesian prediction of\g10 for q=1,...,10.
Point predictor Equi-tailed interval HPD interval
q IP NIP IP NIP IP NIP
1 0.3545 03154 (0.154,1.690) (0.146,1.801) (0.150,1.510) (0.1551.803
2 0.6586 06245 (0.280,2.355) (0.298 2.424) (0.1231.890) (0.127,2.163)
3 10694 09001 (0.397,3.035) (0.309,3.256) (0.269,2.566) (0.2732.879
4 12224 11124 (0.581,3.777) (0.570,4.600) (0.389,3.318 (0.410,3.651)
5 12021 11985 (0.7954.912 (0.719,5.001) (0.565,4.210) (0.580,4.582
6 16541 15325 (1.1516.107) (1.003 6.322 (0.789,5.227) (0.7955.757)
7 19154 17254 (1.415,7.566) (1.3128.114) (1.014,6.773 (1.064,7.358)
8 29120 30654 (1.424,7.241) (1.254,8.012 (1.0587.562) (1.074,7.9549)
9 54005 53258 (1.8459.154)  (1.754,10.562) (1.4138.254)  (1.437,11.124)
10 59245 58457 (2.74515.246)  (2.62117.321) (1.820,12.669  (1.96515.268)

The ML and Bayesian estimates have then been compared theoipnte Carlo simulation study and a numerical
example has also been presented to illustrate all the imfateesults established here.

The computational results show that the Bayesian estimagsed on the SE, LINEX and GE loss functions is more
precise than the ML estimation. Also, the ERs of all the eatéa decrease with increasing r and s even when the sample
sizes m and n are small. Moreover, a comparison of the refaulthe informative priors with the corresponding ones
for non-informative priors reveals that the former produtere precise results, as we would expect. Finally, the HPD
prediction intervals seem to be more precise than the egedtprediction intervals.
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