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Abstract: In order to quantify the life characteristics of a produettially accelerated life tests are used when the dataraddiom
accelerated conditions cannot be extrapolated to norneataisditions. This study considers constant-stress fiardiecelerated life
tests for censored lifetime data, where the lifetime distibn is assumed to follow log-logistic distribution. Timaximum likelihood
estimates are obtained for the distribution parametersaceleration factor. Simulation studies are conductelilistiate the statistical
properties of the estimates and evaluate the performanmenfitience intervals.
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1 Introduction

Traditional lifetime data analyses are used to obtain mftion on the life characteristics of a product, system or
component at normal use conditions. Nowadays, productgequipments are, however, well designed and giving good
satisfaction with very long lifetimes to customers. As autesf great reliability of today’s products, obtaining $uc
lifetime data (or times-to-failure data) is becoming morel anore difficult under normal use conditions. To obtain
failures quickly, reliability practitioners have atteregtto force the products to fail more quickly than they wouhdier
normal use conditions. That is, a sample of the items is deateaccelerated conditions than normal ones. These
conditions are often referred to as stresses which may theifotm of temperature, pressure, vibrations, and so on. The
phrase accelerated life testing (ALT) has been used to itbesall such practices, and the lifetime data from accederat
conditions are extrapolated to estimate the life distidyuat normal operating conditions. The types of stressitmgdin

ALT are generally classified as constant-stress, stepsst@ random-stress. The constant-stress loading is a
time-independent test setting where the stress remainsanged until an item fails. The constant-stress loading has
several advantages over time-dependent stress loadiegassemost of real products are operated at a constarg-stres
condition. For more details about ALTs, sd# [2], and [3] among others.

In ALT the main assumption is that a life-stress relatiopghiknown or can be assumed so that the data obtained
from accelerated conditions can be extrapolated to norsmlconditions. In some cases, such relationship can not be
known or assumed. So, partially accelerated life tests PAlre often used in such cases. In a constant-stress PALT,
each test item is run at a constant-stress under either hoiseacondition or accelerated condition only until the test
is terminated, and the analysis of PALT has been extensatelgied in recent years. Bai and Churj $tudied the
problem of estimation and optimal constant-stress PALTgtefor an exponential lifetime distribution. Bei al. [5] also
considered PALT design for items having lognormal distiitie. Abdel-Ghani §] considered the estimation problem
in constant-stress PALT for the Weibull distribution, Alb@zhaly et al. [7] discussed parameter estimation for Pareto
distribution under PALT, and Abd-Elfattad al. [8] considered estimation in step-stress partially accteddrife tests for
the Burr Type XII distribution. Zarriret al. [9] studied the maximum likelihood method for estimating ticeederation
factor and the parameters of Rayleigh distribution for tamisstress PALT. Kamagt al. [10] dealt with constant stress
partially accelerated life test assuming that the lifegroétest item follow Inverted Weibull distribution.
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As indicated by Bennettll], the log-logistic distribution is found to be a good reliighh model as it fits well in many
practical situations of reliability data analyses. Forrap#e, Chiodo and Mazzanti P] used the log-logistic distribution
for describing the degradation rate for highly reliabledarots, Kantarret al. [13] used the log-logistic distribution for
the basic probability model of the life of the product, andhéde and Khan 14] utilized log-logistic distribution as a
reliability model using a Bayesian method. Another impotfaature with the log-logistic distribution is that itdiedvility
and hazard functions can be written in closed forms. Thuotipogistic distribution is convenient in handling censo
data. In this paper we consider constant-stress partiatiglarated life tests for log-logistic lifetime distrilomn with
Type-l and Type-Il censored data.

The rest of this paper is organized as follows. Section 2rbdluces the notations and model assumptions. Section 2.2
presents the maximum likelihood estimators of underlyiagpmeters with Type-I censored data, and Type-Il censored
data are considered in Section 2.3. Section 3 containsrthdaion results that demonstrate and evaluate the peafocen
of the estimators based on the proposed censoring scheeati®r4 concludes the paper and suggests some future ideas
in this area.

2 Model description and maximum likelihood estimates

2.1 Model assumptions

In a constant-stress PALT, all of theitems are divided into two groupsit items are randomly chosen from the
items and are allocated to accelerated conditions witeésethe proportion of the sample items allocated to acceddrat
conditions, while the remaining — nrt items are placed to normal use conditions. Some assummi@nmade in a
constant-stress PALT.

—Each test item is run until the censoring time

—The test condition is not changed.

—The lifetimesX;, i = 1,...,n(1—m) andYj, j = 1,...,nmrof items allocated at normal use conditions and accelerated
conditions, respectively, are i.i.d. random variables.

—The lifetimesX; andY; are mutually independent.

In this study the lifetimes of test items are assumed to Wlkolog-logistic distribution. The probability density
function of an item at use conditions is given by

axafl

f(X):m, XZO,G>O,)\ >07

whereaq is a shape parameter aAds a scale parameter. Its cumulative distribution functson

X qua—IA LA 1 A9
F)=PriX<x) = [ 4 A qu= e
(0 =Prx <X /o Trawe /1 2T T

the reliability function is

and its hazard function is obtained by
) = (/5% = 22
N 14 Axa’

In a constant-stress PALT wheYe= 3~1X with B being the acceleration factor which is the ratio of mearitife at use
conditions to that at accelerated conditions, the proltahiénsity function for an item tested at acceleration dtowls

is given by Ba(By) A
_ BalBy)*™
Y Ay

In many cases when lifetime data are collected, all itemsha dample may not fail. Because of time or cost
considerations, the practitioners will terminate theitgsand report the results before all items realize theiufas.
First, we will consider Type-I censoring where the fails@bserved only if it occurs prior to some prespecified time. |
this instance, all censored items have times equal to thgtHesf the study period. Type-l censored data are usually
obtained when censoring time is fixed, and then the numbeiilofés in that fixed time is a random variable.

y>0,a >0,A >0.
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2.2 Type-l censored data

In a constant-stress PALT with Type-l censoring, the datasst of a random sample ai(l — m) lifetimes
X1,X2, .-+, Xn(1—m) Under normal use conditions and a random sampleofiifetimes y1,y»,...,ynr at accelerated
conditions respectively. L&l; andda; denote the failure indicators such that

o 1 <t
Qi = {0 otherwise
fori=1,...,n(1—m) and
_J1 y <t
%ai = {O otherwise
for j =1,...,nm. We consider the maximum likelihood procedure to estimaggoarameterg, A andf of the model.
The likelihood function fof (x;, &) :i =1,...,n(1— m)} at normal use conditions is given by
nw-m [ [ gya-1y )M 1-,
X; 1
Lu(Xi,dula,A) = —_—1 —_—
U(Xlad.ll|aa ) il:l [{ (1_|_)\X1.0!)2} {1+)\T0’} ]
and the likelihood function fof(y;j, dj) : j = 1,...,nr} at accelerated conditions is given by

Thus, the total likelihood function foff(X;, &), (Y, &j) :1=1,...,n(1—m),j=1,...,nm}is

n(1-m) axia—l)\ A 1 1-di
L(a,)\,B)Z il:l |:{(1_|_)\xia)2} {1+)\Ta} :|

1 { gi(f &)1;2 }6&] { 1+ A%BT)"' }1%

=1
Let ny andn, be the number of items failed at normal and accelerated tiondirespectively. Similarly, let, and
Ca be the number of items censored at normal and accelerateditioos respectively. That isy, = n(1 — 1) — ny and
Ca = NTT— ng. To obtain the maximum likelihood estimates, the naturghtithm of the likelihood function is usually
considered. Then, the log likelihood function is

La(Yja5aJ|aa)\aB) = I_l
=

n(1-m)
InL = Zi di{lna+(a—1)Inx+InA —2In(1+Ax")} —cyln(1+ A 1Y)
i=

+ E Gaj {Ina+InB+ (a—1)In(Byj)+InA —2In(1+A(By;j)”) } —caln{1+A(BT)"}
=1

The maximum likelihood estimates (MLE) of the parameterad andp are solutions to the system of likelihood equations
obtained by

0'”L ”” Zx '8 (1 ZlA)j\xa)—culi%lnr
+Z5a"” B9) (12 S iye ) o1 e P <O
% :% - “‘ilzz‘im A 1+)qf\xi" _C”1+T: 7
R TEA(ByE T A =
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gnL _ a a(By;)y Aa(BT)T
Kl 225311“(3;/,) ~ I A(BT)

Here, it is difficult to obtain a closed form solution to nar@ar score equations, so an iterative method such as the
Newton-Raphson method is used to solve the equations ttnadWtzEs. Since the MLEs of parameters are not in closed
forms, it is not possible to obtain the Fisher informationtrixeand construct exact confidence intervals. So asymptoti
confidence intervals based on the asymptotic normal digiob of MLEs are obtained here. Hence the asymptotic
variance of the maximum likelihood estimates can be obthine the inverse of observed Fisher information matrix

which is evaluated at the MLE
22nL _ #2nL  92nL] !

T 9aZ T Jadx ~ dadp

5 _ d%InL _ d%nL _ d%InL
9Ada ~ gAZ ~ 0AdB

_d%InL _ d%nL _ d2InL
dBda ~ dpIA ap?

The elements of the observed Fisher information matrix arfeliows:

02InL nu - )\)(10’ ATY
da2 g2 Zl Qi a7 (1+Ax0)2 (Inx,) —Cum(lnr)2
Z @Jﬁ{ln(ﬁyj)} %{m(ﬁr)}z
d%InL  d42InL - 1@
000N  dAda Z IR 1+)\ Xy M = G ey I
BT By e BDT
_2;5&1 {1+/\([13yj)a}2 In(By;) Ca T A(BT))2 In(BT)

a%InL  9%InL na Aa(By))*ty; . A(By))” 1
9a0B ~ opoa Z‘sa' i A(Bypa)2 Y 1+A(Byj)aﬁ}
Aa(Br)a-lt ABDT 1
| @ragnaz PO T Bne B]

%InL  ny ey X7 2 79 2

Az )\2+2 Zl 6“'(1+)\>g) +C”<1+)\r°’>
Na BT N (B \?
P”Zfa’ <1+A<rsyj>a> +Ca(lﬂ(ﬁr)d)

9%2nL  9%InL “"5a a(By;)* 1y, . a(Br)* 1t
970~ apox ~ 2T ABy,)E  TLEABT

Pl a7 Aa(By) 2R a—1-A(By)")
gz~ gz 2% A By P2
_AG(BU a1 A (BT
T LEABDR

Thus, an asymptoti€l — c) x 100% confidence intervals faer, A, andg are given by following

a+7z,\ Si, A+ Z2\/ S22, andB + Z2\/ 33,

wherez: is the 10@ upper percentage point of the standard normal distribwtiaS, is the(k, k) component of.
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2.3 Type-ll censored data

Another censoring often used in testing of equipments iIygensoring where all items are put on test at the same
time, and the test is terminated when the predetermirmédhe items have failed. Such an experiment may save time and
money because it could take a very long time for all items tio fiais also true that the statistical treatment of Type-I|
censored data is simpler because the data consists pkthallest lifetimes in a random sample of lifetimes, so that t
theory of order statistics is directly applicable to detiging the likelihood and any inferential technique empldye

For a constant-stress PALT with Type-Il censoring, thaifatimes consist afth smallest lifetimes ;) <xz <... <
X(r) out of a random sample of(1 — ) lifetimes X, ..., X1 under normal use conditions agd) <y <... <y
out of arandom sample ofrtlifetimesYi, ..., Yo at accelerated conditions respectively. Bgtanddsj denote the failure
indicators such that

)L =X
A = {0 otherwise
fori=1,...,n(1—m) and
)L yisye
Oaj = {0 otherwise
for j =1,...,nm. The likelihood function fof (xi, &) : i = 1,...,n(1— 1)} at normal use conditions is given by
n—nrm—r
(n— nT[)! r UXO)ail)\ 1
Lu(Xi, Qilar,A) =
u(x, auila,A) (n—nm—r)! il:l(1+)\x<i)")2 1+ Axp®
and the likelihood function fof(y;, dj) : j = 1,...,n7} at accelerated conditions is given by
nt Ba(By)* A 1
La(yj763j|a7)‘7ﬁ) ( ) 2 a :
(nmr—r) {1+/\ Byt | | 1+ABYw)

Let c, andc, be the number of items censored at normal and acceleratelitions respectively. That is, = n(1—
m) —r andca = nt—r. Then, the log likelihood function fof (i, &), (Yj,8j) :i=1,....,n(1L—m),j =1,...,nm} is
written as

InL =In(n—nm)! —Incy! + In(nm)! — Incy!

+_2{Ina+(a—1)lnx(i)+ln)\ —2In(1+Ax;?) } —culn(1+AxH )
+y {Ina+InB+(a—1)In(Byj)) +InA —2In(1+A(Byj))?) } —caln{1+A (Byy))*}.
=1

The maximum likelihood estimates of the parameteys\ and 3 are solutions to the system of likelihood equations
obtained by

alnL 2r ¢ Axipy® AXir)®
0 ——+Zilnx (1 21+)\ o _CU1+,\X(r>a|nX<r)

(By(j)) A(BY(r)”
! j - —Ca I n) =
+ngn(ﬁym) (1 21+"(BY<J>)“> ST A By Y0 =0
dinL _2r r Xma
2 211+)\x 1+)\x)
L (By)” (BY(r))®
Z 1+ A(By(j)” Ca1+)\(By(r))a 0
oL _ a o AaBY ) Yy AaBYe) Ve _ g

W‘rﬁ_zé LAY 1+HABY)T
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Similarly, an iterative method such as the Newton-Raphsethot is used to solve the equations to obtain MLEs
and asymptotic confidence intervals based on the asymptotinal distribution of MLEs are obtained here. Hence the
asymptotic variance of the maximum likelihood estimatesloa obtained by the inverse of observed Fisher information

matrix which is evaluated at the MLE
~%nL %L 92mL] L
daZ ~ 9adx ~ dadp
_d%InL _ d%InL _ d%InL
drda ~ grZ  dAdP
_d%InL _ d%InL _ d%InL
dBoa ~ oBaA B2

Q)
Il

The elements of the observed Fisher information matrix arfeliows:

d2InL 2r rLOAXET 2 AXp® 2
G0z~ a2 22 [ axg @ M0 iy s Xe)
[ A By 2 ABYm)*

2 TTra(By ) MBY)Y - T2 By MY
% - % :—Zil(lffii;)a)zlnxm —%%mxm
—2;% In(By(j)) —%%m(ﬁy@)
zz{l;; N % :% - ,Zl %mm(ﬁy‘”H 11(/\[3()23():)0 %1
: %'”(B Yo+ 11&3(?33?)0 %]

2InL 2r r X(i)a 2 X(r)a 2
- __Z 49 S O -\
0A2 /\2+ i;(l—F/\X(i)C{) +Cu<1+/\X(r)a>

[ By By )
22 <1+A<By e ) +°a<1+A<By<r>>a>

d2%InL _ d2InL o aBy)* i) e a(BYr)* Vi
GA0B GO~ 2L TTHABY,)EE L+ ABY) )2
02InL:_ a ., CAa(By)* 2y 2{a —1-A(By;)*}
0B Z {1+ A(Byj)? )2

e )\G(BYU)) 2ym?{a—1=A(Byr)?}
2 {1+A By }?

Thus, an asymptoti¢l — c) x 100% confidence intervals faer, A, andf are given by following

aiZc/z\/a,X i%/z@, andﬁik/z@,

wherez: is the 10@ upper percentage point of the standard normal distriblaiutf)kk is the(k,k) component of.

3 Simulations

To evaluate the statistical properties of the estimatesl@gerformance of confidence intervals, simulation stidie
conducted. For Type-I censored data, a random sampig, ®f, ..., Xy1_m under normal use conditions is generated
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Table 1: Summary statistics for = 1, A = 2.5, B = 1.5, andm = 25%. MLE is the mean of the estimates, SE is the standard error
of the estimates, SEE is the mean of the standard error eésjrand CP is the coverage probability of the proposed 95%fdemce
interval.

Sample size Parameter MLE SE SEE CP

a 10113 0.0829 0.0816 94.2
150 A 2.5879 0.4922 0.4885 95.4
B 16020 05263 0.5287 94.4
a 1.0090 0.0702 0.0703 95.6
200 A 25841 0.4328 0.4208 96.2
B 1.5488 0.4354 0.4394 94.4
a 1.0061 0.0581 0.0573 95.0
300 A 25496 0.3501 0.3380 94.2
B 1.5476 0.3743 0.3590 94.0
a 1.0035 0.0454 0.0443 945
500 A 25282 0.2747 02590 94.1
B 1.5210 0.2813 0.2738 94.0

Table 2: Summary statistics foo = 1, A = 2.5, 3 = 1.5, andmr = 50%. MLE is the mean of the estimates, SE is the standard error
of the estimates, SEE is the mean of the standard error e@spand CP is the coverage probability of the proposed 95%demce
interval.

Sample size Parameter MLE SE SEE CP

a 10114 00784 00801 957
150 A 2.6119 05973 0.5793 94.6
B 1.5698 0.4652 0.4473 93.2
a 1.0090 0.0694 0.0692 953
200 p) 25008 0.5285 0.4964 93.8
B 15534 0.3851 0.3832 95.0
a 1.0058 0.0569 0.0564 94.9
300 p) 25586 0.3984 0.3992 95.0
B 15269 0.3023 0.3075 93.6
a 1.0035 0.0447 0.0436 94.3
500 p) 25244 0.3174 0.3044 93.8
B 1.5268 0.2396 0.2384 95.1

from the log-logistic distribution with the parameters= 1 andA = 2.5. For accelerated lifetimeg,yo,...,Ynr We
consider the log-logistic distribution with acceleratifactor 3 = 1.5. The lifetimes from both conditions are censored at
7 = 1. With acceleration factg8 = 1.5, about 29% and 21% of lifetimes are censored under norneataisdition and
acceleration condition, respectively. We consider thierént proportiornt of the sample items allocated to accelerated
conditions,T= 25%, 50% and 75%. For Type-Il censored data, the experinoatinzies until 40% of lifetimes at normal
use condition occur with different sample sizes- 150, 200, 300, and 500. The results give the mean of the d@sma
(MLE), standard error of the estimates (SE), mean of thedstaherror estimates (SEE), and coverage probability (CP)
of the proposed 95% confidence interval based on 1000 réplica

The results from Tables 1-3 for Type-I censored data ande$adt5 for Type-Il censored data indicate that the
parameter estimates perform well. The bias of the maximkaiitiood estimate decreases as the sample size increases
and the asymptotic variances of the estimators are denggasithe sample size increases. The standard error estimate
are based o& andQ respectively and the estimates provides a fairly accurfatieie variance of the estimates, and the
corresponding confidence intervals have reasonable qpe@rababilities. Simulation studies were also conductigidl w
acceleration factoB = 2 and the results, not provided here, showed the same pattern
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Table 3: Summary statistics for = 1, A = 2.5, 3 = 1.5, andr = 75%. MLE is the mean of the estimates, SE is the standard error
of the estimates, SEE is the mean of the standard error @éssirend CP is the coverage probability of the proposed 95%demce
interval.

Sample size Parameter  MLE SE SEE CP

a 1.0114 0.0805 00792 94.7
150 A 2.7005 0.8814 0.8194 93.8
B 15792 05714 05246 92.4
a 1.0091 0.0688 0.0682 94.7
200 A 2.6267 0.7551 0.6835 94.6
B 15731 0.4474 0.4500 94.7
a 1.0058 0.0557 0.0556 95.3
300 ) 2.5825 05574 0.5473 95.1
B 1.5429 0.3642 0.3602 94.3
a 1.0034 0.0440 0.0430 94.0
500 A 25502 0.4331 04182 94.2
B 1.5217 0.2744 0.2752 95.0

Table 4: Summary statistics foo = 1, A = 2.5, 3 = 1.5, m= 30% andr = 40%. MLE is the mean of the estimates, SE is the
standard error of the estimates, SEE is the mean of the sthadar estimates, and CP is the coverage probability optbposed
95% confidence interval.

Sample size Parameter MLE SE SEE CP

a 1.0248 0.0976 0.0969 95.0
150 A 2.7633 0.7863 0.7104 96.7
B 1.5352 0.5146 0.5012 915
a 1.0202 0.0853 0.0835 95.3
200 A 27021 0.6324 05952 95.9
B 1.5280 0.4356 0.4316 92.9
a 1.0141 0.0708 0.0678 94.1
300 A 2.6313 05121 04691 95.8
B 1.5345 0.3670 0.3549 92.8
a 1.0069 0.0541 0.0521 93.7
500 A 2.5663 0.3842 0.3514 94.2
B 1.5163 0.2800 0.2728 94.6

Table 5: Summary statistics foo = 1, A = 2.5, = 1.5, m= 50% andr = 40%. MLE is the mean of the estimates, SE is the
standard error of the estimates, SEE is the mean of the sthedar estimates, and CP is the coverage probability optbposed
95% confidence interval.

Sample size Parameter MLE SE SEE CP

a 1.0422 01181 0.1219 957
150 2 2.8958 1.0131 0.9151 96.1
B 15764 05291 0.4897 92.1
a 1.0301 0.1059 0.1043 95.1
200 2 2.7865 0.8390 0.7507 96.3
B 15605 0.4333 0.4238 93.6
a 1.0202 0.0858 0.0843 953
300 A 2.6869 0.6200 0.5822 96.4
B 15310 0.3398 0.3414 93.6
a 1.0124 00681 0.0648 935
500 A 2.6000 0.4659 0.4312 94.3
B 1.5315 0.2720 0.2660 94.5
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4 Conclusions

In this study we have considered a constant-stress PALToigdgistic lifetime distribution with Type-I or Type-II
censored data. The maximum likelihood estimates of the ippEtameters and acceleration factor are obtained using the
Newton-Raphson iterative method and their performancesimcussed. The asymptotic confidence intervals of model
parameters and acceleration factor are also obtained. Brersimulation results it is easy to find that the maximum
likelihood estimates have good statistical propertieth@ugh the lifetime distribution is assumed to follow laggistic
distribution with Type-I or Type-Il censoring, most of theethods can be applied to other distributions and other cargso
schemes. This work is in progress and will be reported elsesvh
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