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Abstract: The order statistics have been extensively studied in the literature to characterize some particular distributions aswell as
family of distributions. The problem of characterizing distributions through conditional expectation of adjacent and non-adjacent order
statistics has been of increasing interest due to its several applications. Several approaches are available in literature. In this paper,
two general classes of distributionsF(x) = 1− e−ah(x) and F(x) = 1− [ah(x) + b]c, whereh(x) is a continuous, differentiable and
monotonic function ofxε(α,β ) have been characterized through the conditional expectation of kth power of difference of two order
statistics. Further, several deductions and particular cases are discussed.
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1 Introduction

Let X1,X2, ...Xn be a random sample of sizen from a
continuous population with the distribution function(d f)
F(x) and the probability density function(pd f) f (x) and
let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be the corresponding order
statistics. Then the conditionalpd f of Xs:n givenXr:n = x,
1≤ r < s≤ n, is

[

David and Nagaraja [1]
]

(n− r)!
(s− r −1)!(n−s)!

[F(y)−F(x)]s−r−1[1−F(y)]n−s

[1−F(x)]n−r f (y), x< y

(1)
Conditional moments of order statistics are extensively
used in characterizing the probability distributions.
Various approaches are available in the literature. For
detailed survey one may refer to Khan and Ali [2], Khan
and Abu-Salih [3], Franco and Ruiz [4,5],
López-Blázquez and Moreno-Rebello [6], Wesolowski
and Ahsanullah [7], Dembińska and Wesolowski [8],
Khan and Abouammoh [9], Khan and Athar [10] and
references therein.

Khan and Abu-Salih [3] characterized some general
family of distributions through conditional expectation of
functions of order statistics fixing adjacent order statistic.
Further, Khan and Abouammoh [9] extended the result of
Khan and Abu-Salih [3] where the conditioned order
statistic may not be adjacent one. Khanet al. [11]

characterized a general form of distribution by
conditional spacing of order statistics. Here in this
chapter, an attempt is being made to characterize two
general forms of distributionsF(x) = 1− e−ah(x) and
F(x) = 1− [ah(x) + b]c, a 6= 0 throughkth conditional
moment of difference between functions of two order
statistics.

2 Characterization theorems

Before coming to the main result, we shall prove the
following lemma:

Lemma 2.1. For any positive integersµ andν with n ε N
∫ 1

0
(lnu)n(1−u)ν−1uµ−1du

= (−1)n n!β (µ,ν)
ν−1

∑
i1=0

ν−1

∑
i2=i1

· · ·
ν−1

∑
in=in−1

1
µ + i1

1
µ + i2

· · ·
1

µ + in
(2)

whereβ (µ ,ν) is complete beta function.
Proof.Consider

∫ 1
0 (lnu)n(1−u)ν−1uµ−1du.

Forn= 1, we have
∫ 1

0
(lnu)(1−u)ν−1uµ−1du
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= β (µ,ν)[ψ(µ)−ψ(µ +ν)] see [11]

=−β (µ,ν)
ν−1

∑
i1=0

1
µ + i1

(3)

Again for n= 2, we have

∫ 1

0
(lnu)2(1−u)ν−1uµ−1du

= β (µ,ν)[{ψ(µ)−ψ(µ +ν)}2+ψ ′(µ)−ψ ′(µ +ν)] see [11]

= 2!β (µ,ν)
ν−1

∑
i1=0

ν−1

∑
i2=i1

1
µ + i1

1
µ + i2

(4)

where ψ(x) = d
dx lnΓ (x) with functional relation

ψ(x+n) = ψ(x)+∑n−1
k=0

1
x+k .

Now we assume that (2) holds forn= k, then

∫ 1

0
(lnu)k(1−u)ν−1uµ−1du

= (−1)kk! β (µ,ν)
ν−1

∑
i1=0

ν−1

∑
i2=i1

· · ·
ν−1

∑
ik=ik−1

1
µ + i1

1
µ + i2

· · ·
1

µ + ik
.

(5)
Then, the statement should be true forn= k+1.

Therefore, integrating by parts, we get

∫ 1

0
(lnu)k+1(1−u)ν−1uµ−1du

=−
(k+1)

µ

∫ 1

0
(lnu)k(1−u)ν−1uµ−1du

+
(ν −1)

µ

∫ 1

0
(lnu)k+1(1−u)ν−2uµ du. (6)

In view of (5), (6) reduces to

=(−1)k+1 (k+1)!
µ

β (µ,ν)

×
ν−1

∑
i1=0

ν−1

∑
i2=i1

· · ·
ν−1

∑
ik=ik−1

1
µ + i1

1
µ + i2

· · ·
1

µ + ik

+
(ν −1)

µ

∫ 1

0
(lnu)k+1(1−u)ν−2uµ du (7)

Similarly integrating (7) by parts(ν −1) times and using (5), we
get

=(−1)k+1(k+1)! β (µ,ν)

×
1
µ

ν−1

∑
i1=0

ν−1

∑
i2=i1

· · ·
ν−1

∑
ik=ik−1

1
µ + i1

1
µ + i2

· · ·
1

µ + ik

+(−1)k+1(k+1)! β (µ,ν)

×
1

µ +1

ν−1

∑
i1=0

ν−1

∑
i2=i1

· · ·
ν−1

∑
ik=ik−1

1
µ + i1

1
µ + i2

· · ·
1

µ + ik

+(−1)k+1(k+1)! β (µ,ν)

×
1

µ +2

ν−1

∑
i1=0

ν−1

∑
i2=i1

· · ·
ν−1

∑
ik=ik−1

1
µ + i1

1
µ + i2

· · ·
1

µ + ik

+ · · · · · · · · ·

+(−1)k+1(k+1)! β (µ,ν)

×
1

µ +ν −1

ν−1

∑
i1=0

ν−1

∑
i2=i1

· · ·
ν−1

∑
ik=ik−1

1
µ + i1

1
µ + i2

· · ·
1

µ + ik

= (−1)k+1(k+1)! β (µ,ν)

×
1

µ +1

ν−1

∑
i1=0

ν−1

∑
i2=i1

· · ·
ν−1

∑
ik+1=ik

1
µ + i1

1
µ + i2

· · ·
1

µ + ik+1
.

Therefore (2) holds forn= k+1.

Hence the Lemma.

Theorem 2.1: Let X be an absolutely continuous random
variable with the df F(x) and the pdf f(x) in the interval
(α,β ), whereα and β may be finite or infinite, then for
1≤ r < s≤ n,

E[(h(Xs:n)−h(Xr:n))
k|Xr:n = x]

= k!
1
ak

s−1

∑
i1=r

s−1

∑
i2=i1

· · ·
s−1

∑
ik=ik−1

1
(n− i1)

1
(n− i2)

· · ·
1

(n− ik)

(8)

if and only if

F(x) = 1−e−ah(x), a 6= 0 (9)

where h(x) is a continuous, differentiable and
non-decreasing function of x and k is a positive integer.

Proof.To prove the necessary part, we have

E[(h(Xs:n)−h(Xr:n))
k|Xr:n = x]

=
(n− r)!

(s− r −1)!(n−s)!

∫ β

x
(h(y)−h(x))k

×

[

1−
1−F(y)
1−F(x)

]s−r−1[1−F(y)
1−F(x)

]n−s f (y)
1−F(x)

dy.

Assuming

1−F(y)
1−F(x)

= u, which implies(h(y)−h(x))k = (−1)k
1
ak

(lnu)k.

Thus,RHS of the above expression reduces to

=
(n− r)! (−1)k

ak(s− r −1)!(n−s)!

∫ 1

0
(lnu)k(1−u)s−r−1un−sdu.

Now, on application of Lemma 2.1, we get
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E[(h(Xs:n)−h(Xr:n))
k|Xr:n= x]

=
(n− r)!(−1)2k

ak (s− r −1)!(n−s)!
k! β (n−s+1,s− r)×

s−r−1

∑
i1=0

s−r−1

∑
i2=i1

· · ·
s−r−1

∑
ik=ik−1

1
(n−s+1+ i1)

1
(n−s+1+ i2)

· · ·
1

(n−s+1+ ik)

= k!
1
ak

s−1

∑
i1=r

s−1

∑
i2=i1

· · ·
s−1

∑
ik=ik−1

1
(n− i1)

1
(n− i2)

· · ·
1

(n− ik)
.

Hence the (8).

To prove the sufficiency part, consider

E[(h(Xs:n)−h(Xr:n))
k|Xr:n= x] = gr,s,k

or

(n− r)!
(s− r −1)!(n−s)!

∫ β

x
(h(y)−h(x))k

×[F(y)−F(x)]s−r−1[1−F(y)]n−s f (y)dy

= gr,s,k[1−F(x)]n−r . (10)

Differentiating (10) w.r.t. x, we have

− k h′(x)
(n− r)!

(s− r −1)!(n−s)!

×

∫ β

x
(h(y)−h(x))k−1 [F(y)−F(x)]s−r−1[1−F(y)]n−s

[1−F(x)]n−r f (y)dy

− (n−r)
f (x)

1−F(x)
(n− r −1)!

(s− r −2)!(n−s)!

×
∫ β

x
(h(y)−h(x))k

[F(y)−F(x)]s−r−2[1−F(y)]n−s

[1−F(x)]n−r−1 f (y)dy

= − (n− r)
f (x)

1−F(x)
gr,s,k. (11)

Rearranging the terms of (11), we get

f (x)
1−F(x)

=
1

(n− r)
.

k h′(x)gr,s,k−1
[

gr,s,k−gr+1,s,k
]

=ah′(x).

Hence the theorem.

Remark 2.1: At k= 1, (8) reduces to

E[h(Xs:n)|Xr:n = x] = h(x)+
1
a

s−1

∑
j=r

1
(n− j)

as obtained by Khan and Abouammoh [9].

Theorem 2.2: Let X be an absolutely continuous random
variable with the df F(x) and the pdf f(x) in the interval

(α,β ), whereα and β may be finite or infinite, then for
1≤ r < s≤ n,

E[(h(Xs:n)−h(Xr:n))
k|Xr:n = x] = gr,s,k(x)

=

(

ah(x)+b
a

)k k

∑
i=0

(−1)i+k
(

k
i

) s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

(12)

if and only if

F(x) = 1− [ah(x)+b]c (13)

where a,b and c are so chosen that F(x) is a df and h(x)
is a monotonic and differentiable function of x over the
support(α,β ).

Proof. First we shall prove (13) implies (12).

In view of (1), we have

E[(h(Xs:n)−h(Xr:n))
k|Xr:n = x]

=
(n− r)!

(s− r −1)!(n−s)!

∫ β

x
(h(y)−h(x))k

×

[

1−
1−F(y)
1−F(x)

]s−r−1[1−F(y)
1−F(x)

]n−s f (y)
1−F(x)

dy.

Assuming

1−F(y)
1−F(x)

= u,

implies

(h(y)−h(x))k = (−1)k
(

ah(x)+b
a

)k

(1−u1/c)k.

Thus, we have

E[(h(Xs:n)−h(Xr:n))
k|Xr:n = x]

= (−1)k
(

ah(x)+b
a

)k (n− r)!
(s− r −1)!(n−s)!

×
∫ 1

0
(1−u1/c)k(1−u)s−r−1un−sdu,

= (−1)k
(

ah(x)+b
a

)k (n− r)!
(s− r −1)!(n−s)!

×
k

∑
i=0

(

k
i

)

(−1)i
∫ 1

0
(1−u)s−r−1u(i/c)+(n−s)du,

= (−1)k
(

ah(x)+b
a

)k (n− r)!
(s− r −1)!(n−s)!

×
k

∑
i=0

(

k
i

)

(−1)iβ (s− r,(i/c)+(n−s)+1),

= (−1)k
(

ah(x)+b
a

)k (n− r)!
(n−s)!

×
k

∑
i=0

(

k
i

)

(−1)i
Γ [(i/c)+(n−s)+1]
Γ [(i/c)+(n− r)+1]

,

c© 2016 NSP
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= (−1)k
(

ah(x)+b
a

)k k

∑
i=0

(

k
i

)

(−1)i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

.

Hence the (12).

Now to prove the sufficiency part, let

E[(h(Xs:n)−h(Xr:n))
k)|Xr:n = x] = ξr,s,k(x)

or

(n− r)!
(s− r −1)!(n−s)!

×
∫ β

x
(h(y)−h(x))k[F(y)−F(x)]s−r−1[1−F(y)]n−s f (y)dy

= ξr,s,k(x)[1−F(x)]n−r . (14)

Differentiating (14) w.r.t. x, we have

−kh′(x)
(n− r)!

(s− r −1)!(n−s)!

×
∫ β

x
(h(y)−h(x))k−1 [F(y)−F(x)]s−r−1[1−F(y)]n−s

[1−F(x)]n−r f (y)dy

−(n−r)
f (x)

1−F(x)
(n− r −1)!

(s− r −2)!(n−s)!

×
∫ β

x
(h(y)−h(x))k

[F(y)−F(x)]s−r−2[1−F(y)]n−s

[1−F(x)]n−r−1 f (y)dy

= ξ ′
r,s,k(x)− (n− r)

f (x)
[1−F (x)]

ξr,s,k(x). (15)

Rearranging the terms of (15), we get

f (x)
1−F(x)

=−
1

(n− r)

ξ ′
r,s,k(x)+k h′(x)ξr,s,k−1(x)

[ξr+1,s,k(x)−ξr,s,k(x)]
. (16)

Consider

ξ ′
r,s,k(x)+k h′(x)ξr,s,k−1(x)

= (−1)kk h′(x)

(

ah(x)+b
a

)k−1

×
k

∑
i=0

(

k
i

)

(−1)i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

+(−1)k−1k h′(x)

(

ah(x)+b
a

)k−1

×
k−1

∑
i=0

(

k−1
i

)

(−1)i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

= (−1)kk h′(x)

(

ah(x)+b
a

)k−1

×

[

k

∑
i=0

(

k
i

)

(−1)i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

−
k−1

∑
i=0

(

k−1
i

)

(−1)i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

]

= (−1)kk h′(x)

(

ah(x)+b
a

)k−1

×

[

k

∑
i=0

(

k
i

)

(−1)i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

+(−1)k
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

−
k−1

∑
i=0

(

k
i

)(

1−
i
k

)

(−1)i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

]

= (−1)kh′(x)

(

ah(x)+b
a

)k−1

×

[

(−1)kk
s−1

∏
j=r

(

c(n− j)
k+c(n− j)

)

+
k−1

∑
i=0

(

k
i

)

(−1)i i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

]

= (−1)kh′(x)

(

ah(x)+b
a

)k−1

×
k

∑
i=0

(

k
i

)

(−1)i i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

and

ξr+1,s,k(x)−ξr,s,k(x)

= (−1)k
(

ah(x)+b
a

)k k

∑
i=0

(

k
i

)

(−1)i
s−1

∏
j=r+1

(

c(n− j)
i+c(n− j)

)

− (−1)k
(

ah(x)+b
a

)k k

∑
i=0

(

k
i

)

(−1)i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

= (−1)k
(

ah(x)+b
a

)k k

∑
i=0

(

k
i

)

(−1)i

×
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)(

i+c(n− r)
c(n− r)

−1

)

= (−1)k
(

ah(x)+b
a

)k 1
c(n− r)

×
k

∑
i=0

(

k
i

)

(−1)i i
s−1

∏
j=r

(

c(n− j)
i+c(n− j)

)

.

Therefore in view of (16), we get

=−
a c h′(x)

(ah(x)+b)

∑k
i=0

(k
i

)

(−1)i i ∏s−1
j=r

(

c(n− j)
i+c(n− j)

)

∑k
i=0

(k
i

)

(−1)i i ∏s−1
j=r

(

c(n− j)
i+c(n− j)

)

=−
a c h′(x)

(ah(x)+b)
.

Hence the theorem.

Remark 2.2: At k= 1, (12) reduces to

E[h(Xs:n)|Xr:n = x] = a∗h(x)+b∗

where

a∗ =
s−1

∏
j=r

(

c(n− j)
1+c(n− j)

)

and b∗ =−
b
a
(1−a∗).
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3 Some Examples

Examples based on Theorem 2.1

a) Pareto Distribution

F(x) = 1− (x/α)−θ ,α < x< ∞, θ > 0

with a= θ , h(x) = log(x/α) and

gr,s,k = k!
1

θ k

s−1

∑
i1=r

s−1

∑
i2=i1

· · ·
s−1

∑
ik=ik−1

1
(n− i1)

1
(n− i2)

· · ·
1

(n− ik)
.

b) Weibull Distribution

F(x) = 1−e−θ xp
,0< x< ∞, p,θ > 0

with a= θ , h(x) = xp and

gr,s,k = k!
1

θ k

s−1

∑
i1=r

s−1

∑
i2=i1

· · ·
s−1

∑
ik=ik−1

1
(n− i1)

1
(n− i2)

· · ·
1

(n− ik)
.

c) Log Logistic Distribution

F(x)=1−(1+θ xp)−1,0< x<∞, p,θ > 0

with a= 1, h(x) = log(1+θ xp) and

gr,s,k = k!
s−1

∑
i1=r

s−1

∑
i2=i1

· · ·
s−1

∑
ik=ik−1

1
(n− i1)

1
(n− i2)

· · ·
1

(n− ik)
.

Similarly, with proper choice ofa and h(x) characterization
results for other distributions based on Theorem 2.1 can be
obtained. For more distributions one may refer Noor and Athar
[13].

Examples based on Theorem 2.2

a) Power Function Distribution

F(x) = α−pxp, 0< x< α, α, p> 0

with a=−α−p,b= 1,c= 1, h(x) = xp and

gr,s,k(x) = (α p−xp)k
k

∑
i=0

(−1)i
(

k
i

)s−1

∏
j=r

(

(n− j)
i+(n− j)

)

.

b) Pareto Distribution

F(x) = 1−α px−p, α ≤ x< ∞, α, p> 0

with a= α p,b= 0,c= 1, h(x) = x−p and

gr,s,k(x) = x−p k
k

∑
i=0

(−1)i+k
(

k
i

)s−1

∏
j=r

(

(n− j)
i+(n− j)

)

.

c) Weibull Distribution

F(x) = 1−e−θxp
, 0≤ x< ∞, θ , p> 0

with a= 1,b= 0,c= θ , h(x) = e−x and

gr,s,k(x) = e−x k
k

∑
i=0

(−1)i+k
(

k
i

)s−1

∏
j=r

(

θ (n− j)
i+θ (n− j)

)

.

d) Inverse Weibull Distribution

F(x) = e−θx−p
, 0≤ x< ∞, θ , p> 0

with a=−1,b= 1,c= 1, h(x) = e−θx−p
and

gr,s,k(x) = (1−e−θx−p
)k

k

∑
i=0

(−1)i
(

k
i

)s−1

∏
j=r

(

(n− j)
i+(n− j)

)

.

Similarly with proper choice ofa,b,c andh(x), results based on
Theorem 2.2, can be obtained for various other distributions. One
may refer to Noor and Athar [13].

4 Conclusion

The study of ordered random variables and its application have
always been interesting topic among the researchers,
particularly in characterization of probability distributions,
reliability theory, and estimation theory. In this paper, we have
proposed a new approach to characterize two general form of
distributions through conditional expectation ofkth power of
difference of two order statistics. These new characterization
results are then applied to characterize some well known
probability distributions.
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