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Abstract: We introduce the fractional integral corresponding to the new concept of fractional derivative recently introduced byCaputo
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1 Introduction

Let us recall the well known definition of Caputo fractional derivative [1]. Givenb> 0, f ∈ H1(0,b) and 0< α < 1, the
Caputo fractional derivative off of orderα is given by

CDα f (t) =
1

Γ (1−α)

∫ t

0
(t − s)−α f ′(s)ds, t > 0.

Fractional calculus and, in particular, Caputo fractionalderivative, finds numerous applications in different areasof
science [2,3,4,5].

By changing the kernel(t − s)−α by the functionexp(−α(t − s)/(1−α)) and 1/Γ (1−α) by 1/
√

2π(1−α2), one
obtains the new Caputo-Fabrizio fractional derivative of order 0< α < 1, which has been recently introduced by Caputo
and Fabrizio in [6]. That is,

CFDα f (t) =
(2−α)M(α)

2(1−α)

∫ t

0
exp

(

−
α

1−α
(t − s)

)

f ′(s)ds, t ≥ 0,

whereM(α) is a normalization constant depending onα.
According to the new definition, it is clear that iff is a constant function, thenCFDα f = 0 as in the usual Caputo

derivative. The main difference between old and new definition is that, contrary to the old definition, the new kernel has
no singularity fort = s.

It is well known that Laplace Transform plays an important role in the study of ordinary differential equations. In the
case of this new fractional definition, it is also known (see [6]) that, for 0< α < 1,

L
[

CFDα f (t)
]

(s) =
(2−α)M(α)

2
(

s+α(1− s)
)

(

sL [ f (t)] (s)− f (0)
)

, s> 0. (1)

whereL [g(t)] denotes the Laplace Transform of functiong. So, it is clear that if we work with Caputo-Fabrizio derivative,
Laplace Transform will also be a very useful tool.
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2 The associatedfractional integral

After the notion of fractional derivative of order 0< α < 1, that of fractional integral of order 0< α < 1 becomes a
natural requirement. In this section we obtain the fractional integral associated to the Caputo-Fabrizio fractional derivative
previously introduced.

Let 0< α < 1. Consider now the following fractional differential equation,

CFDα f (t) = u(t), t ≥ 0. (2)

using Laplace transform, we obtain:

L
[

CFDα f (t)
]

(s) = L [u(t)] (s), s> 0.

That is, using (1), we have that

(2−α)M(α)

2
(

s+α(1− s)
)

(

sL [ f (t)] (s)− f (0)
)

= L [u(t)] (s), s> 0,

or equivalently,

L [ f (t)] (s) =
1
s

f (0)+
2α

s(2−α)M(α)
L [u(t)] (s)+

2(1−α)

(2−α)M(α)
L [u(t)] (s), s> 0.

Hence, using now well known properties of inverse Laplace transform, we deduce that

f (t) =
2(1−α)

(2−α)M(α)
u(t)+

2α
(2−α)M(α)

∫ t

0
u(s)ds+ f (0), t ≥ 0. (3)

In other words, the function defined as

f (t) =
2(1−α)

(2−α)M(α)
u(t)+

2α
(2−α)M(α)

∫ t

0
u(s)ds+ c, t ≥ 0,

wherec∈ R is a constant, is also a solution of (2).

We can also rewrite fractional differential equation (2) as

(2−α)M(α)

2(1−α)

∫ t

0
exp

(

−
α

1−α
(t − s)

)

f ′(s)ds= u(t), t ≥ 0,

or equivalently,
∫ t

0
exp

(

α
1−α

s

)

f ′(s)ds=
2(1−α)

(2−α)M(α)
exp

(

α
1−α

t

)

u(t), t ≥ 0.

Differentiating both sides of the latter equation, we obtain that,

f ′(t) =
2(1−α)

(2−α)M(α)

(

u′(t)+
α

1−α
u(t)

)

, t ≥ 0.

Hence, integrating now from 0 tot, we deduce as in (3), that

f (t) =
2(1−α)

(2−α)M(α)
[u(t)−u(0)]+

2α
(2−α)M(α)

∫ t

0
u(s)ds+ f (0), t ≥ 0.

Thus, as consequence, we expect that the fractional integral of Caputo-Fabrizio type must be defined as follows.

Definition 1. Let 0< α < 1. The fractional integral of orderα of a function f is defined by,

CFIα f (t) =
2(1−α)

(2−α)M(α)
u(t)+

2α
(2−α)M(α)

∫ t

0
u(s)ds, t ≥ 0.
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Remark.Note that, according to the previous definition, the fractional integral of Caputo-Fabrizio type of a function of
order 0< α < 1 is an average between functionf and its integral of order one.

Imposing
2(1−α)

(2−α)M(α)
+

2α
(2−α)M(α)

= 1,

we obtain an explicit formula forM(α),

M(α) =
2

2−α
, 0≤ α ≤ 1.

Due to this, we propose the following definition of fractional derivative of order 0< α < 1.

Definition 2. Let 0< α < 1. The fractional Caputo-Fabrizio derivative of orderα of a function f is given by,

CFDα
∗ f (t) =

1
1−α

∫ t

0
exp

(

−
α

1−α
(t − s)

)

f ′(s)ds, t ≥ 0.

3 Some fractional differential equations

In this section we study some simple but useful fractional differential equations.

Lemma 1. Let 0< α < 1 and f be a solution of the following fractional differentialequation,

CFDα f (t) = 0, t ≥ 0. (4)

Then, f is a constant function. The converse, as indicated inthe Introduction, is also true.

Proof.From (3), we obtain that the solution of (4) must satisfyf (t) = f (0) for all t ≥ 0. Hence, it is clear thatf must be
a constant function. ⊓⊔

Proposition 1. Let 0< α < 1. Then, the unique solution of the following initial value problem

CFDα f (t) = σ(t), t ≥ 0, (5)

f (0) = f0 ∈ R; (6)

is given by
f (t) = f0+aα

(

σ(t)−σ(0)
)

+bα I1σ (t), t ≥ 0, (7)

where I1σ denotes a primitive ofσ and

aα =
2(1−α)

(2−α)M(α)
, bα =

2α
(2−α)M(α)

. (8)

Proof.Suppose that the initial value problem (5)-(6) has two solutions,f1 and f2. In that case, we have that

CFDα f1 (t)−
CFDα f2 (t) =

[

CFDα f1− f2
]

(t) = 0 and
(

f1− f2
)

(0) = 0.

So, by Lemma1, we have thatf1− f2 = 0. That is f1(t) = f2(t) for all t ≥ 0.
By (3), it is clear that the function defined by (7) is a solution of the fractional differential equation (5). Moreover, if

we substitutet by 0 in (7), we obtainf0.
Hence, the function defined by (7) is the unique solution of initial value problem (5)-(6). ⊓⊔

Remark.Forα = 1, we have that the solution of (5) is the usual primitive ofσ .

Now, we consider the following linear fractional differential equation

CFDα f (t) = λ f (t)+u(t), t ≥ 0, (9)

whereλ ∈ R, λ 6= 0 (λ = 0 corresponds to the case previously studied).
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From Proposition1, we have that solving equation (9) is equivalent to find a functionf such that

f (t) = f0+aα
[

λ
(

f (t)− f0
)

+u(t)−u(0)
]

+bα

∫ t

0
[λ f +u](s)ds, t ≥ 0

whereaα , bα are given by (8). Equivalently, we must findf such that

(1−λ aα) f (t)−λ bα I1 f (t) = (1−λ aα) f0+aα
(

u(t)−u(0)
)

+bα I1u(t), t ≥ 0.

If λ aα = 1, we obtain:

f (t) =−
aα

λ bα
u′(t)−

bα

λ
u(t), t ≥ 0.

In the other case, i. e.,λ aα 6= 1, we have that:

f (t)−
λ bα

1−λ aα
I1 f (t) = σ̃ (t), t ≥ 0, (10)

where

σ̃(t) = f0+
aα

1−λ aα

(

u(t)−u(0)
)

+
bα

1−λ aα
I1u(t), t ≥ 0.

The caseλ = 0 is trivial, and we obtainf = σ̃ . If λ 6= 0, we see that (10) can be rewritten as

f (t)− λ̃ I1 f (t) = σ̃(t), t ≥ 0,

where

λ̃ =
λ bα

1−λ aα
.

Hence,
f ′(t) = λ̃ f (t)+ σ̃(t), t ≥ 0.

Thus, we have obtained an ordinary differential equation, which has a unique solution if we consider an initial condition.

In consequence, we have proved the following result.

Proposition 2.Let0< α < 1. Then, initial value problem given by

CFDα f (t) = λ f (t)+u(t), t ≥ 0,

f (0) = f0 ∈R;

has a unique solution for anyλ ∈ R.

4 Nonlinear fractional differential equations

Theorem 1.Let 0< α < 1, T > 0 andϕ : [0,T]×R−→R a continuous function such that there exits L> 0 satisfying,

|ϕ(t,s1)−ϕ(t,s2)| ≤ L |s1− s2| for all s1, s2 ∈ R.

If (aα +bα T)L < 1, then the initial value problem given by

CFDα f (t) = ϕ(t, f (t)), t ∈ [0,T], (11)

f (0) = f0 ∈ R; (12)

has a unique solution onC [0,T].
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Proof.LetC [0,T] be the space of all continuous functions defined on the interval [0,T] endowed with the usual supremum
norm, that is,

‖ f‖= sup
t∈[0,T]

| f (t)| for all f ∈ C [0,T].

We consider the operatorN : C [0,T]−→ C [0,T] defined by,

N f (t) = c+aα ϕ(t, f (t))+bα

∫ t

0
ϕ(s, f (s))ds, for all f ∈ C [0,T],

where

c=−aα ϕ(0, f0)+ f0

By (3), finding a solution of (11)-(12) in C [0,T] is equivalent to finding a fixed point of the operatorN .
Since for all f1, f2 ∈ C [0,T] and allt ∈ [0,T] we have that

|N f1 (t)−N f2 (t)|=

∣

∣

∣

∣

aα

(

ϕ
(

t, f1(t)
)

−ϕ
(

t, f2(t)
)

)

+bα

(

∫ t

0
ϕ
(

s, f1(s)
)

ds−
∫ t

0
ϕ
(

s, f2(s)
)

ds

)∣

∣

∣

∣

≤ aα
∣

∣ϕ
(

t, f1(t)
)

−ϕ
(

t, f1(t)
)∣

∣+bα

∫ t

0

∣

∣ϕ
(

s, f1(s)
)

−ϕ
(

s, f2(s)
)∣

∣ ds

≤ aα L | f1(t)− f2(t)|+bα L
∫ t

0
| f1(s)− f2(s)| ds

≤ (aα +bα T)L ‖ f1− f2‖ ,

we conclude that operatorN is a contraction. The statement follows now from Banach’s Fixed Point Theorem. ⊓⊔

5 Application to fractional falling body problem

Consider a massm falling due to gravity. The net force acting on the body is equal to the rate of change of the momentum
of that body. For constant mass, applying the classical Newton second law, we have

mv′(t) = mg− kv(t),

whereg is the gravitational constant, and the air resistance is proportional to the velocity with proportionality constantk.
If air resistance is negligible, thenk= 0 and the equation simplifies to

v′(t) = g.

If we replaceD1 = v′ by Dα we have the following fractional falling body equation

CFDαv(t) =−
k
m

v(t)+g.

For an initial velocityv(0) = v0 then, according to Proposition2, it has a unique solution.
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