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Abstract: In the paper, we present a new definition of fractional déxgawith a smooth kernel which takes on two different
representations for the temporal and spatial variable. fireeworks on the time variables; thus it is suitable to use ltlaplace
transform. The second definition is related to the spatiahistes, by a non-local fractional derivative, for whichsitmore convenient
to work with the Fourier transform. The interest for this namproach with a regular kernel was born from the prospetthiese is a
class of non-local systems, which have the ability to descthe material heterogeneities and the fluctuations oérdifft scales,
which cannot be well described by classical local theorigsydractional models with singular kernel.
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1 Introduction

In the last decades the fractional calculus had a remarkkselopment as shown by the many mathematical volumes
dedicated to it (e.g. Baleanu et al],[Caponetto 2], Caputo B], Diethelm {], Hilfer [5], Jiao et al f], Kilbas et al. [7],
Kyriakova [8], Mainardi [9], McBride [10], Miller and Ross 11], Petras 12], Samko et al 13], Podlubny [L4], Sabatier

et al. [L5], Torres and Malinowskalfg], Ying and Chen17]) and by the notable diffusion as shown by the many meetings
dedicated to it and the plethora of articles appeared in emadltical (e.g. Kilbas and Marzat§], Heinsalu et al 19,
Luchko and GorenflodQ]) and non mathematical journals.

The use of derivative of fractional order has also spreaal imhny other fields of science besides mathematics and
physics (e.g. LaskinZ1], Naber R2], Baleanu et al. 23], Zavada P4], Baleanu et al. 25], Caputo and Fabrizio
[26],[27]) such as biology (e.g. Cesarone et @B][ Caputo and CamettPR]), economy (e.g. Caput@{]), demography
(e.g. Jumaried1]), geophysics (e.g. laffaldan8%]), medicine (e.g El Sahe®8]) and bioengineering(e.g. Magi4]).
However some complaint has been made for the somewhat caathemmathematical expression of its definition and
the consequent complications in the solutions of the foaeti order differential equations.

In this note we suggest a new definition of fractional deiwtwhich assumes two different representations for the
temporal and spatial variable. The first representatiorkg/on time variables, where the real powers appearing in the
solutions of the usual fractional derivative will turn intteger powers, with some simplifications in the formulad an
computations. In this framework, it is suitable to use thelhae transform. The second representation is relateceto th
spatial variables, thus for this non-local fractional dative it is more convenient to work with the Fourier trarnsfio

The interest for this new approach is due to the necessitysioigua model describing the behavior of classical
viscoelastic materials, thermal media, electromagngtitesns, etc. In fact, the original definition of fractionarivative
appears to be particularly convenient for those mechapivahomena, related with plasticity, fatigue, damage arl wi
electromagnetic hysteresis. When these effects are neemprét seems more appropriate to use the new fractional
derivative.

We have also proposed a new non-local fractional derivatile to describe material heterogeneities and structures
with different scales, which cannot be well described bgsilzal local theories. So that, we rely that this spatiaitfcaal
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derivative can play a meaningful role in the study of the rmacopic behaviors of some materials, related with nonlocal
interactions, which are prevalent in determining the proige of the material.

This work also contains some applications and simulatiefeged to the behavior of these new derivatives, applied
to classical functions such as trigonometric functionseSéhsimulations show some similarities with the correspand
results by usual fractional derivative.

2 A new fractional time derivative

Let us recall the usual Caputo fractional time derivative€Q) of ordera, given by

(@ 1 /‘ f(1)
Dy f(t) Fi—a) /s (t—r)"dT (2.1)
with a €[0,1] anda€ [—o,t), f € H(a,b), b>a By changing the kernét — 1)~ with the functionexp(— t2-t) and
,_(1 ) with ( ) , we obtain the following new definition of fractional timerdative NFDO

@t( C’)

(1
e, e

whereM(a) is a normalization function such thit(0) = M(1) = 1. According to the definitionZ.2), the NFLQQ is zero
whenf(t) is constant, as in the URPbut, contrary to the UFDthe kernel does not have singularity for 1.

The new NFD can also be applied to functions that do not belongitga, b). Indeed, the definition2(2) can be
formulated also forf € L(—o0,b) and for anya € [0,1] as

T)} dr 2.2)

(@) ¢y AM(a) /‘ B _at-—r1)
Z () = i-a) 7°o(f(t) f(1))ex - dr
Now, it is worth to observe that if we put
l-a 1
_TE[ano] ) G_H—O.E[Ovl]
the definition 2.2) of NFD; assumes the form
~ t . —
%) = M/ f(r)exp[—u] dr (2.3)
(o) a (0}
whereo € [0,] andN(o) is the corresponding normalization termMfa), such thatN(0) = N() = 1. Moreover,
because 1 t-1)
-1
(I;Lnog exp{ 5 ] =0(t—1) (2.4)

and fora — 1, we haveo — 0. Then (see35] and [36])

lim 20 (t) / f(t t_T)]dT
a—1 a%ll a a
(2.5)
(t—1)
=M / fx [ dr = (o)
Otherwise, whem — 0, theng — +o. Hence,
. (a) t— T)
AITO% ( a%Ol a / f 1-a dr
(2.6)

CHHO / f exp[

}d f(t) - f(a).
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Let us consider, the NRDf a particular function, a$(t) = sinwt, for a = 0.66,a= —8 andw =1

)

The simulation of this derivative produces the followingtpres

(0.66) inwt —

M(0.66) cosT exp—2(t — 1)dr.

2.7)

Fig.1. Simulation of NFP(2.7), with a = 0.66
in the time interva[—8, 25|
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Fig.2. Simulation of UFP(2.1), with a = 0.66
in the time interva[—8,25]
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From these two simulations withh = 0.66, it appears as the classical NABvery similar to the UFR

Otherwise, when we study models withclose to 0, we see a different behavior
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Fig.3. Simulation of NFP(2.7) with o = 0.1
in the time interva[—8,50]
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Fig.4. Simulation of UFP(2.1), with a = 0.1
in the time interval [-8, 50]

So that, foro = 0.1 in Fig.3 and Fig. 4 we observe different actions between & UFD simulations. In particular
the classical UFDPis more affected by past, compared with the NRbDich show a rapid stabilization.

If n>1, anda € [0,1] the fractional time derivativeZ® " £ (t) of order(n-+ a) is defined by
A1) =D (A (1)) (2.8)
Theorem 1.For NFDy, if the function ft) is such that
f&@ =0, s=1,2,..,n

then, we have
ANA (1) = A A" () (2.9)

Proof. We begin considering = 1, then from definitionZ.8) of @t("“)f(t), we obtain

M(a)
l1-a

a(t—r1)

o | 4 (2.10)

A% (7M1 =

/; f(1r)exp
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Hence, after an integration by parts and assuniiii@) = 0, we have

A (21 = (';"E";) /a t(%f(r))exp— al(t_‘a”dr:

M(a)
(1-a)

at—r1)

td f d
/aa( (T)exp— 1 T

(2.11)

—% /; f(1)exp— al(t_—ar) dr}

~ M(a)
"o

f(t)— % /a “f (1) exp— al(t__ar) dr]

otherwise

V(D)) = 4 M) /t f'(T)exp—al(ti_aT)dr) .

(2.12)
M(a)
l1-a

f(t)— % /at f(1) exp— O’l(t__ar) dr] .

It is easy to generalize the proof for any- 1.

In the following, we suppose the functidm(a) = 1.

3 The Laplace transform of the NFDy

In order to study the properties of the NEDlefined in equation2(3) with a = 0, has priority the computation of its
Laplace transforml(T) given with p variable

a(t—r1)
1-a

oo t .
LT [7 40 :Fla) /0 exp—pt /0 f(1) exp— drdt

Hence, from the property of Laplace transform of a convolutive have

T [%m)f(t)} _ rla)u(f’(t))u(exp—%) -
(PLT(f(t) - (0))
p+a(l—p)
Similarly,
LT [@t(a+l)f(t):| _ Fla)LT(f'(t))LT(exp—%) —
_ (PPLT[f(®)] - pf(0) - 7'(0))
p+a(l-p)
Finally,

LT [%(a-‘rn)f(t)} — ﬁLT [f(”ﬂ)(t)} LT [exp—% _

pULT [f(1)] — p"f(0) — p"(0)... - f7(0)
p+a(l-p)

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

78 NS 2 M. Caputo, M. Fabrizio: A new Definition of Fractional Dertixee...

4 Fractional gradient operator

In this section, we introduce a new notion of fractional geatl able to describe non-local dependence in constitutive
equations (sed3[7] and [39)).
Let us consider a s&? € R® and a scalar function(-) : Q — R, we define the fractional gradient of orderc [0,1]

as follows 2 2
0@ u(x :L/ Du(y)exp| - XY 4.1
(x) 1)V Ja (y)exp i-ap dy (4.1)
with x,y € Q.
Itis simple to prove from definitior4(1) and by the property
. a a’(x—y)?]
c!'Tl(l—a)\/ﬁeXp[ (1-a)2 | ox-y)

that
0®u(x) = Ou(x) andD“’)u(x):/ Ou(y)dy
Q

So, whena = 1, O®u(x) loses the non-locality, otherwigg® u(x) is related with the mean value Biu(y) on Q.
In the case of a vectar(x), we define the fractional tensor by

a?(x—y)?
(1-a)?

a
0@ u(x) = 7/ Ou(y) ex [—
() = T gyv7 Jo DU
Thus, a material with non-local property may be describedragtional constitutive equations. As an example we
consider an elastic non-local material, defined by the Wahg constitutive equation between the stress tefisand
0@ u(x)

dy (4.2)

T(x,t) =A0@u(x,t), a e (0,1]
whereA is a fourth order symmetric tensor, or in the integral form

oA a2(x—y)?
T(x,t)_7(1_G)W/£2Du(y)exp{— i-ay dy

Likewise, we introduce the fractional divergence, definadsfsmoothu(-) : Q — R3 by

@y — % [ _aP(x-y)?
O u(x) (1—0)\/F/QD u(y)exp[ i-ay dy (4.3)
Theorem 2.From definitions4.1) and @.3), we have for any (x) : Q — R, such that
Ou(x)-n|yg =0 (4.4)
the following identity
0-0@u(x) = 0@ - Ou(x) (4.5)
ProofBy means of 4.1), we obtain
0@y = — 3 . _M]
O-0%u(x) (1—0)\/F/9Du(y) Dxexp[ i-a)7 dy
___a Dexp|- LY
= ey Jo e T
(4.6)
___a _ [q _x YTy
= (1—a)\/F/QD Du(y)exp{ i-0)7 dy
 a x| GX=Y)?
o a2 e |
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hence, from the boundary conditiof ), the identity 4.5) is proved, becausé (6) coincides with

2(v _\\2
0@ . Qu(x) = m /Q D-DU(y)exp[—%] dy

5 Fourier transform of fractional gradient and divergence

For a smooth function(x) : R® — R the Fourier transformHT) of the fractional gradient is defined by

FT(O@u(x)) (&) = » D@u(x) exp[—27i& - x] dx
Thus, if we consider the gradient af.(), the Fourier transform is given by
FT(0°U)(E) = ———FT( /| Cu(y)ex [—M dy)(§) =
T Ao e YR T ATz | T
a a®x?
= WFT(DU)(E)FT(GXP[—W )(&)
where - 1- @)y 201 a)E?
acx —a)ym —a
FT(exp “—ap )(E)Z?GX [— o? }
Thus, we obtain: ben
FT(0°0(€) = VA or T () O exp |- T
The Fourier transform of fractional divergence is defined by
a _ a . _UZ(X_ )2
FT(%U)(8) = gy T( [, B uy)exp| 50| a0
from which we have 2 -
FT(D“-u)(E):\/nl—“FT(D-u)(E)exp[—%}

6 Fractional Laplacian

In the study of partial differential equations, there is aarinterest on fractional Laplacian. Using the definitiohs
fractional gradient and divergence, we can suggest theseptation of fractional Laplacian for a smooth functfgr):
Q — R3, such thatOf(x) -n|,o =0, as

ey @ a?(x—y)?
(0?) f(X)—m/QD'Df(Y)eXP{—W dy
By Theorem 2.1, we have
(09 (x) =0-0%F(x) = 0% - Of(x)
Now, we suppose that
f(x)=0, ondQ
then we extend the functiol(x) = 0 onR3\ Q. So, we consider the Fourier transform
FT(0)7100) = o T( [ CPtens - T e
(1—a)y/m® R3 (1-a)?
(6.1)
a 2x2
= WFT(D'D‘C(X))(E)FT(EXP “i=a)r )(&)
 4\222
— amE PRT(100) (&) VT exp| - =
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Finally, if o = 1 we obtain from §.1)

FT(O?f(x))

252
limar € FFT (1) )V Texp| - | -

—4t|EPLT((x))(E)

7 The memory operators

The fractional derivatives are memory operators which lsuapresent dissipation of energy (se&9], [9], [14]) or
damage (see2p]) in the medium as in the case of anelastic media or reassegswh the porosity in the diffusion in
porous media. Moreover, in general they are in agreemehtthé Second principle of thermodynami8§|[and [40Q].

They are accepted not only because they represent appedpaaariety of phenomena, but also because they have the
“elegant and rigorous property” that when the order of défdiation is integer, they coincide with the classic datiive of
that order. However this property is not relevant to theafteey represent in the physical phenomena and one wonders
if using other differential operators, possibly simplet lithout this property, one may obtain the same results ef th
fractional derivatives.

7.1 The response to a linear trend
The effects of the fractional memory formalism (SMFP) by tiev fractional derivative (NF), compared with the

Caputo derivative (UFD on a linear trend, are readily obtained from their defimgicapplied to the simple linear function
as in formulae2.2) and @.3). We find the results illustrated in the following figures.
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Fig.5. Deformation of a linear trend caused by the SMFP,
the NFQ and the Caputo derivative in the case when the order of difite@ation is 0.2.
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Fig.6. Deformation of a linear trend caused by the SMFP,
the NFIQ and the Caputo derivative in the case when the order of difitéation is 0.5.
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Fig.7. Deformation of a linear trend caused by the SMFP,
the NFQQ and the Caputo derivative in the case, when the order ofrdifteation is 0.8.

In the following Figs. 8, 9 and 10, we show the Fourier spedteguency response curves of the SMFP, the Ndiial
of the Caputo derivative, concerning the LT domain respdmsetions.
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Fig.8.Laplace transform response of the memory formalSMKP)
for the orders of differentiationz=0.2,z=0.5and z=0.8.
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Fig.9. Laplace transform response of the memory formallSFi)
for the orders of differentiationz=0.2,z=0.5and z=0.8.
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Fig.10. Laplace transform response of the memory formali$RD)
for the orders of differentiation z =0.2,z=0.5and z=0.8.

We note in the figures 8 and 9 the asymptotic behavior of the angformalism and of the new derivative, while that the
curves of the Caputo derivative, for the larger values ofiréable, are linearly increasing and diverging.
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7.2 The distributed order of the memory operator SMEP P

The simple definition of the memory operator SMFP readilgvadl a definition of the distributed order fractional memory
operator, which is simpler and easier to handle that the ©agerivative (see41])
The distributed order operatBf? is defined for the fractional derivative of Capu8,[[42], by

b
10 =) [ g@da [p10)] =R [ g(a)ta
a
whereg(a) is a weight functionand @ a< b < 1.

Following the method of Caput@], [42] is readily seen that for the Fubini-Tonelli theorem, we rechginge the order
of integration inda anddt provided

/bg(a)da /Otexp(—%(t—r))ﬂm”)(r)dr]

is summable with respect tin the intervala, b] with 0 < a < b < 1, which is readily verified.
The solution if found using theT of (7.1) which is

LT.P) / / g(a)dar [D{f(t)] exp(—p)dt

t a .
/O exp(———(t—1)f(r)dr (7.1)

(7.2)
—/ /g a)da /exp(——a(t—r)) ()dr] exp(—pt)dt
or
b ~00
10 = [ 7] [ et g - m) o] ext-pot oty
and finally obtain ] )
(@) ¢4y p _ py(a)
LT.P{ f(t)_/a gt (Pda =F(p) [ da (7.3)

which represents the filtering properties of the operatdriaisimpler than that obtained using the Caputo derivative.
As an example we may consider the simple @@$e) = 1 which gives

(o) ¢ b g(a) p+b
LTaR ™ 1 (1) = pF(p) | D a ———da = pF(p)log —— o a
hence, the response is
p+b
| -
plog p+a

whose filtering properties are readily computed.

Other cases of practical interest, as in the note of Cag@orpay be considered such as wiggnr) is a linear function
of a. Also the distributed order SFDF could be readily formullateowever its expression is somewhat complicated and
we believe that it may be of scarce practical use.

response to distributed order
memory formalism

Laplace variable

Fig 11.LT domain response function of the distributed order fractiakerivative with b = 0.8, a = 0.3.
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8 Appendix

1 - We rewrite the definitionZ.3) in the new form
~ t
G (t) = V(v)/ f(1)exp—v(t — T)dr 8.1)
a

obtained from equatior2(2) or (2.3 with v = % > 0, whereV (v) =.vN(1/v).
Then, we have

Theorem 3.If the function fe W1(a,b), then the integral in§.1) exists for te [a,b] and %) (t) € L1[a,b].

ProofLet us write

GV (1) :V(v)/t f(T)exp—v(t—1)dr =

v [ pult-9a(sds

wherepy (y) = exp(—Vvy), when 0< 'y < b—a, with p(y) = 0 wheny < 0 ory > b—a, q(y) = f(y) whena<y < b.
Finally, g(y) = 0 wheny < aor y > b. Hence under the hypotheses of the theorem, the funcipng € L*(a,b). Then,
by the classical results on Lebesgue integrals (448, [the integral 8.1) exists almost everywhere inc [a,b] and

GVt (t) e Ll ]a,bl.

(8.2)

2 - It is of some interest to see the fractional derivativethefelementary and transcendental functions according to
the new definitionZ.2). We begin with sirwt, whose fractional derivative is given by

@< ) (sinwt) / wexp(——(t— S)) cosws ds

whereE(a) =

(@), o B a /t a _
2,7 (sinwt) = E(a)wexp{ —1—at} A exp(l_as)cosa)s ds

- E() )+w2(1f’ cosawt + wsinwt — 1gaexp(—%t)):
(8.3)
- e (g s - e ) -

= E(a)cosa(sin(wt +a) — smaexp[—%t] )

whereais such that

. a/l—a W

, Sina= o5, Cosa= o5
(1-a) ((a/1—a))?+w?)™ ((a/1-a))?+w?)™

tana =

We note that the new derivative of gin implies only a change of the phasand the amplitude variati 10_“3%8:’2)2)0.5
—a

Now we see@t(“) (coswt). With the same procedure we find

%(Of)(coswt) =E(a) exq—ﬁ)t /ot eX[Xlt_]

s)sinwsds=
a

= E(a)cosa [cos(wt +b)— Cosaexp(—%t)
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where again we note the same phase change and amplitudiéovaniated for the case of sint. Moreover, we observe
thatb is related taa by

tana = -
" tanb

Hence, we consid@t@ (expwt), then we find
(a) _ E(0)w B _a B
P (expwt) = ——— o {exp(wt) exp{ g at] } =

—a

E(a)w a
%exp(a)t){l—exp—(w+mt)}
Finally
<a>_'\/l(or>/t O el
Dy t_l—a Oexp( 1—a(t s))ds=
M(a)

a
—2(1— ——1t). <1
o (1—exp 1_0) O<a<
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