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Abstract: This paper presents new operational matrices of fractionalintegral and derivatives for shifted Legendre polynomials. These
operational matrices are employed to design a new spectral method for solving three-dimensional heat conduction problem. The main
advantage of the proposed method is to reduce this complicated problem with its initial and boundary conditions into a system of
easily solvable algebraic equations. The efficiency of the proposed method is shown with some test problems. The resultsare displayed
graphically.
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1 Introduction

Diffusion equation is one of the most important partial differential equation frequently used to model many engineering
and biomedical phenomena. Some examples are the cyclic heating of the cylinder surface of internal combustion engines,
heating and cooling of building structures, heating lakes and water reservoirs by radiation, the heating of solid surfaces in
material processing, the cyclic heating of laminated steelduring pickling, heating and cooling of vials contained DNAfor
polimerase-chain-reaction activation, the heating of electronics and many more see for example [1,2,3,4,5,6].

In literature various techniques are used to obtain the exact and approximate solution of fractional order diffusion
equation. Very recently Kulish and Lage[20] studied the fractional diffusion equation and provide analytic solution using
laplace transform method. Akbarzade and Langari [21] proposed the homotopy method to approximate the solution of
integer order three dimensional transient state heat conduction. Ning and Jiang [22] proposed the method of variable
seperation for analytically solving time-fractional heatconduction equation in spherical coordinate system. More ever
Wu and Lee [25,26] applied the variational iteration technique to fractional diffusion equation and provided good
approximation to the solution.

In this paper we consider the fractional order partial equation (FPDEs) of the form

χt
∂ σU
∂ tσ = λx

∂ β1U

∂xβ1
+λy

∂ β2U

∂yβ2
+λz

∂ β3U

∂ zβ3
+ I(x,y, t,z)

U(0,x,y,z) = f (x,y,z), U(t,0,y,z) = g1(t,y,z)
∂
∂x

U(t,0,y,z) = g2(t,y,z),

U(t,x,0,z) = h1(t,x,z)
∂
∂y

U(t,x,0,z) = h2(t,x,z),

U(t,x,y,0) = l1(t,x,y) U(t,x,y,c) = l2(t,x,y),

(1)

whereχt is the volumetric heat capacity(J/(m3K)), λx,λy,λz are thermal conductivities(W/m.K) in x,y andz directions
respectively, 0< α ≤ 1, 1< β1,β2,β3 ≤ 2, t ∈ [0,τ], x ∈ [0,a], y ∈ [0,b] andz ∈ [0,c]. I(x,y, t,z) is the internal source
term.
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It is some time impossible to obtain the exact analytic solution of transient diffusion problems because of the
mathematical intricacies involved in solving the differential equations governing the phenomenon. This paper is devoted
to the study of a numerical scheme for the approximate solution of the above problem. Operational matrix technique is
one of the extensively used method and is applied by many authors to approximate the solution of different kind of
problems like integral, differential and partial differential equations [27,28,29,30]. The motivation of the high
applicability of the method is its simplicity and ease of application. Different orthogonal polynomials are used in the
construction of operational matrices like Sine-Cosine [28,29], Legendre polynomials [27,30], Jacobi [35,39], Muntz
polynomials [34] (see for instance [31,32,33,34,35]).

To the best of our knowledge these matrices are used to approximate FPDEs only up to two variables . In [36]
we derived and developed operational matrix of differentiation for a column function vector of two variables. These
operational matrices have the ability to approximate solution of partial differential equations (PDEs) with three variables.
Also we approximate solution of coupled system of FDEs and FPDEs using operational matrices see for example [37].
The matrices derived in [36] have the ability to obtain the fractional order partial derivative of a function of three variables
. The matrices developed in this paper have two advantages over the previously derived matrices. Firstly they can calculate
the fractional order derivative of function of four variables and secondly they can calculate the derivatives on any finite
domain.

We organize the paper as: in section 2 we provide some basic properties of fractional calculus and orthogonal
polynomials, in section 3 we provide some results on Legendre approximation of a function of four variables and its
absolute error of approximation, in section 4 we derive someoperational matrices of integration and differentiation,in
section 5 the operational matrices are used to convert the corresponding equation to a system of algebraic equations, in
section 6 we study the structure and performance of the operational matrices with some test functions, and the proposed
algorithm is applied to several test problems and finally in section 7 a conclusion about the method is made.

2 Preliminaries

For convenience, this section summarizes some definitions and basic results from fractional calculus.

Definition 2.1.
[37,36] Given an interval[0,τ] ⊂ R, the Riemann-Liouville fractional order integral of orderσ ∈ R+ of a function

ϕ ∈ (L1[0,τ],R) is defined by

Iσ
0+φ(t) =

1
Γ (σ)

∫ t

0
(t − s)σ−1ϕ(s)ds.

Definition 2.2. For a given functionϕ(t) ∈ Cn[0,a], the fractional order derivative of orderσ in Caputo sense is defined
as

Dσ ϕ(t) =
1

Γ (n−σ)

∫ x

0

ϕ(n)(t)
(x− t)σ+1−n dt, σ ∈ [n−1,n), n ∈ N,

provided that the right side is pointwise defined on(0,∞), wheren = [σ ]+1.
Hence, it follows that

Dσ ts =
Γ (1+ k)

Γ (1+ s−σ)
ts−σ , Iσ ts =

Γ (1+ k)
Γ (1+ s+σ)

ts+σ . (2)

Also it is clear that theDσC is zero for a constantC.

2.1 Shifted Legendre Polynomials

The analytical expression for the shifted Legendre polynomials on[0,τ] are given by

Pτ
i (t) =

i

∑
k=0

(−1)i+k (i+ k)!tk

(i− k)!(k!)2(τk)
, i = 0,1,2,3..., (3)

These polynomials are orthogonal and orthogonality condition is

∫ τ

0
Pτ

i (t)P
τ
j (t)dt =

{ τ
2i+1, if i = j
0, if i 6= j.

(4)
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The orthogonality relation relation allows us to write anyu(t) ∈ C[0,τ] as a series expansion of Shifted Legendre
Polynomials. In practice we are interested in the finite series therefore we may write

u(t)≈
m

∑
a=0

CaPτ
a (t), whereCa =

(2a+1)
τ

∫ τ

0
u(t)Pτ

a (t)dt. (5)

In vector notation, we write
u(t) =CT

MΨM(t). (6)

whereM = m+1 ,CM andΨM(t) are the coefficient vector and column vector, each of orderM.
We extend the notation to three-dimensional space and definethree-dimensional Legendre polynomials on the space

[0,a]× [0,b]× [0,c] of orderM as a product of three Legendre polynomials.

P(a,b,c)
n (x,y,z) = Pa

q (x)P
b
r (y)P

b
s (x), n = M2q+Mr+ s+1, q,r,s = 0,1,2, ...,m. (7)

These polynomial are orthogonal. The orthogonality condition of P(a,b,c)
n (x,y,z) is defined as

∫ c

0

∫ b

0

∫ a

0
Pa

q (x)P
b
r (y)P

c
s (z)P

a
q′(x)P

b
r′(y)P

c
s′(z)dxdydz =

{ abc
(2q+1)(2r+1)(2s+1) if q = q′,r = r′,s = s′;
0 otherwise.

Any u(x,y,z) ∈ C([0,a]× [0,b]× [0,c]) can be written as a truncated series of three dimensional Shifted Legendre

polynomialsP(a,b,c)
n (x,y,z).

u(x,y,z) =
m

∑
q=0

m

∑
r=0

m

∑
s=0

cqrsP
a
q (x)P

b
r (y)P

c
s (z). (8)

Wherecqrs can be obtained by the relation

cqrs =
(2q+1)(2r+1)(2s+1)

abc

∫ c

0

∫ b

0

∫ a

0
u(x,y,y)Pa

q (x)P
b
r (y)P

c
s (z)dxdydz. (9)

By using the notationcn = cqrs wheren = M2q+Mr+ s+1, and we can write (8) as follows

u(x,y,z) =
M3

∑
n=1

cnP(a,b,c)
n (x,y,z) =CT

M3Ψ (a,b,c)(x,y,z). (10)

WhereCM3 is coefficient column vector of orderM3 andΨ (a,b,c)(x,y,z) is M3×1 is column vector of Shifted Legendre
polynomials defined as

Ψ (a,b,c)(x,y,z) =
[

P(a,b,c)
1 (x,y,z) P(a,b,c)

2 (x,y,z) · · · P(a,b,c)
M3 (x,y,z)

]T
(11)

2.2 Function Approximation

We generalize four-dimensional Legendre polynomials on the space[0,τ]× [0,a]× [0,b]× [0,c] of orderM by the product
function of Legendre polynomials as

P(τ,a,b,c)
rsuv (t,x,y,z) = Pτ

r (t)P
a
s (x)P

b
u (y)P

c
v (z), r,s,u,v = 0,1,2..m. (12)

The orthogonality relation forP(τ,a,b,c)
rsuv (t,x,y,z) is found to be

(

∫ c

0

∫ b

0

∫ a

0

∫ τ

0
P(τ,a,b,c)

rsuv P(τ,a,b,c)
r′s′u′v′ dtdxdydz) =

{ τabc
(2r+1)(2s+1)(2u+1)(2v+1) if r = r′,s = s′,u = u′,v = v′;
0 otherwise.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


168 H. Khalil, R. A. Khan: Extended Spectral Method for Fractional order...

2.2.1 Function approximation with Four-dimensional Legendre polynomials

Any u(t,x,y,z) ∈C([0,τ]× [0,a]× [0,b]× [0,c]) can easily be approximated withP(τ,a,b,c)
rsuv (t,x,y,z) in the form

u(t,x,y,z) =
m

∑
r=0

m

∑
s=0

m

∑
u=0

m

∑
v=0

c(rsuv)P
τ
r (t)P

a
s (x)P

b
u (y)P

c
v (z), (13)

wherec(rsuv) can be obtained by the relation

c(rsuv) =
(2r+1)(2s+1)(2u+1)(2v+1)

τabc

∫ c

0

∫ b

0

∫ a

0

∫ τ

0
u(t,x,y,z)P(τ,a,b,c)

rsuv (t,x,y,z)dtdxdydz. (14)

For simplicity we change the notation as
C(rn) =C(rsuv),

wheren = M2s+Mu+ v+1. Using this simplified notation we can write equation (13) as

u(t,x,y,z) =
M

∑
r=1

M3

∑
n=1

C(rn)P
(τ)
r (t)P(a,b,c)

n (x,y,z). (15)

Or in matrix form we can write them as

u(t,x,y,z) =Ψ (τ)(t)T KM×M3Ψ (a,b,c)(x,y,z). (16)

WhereKM×M3 is coefficient matrix andΨ (τ)(t) is a function vector related tot andΨ (a,b,c)(x,y,z) is function vector
related to the variablex,y and z.

3 Error Bounds for Shifted Legendre Polynomials

In this section, we derive analytic relation for the absolute error of function of four variable. Consider∏M(t,x,y,z) be
the space span byM terms four dimensional Shifted Legendre polynomials. Thenfor a smooth functionu(t,x,y,z) ∈ ∆ ,
where∆ =C([0,τ]× [0,a]× [0,b]× [0,c]), assume thatU(M)(t,x,y,z) is its best Legendre approximation in∏(M)(t,x,y,z).
Then, for any function̂F(M)(t,x,y,z) of degree≤ M in variablet, x, y andz it follows that

‖u(t,x,y,z)−U(M)(t,x,y,z)‖2 ≤ ‖u(t,x,y,z)− F̂(M)(t,x,y,z)‖2. (17)

The inequality (17) also holds ifF̂(M,M,M,M)(t,x,y,z) is interpolating polynomial of the functionu at point(ti,x j,yk, tl)

whereti = i τ
M , x j = j a

M , yk = k b
M andzl = l c

M . Then from the same arguments in [36] we can write

u(t,x,y,z)− F̂(M,M,M,M)(t,x,y,x) =
∂ M+1

∂ tM+1(M+1)!
u(ξ ,x,y,z)

M

∏
i=0

(t − ti)

+
∂ M+1

∂xM+1(M+1)!
u(t,σ ,y,z)

M

∏
j=0

(x− x j)+
∂ M+1

∂yM+1(M+1)!
u(t,x,ω ,z)

M

∏
k=0

(y− yk)

+
∂ M+1

∂ zM+1(M +1)!
u(t,x,y,µ)

M

∏
k=0

(z− zk)

−
∂ 4M+4

∂ tM+1∂xM+1∂yM+1∂ zM+14(M+1)!
u(ξ ′,σ ′,ω ′,µ ′)

M

∏
i=0

(t − ti)
M

∏
j=0

(x− x j)
M

∏
k=0

(y− yk)
M

∏
k=0

(z− zl),

(18)

such thatξ ,ξ ′ ∈ [0,τ], σ ,σ ′ ∈ [0,a], ω ,ω ′ ∈ [0,b] andµ ,µ ′ ∈ [0,c]. Therefore

|u(t,x,y,z)−F̂(M,M,M,M)(t,x,y,x)| ≤
ϒt

(M+1)!)

M

∏
i=0

|(t − ti)|+
ϒx

(M+1)!

M

∏
j=0

|(x− x j)|

+
ϒy

(M+1)!

M

∏
k=0

|(y− yk)|+
ϒz

(M+1)!

M

∏
l=0

|(z− zl)|

−
ϒo

4(M+1)!

M

∏
i=0

|(t − ti)|
M

∏
j=0

|(x− x j)|
M

∏
k=0

|(y− yk)|
M

∏
k=0

|(z− zl)|.

(19)
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Where

ϒt = max(t,x,y,z)∈∆ |
∂ M+1

∂ tM+1 u(t,x,y,z)|, ϒx = max(t,x,y,z)∈∆ |
∂ M+1

∂xM+1 u(t,x,y,z)|,

ϒy = max(t,x,y,z)∈∆ |
∂ M+1

∂yM+1 u(t,x,y,z)|, ϒz = max(t,x,y,z)∈∆ |
∂ M+1

∂ zM+1 u(t,x,y,z)|,

and

ϒo = max(t,x,y,z)∈∆ |
∂ 4M+4u(t,x,y,z)

∂ tM+1∂xM+1∂yM+1zM+1 |.

To derive a bound for the terms like∏M
i=0 |(t − ti)|, ∏M

j=0 |(x− x j)|, ∏M
k=0 |(y− yk)|, and∏M

k=0 |(z− zl)|. We make the
change of variables as

t = θ
τ
M
, x = φ

a
M
, y = ϕ

b
M
, z = ν

c
M
. (20)

We obtain

M

∏
i=0

|(t − ti)|= (
τ
M
)M+1

M

∏
i=0

|θ − i|,
M

∏
j=0

|(x− x j)|= (
(a)
M

)M+1
M

∏
j=0

|φ − j|,

M

∏
k=0

|(y− yk)|= (
(b)
M

)M+1
M

∏
k=0

|ϕ − k|,
M

∏
l=0

|(z− zl)|= (
(c)
M

)M+1
M

∏
l=0

|ν − k|.

(21)

Suppose thatρ1, ρ2, ρ3 andρ4 are integers such that

ρ1 < θ < ρ1+1, ρ2 < φ < ρ2+1, ρ3 < ϕ < ρ3+1, ρ4 < ν < ρ4+1.

.
Then we can write

M

∏
i=0

|θ − i|= |(θ −ρ1)(θ −ρ1−1)|
ρ1−1

∏
i=0

|(θ − i)|
M

∏
i=ρ1−2

|(θ − i)|,

M

∏
j=0

|φ − j|= |(φ −ρ2)(φ −ρ2−1)|
φ−1

∏
j=0

|(φ − j)|
M

∏
j=ρ2−2

|(φ − j)|,

M

∏
k=0

|ϕ − k|= |(ϕ −ρ3)(ϕ −ρ3−1)|
ρ3−1

∏
k=0

|(ϕ − k)|
M

∏
k=ρ3−2

|(ϕ − k)|,

M

∏
l=0

|ν − k|= |(ν −ρ4)(ν −ρ4−1)|
ρ4−1

∏
l=0

|(ν − k)|
M

∏
k=ρ4−2

|(ν − k)|.

(22)

The terms|(θ −ρ1)(θ −ρ1−1)|, |(θ −ρ1)(θ −ρ1−1)|, |(ϕ −ρ3)(ϕ −ρ3−1)| and|(ν −ρ4)(ν −ρ4−1)| gives there
maximum value at pointsθ + 1

2, φ + 1
2, ϕ + 1

2 andν + 1
2 respectively. Therefore we can write

|(θ −ρ1)(θ −ρ1−1)| ≤
1
4
, |(φ −ρ2)(φ −ρ2−1)| ≤

1
4
,

|(ϕ −ρ3)(ϕ −ρ3−1)| ≤
1
4
, |(ν −ρ4)(ν −ρ4−1)| ≤

1
4
.

(23)
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By the application of (20) we can write

ρ1−1

∏
i=0

|(θ − i)| ≤
ρ1−1

∏
i=0

(ρ1+1− i)≤ (ρ1+1)!,
ρ2−1

∏
j=0

|(φ − j)| ≤
ρ2−1

∏
j=0

(ρ2+1− j)≤ (ρ2+1)!,

ρ3−1

∏
k=0

|(ϕ − k)| ≤
ρ3−1

∏
k=0

(ρ3+1− k)≤ (ρ3+1)!,
ρ4−1

∏
l=0

|(ν − j)| ≤
ρ4−1

∏
j=0

(ρ4+1− j)≤ (ρ4+1)!,

M

∏
i=ρ1−2

|(θ − i)| ≤
M

∏
i=ρ1−2

|(i−ρ1)| ≤ (M−ρ1)!,
M

∏
j=ρ2−2

|(φ − j)| ≤
M

∏
j=ρ2−2

|( j−ρ2)| ≤ (M−ρ2)!,

M

∏
k=ρ3−2

|(ϕ − k)| ≤
M

∏
k=ρ3−2

|(k−ρ3)| ≤ (M−ρ3)!,
M

∏
l=ρ3−2

|(ν − l)| ≤
M

∏
l=ρ3−2

|(l −ρ3)| ≤ (l −ρ3)!.

(24)

Using (24) and (23) in (22), we get the following relation.

M

∏
i=0

|θ − i| ≤
1
4
(M+1)!,

M

∏
j=0

|φ − j| ≤
1
4
(M+1)!,

M

∏
k=0

|ϕ − k| ≤
1
4
(M +1)!,

M

∏
l=0

|ν − k| ≤
1
4
(M+1)!. (25)

Now using the bounds (25) in (21) we get

M

∏
i=0

|(t − ti)|= (
τ
M
)M+1 1

4
(M+1)!,

M

∏
j=0

|(x− x j)|= (
a
M
)M+1 1

4
(M +1)!,

M

∏
k=0

|(y− yk)|= (
b
M
)M+1 1

4
(M+1)!,

M

∏
l=0

|(z− zk)|= (
c
M
)M+1 1

4
(M+1)!.

(26)

Using (26) in (27) we get the bound for the absolute error as

|u(t,x,y,z)− F̂(M)(t,x,y,x)| ≤
ϒt

4
(

τ
M
)M+1+

ϒx

4
(

a
M
)M+1+

ϒy

4
(

b
M
)M+1

+
ϒz

4
(

c
M
)M+1−

ϒo

256
(

τ
M
)M+1(

a
M
)M+1(

b
M
)M+1(

c
M
)M+1.

(27)

Now using (17), we can easily get the upper bound of the absolute error of approximation

‖u(t,x,y,z)−U(M,M,M,M)(t,x,y,z)‖2 ≤
4
√

(τabc){
ϒt

4
(

τ
M
)M+1+

ϒx

4
(

a
M
)M+1

+
ϒy

4
(

b
M
)M+1+

ϒz

4
(

c
M
)M+1−

ϒo

256
(

τ
M
)M+1(

a
M
)M+1(

b
M
)M+1(

c
M
)M+1}.

(28)

4 Operational matrices of Integration and Differentiations

The operational matrices of derivatives and integration are the frequently used in literature. In [36] we derive the
operational matrices of fractional order integration and derivatives for the two dimensional function vector of Legendre
polynomial defined on[0,1]× [0,1]. Here we define the notion on the three dimensional space[0,a]× [0,b]× [0,c].

Theorem 4.0.1:Consider the function vectorΨ (a,b,c)(x,y,z) as defined in (11), then the operational matrix for fractional
derivative of orderσ of Ψ (a,b,c)(x,y,z) w.r.t x is generalized as

Dσ
x Ψ (a,b,c)(x,y,z) = xW (σ ,a,b,c)

M3×M3 Ψ (a,b,c)(x,y,z). (29)
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WherexW (σ ,a,b,c)
M3×M3 is defined as

xW (σ ,a,b,c)
M3×M3 =













Ω1,1 Ω1,2 · · · Ω1,n′ · · · Ω1,M3

Ω2,1 Ω2,2 · · · Ω2,n′ · · · Ω2,M3

...
...

...
...

...
...

Ωn,1 Ωn,2 · · · Ωn,n′ · · · Ωn,M3

...
...

...
...

...
...

ΩM3,1 ΩM3,2 · · · ΩM3,n′ · · · ΩM3,M3













, (30)

wheren′ = M2h+Mi+ j+1, n = M2q+Mr+ s+1, h, i, j,q,r,s = 0,1,2, ...,m and

Ωn,n′ =Cqrs
hi j =

δ(r,i)δ(s, j)(2h+1)

a

h

∑
l=0

q

∑
k=⌈σ⌉

(−1)q+k+h+l(q+ k)!(h+ l)!
(q− k)!(k!)Γ (k−σ +1)(ak)(h− l)!(l!)2(k+ l−σ +1)

, (31)

With Cqrs
hi j = 0 if q < σ .

Proof:Consider the general elementP(a,b,c)
n (x,y,z) as defined by (7), then by application of fractional derivative of order

σ of P(a,b,c)
n (x,y,z) w.r.t x is given by relation

Dσ
x (P

(a,b,c)
n (x,y,z)) = Pb

r (y)P
c
s (z)

q

∑
k=0

(−1)q+k(q+ k)!
(q− k)!(k!)2(ak)

Dσ
x xk.

By definition 2.1 we may write

Dσ
x (P

(a,b,c)
n (x,y,z)) =

q

∑
k=⌈σ⌉

(−1)q+k(q+ k)!
(q− k)!(k!)Γ (k−σ +1)(ak)

Pb
r (y)P

c
s (z)x

k−σ ,q = ⌈σ⌉, ..,M. (32)

ApproximatingPb
r (y)P

c
s (z)x

k−σ by M terms of Legendre polynomials in three variables, we get

Pb
r (y)P

c
s (z)x

k−σ ≈
m

∑
h=0

m

∑
i=0

m

∑
j=0

Chi jP
a
h (x)P

b
i (y)P

c
j (z), (33)

whereChi j =
(2h+1)(2i+1)(2 j+1)

abc

∫ c
0

∫ b
0

∫ a
0 Pb

r (y)P
c
s (z)x

k−σ Pa
h (x)P

b
i (y)P

c
j (z)dxdydz, After simplification we may write

Chi j =
δ(r,i)δ(s, j)(2h+1)

a

h

∑
l=0

(−1)h+l(h+ l)!
(h− l)!(l!)2(k+ l−σ +1)

, (34)

where

δ(r,i) =
{

1, if r = i
0, if i 6= u.

Hence it follows that

Dσ
x Pa

q (x)P
b
r (y)P

c
s (z)≈

q

∑
k=⌈σ⌉

(−1)q+k(q+ k)!
(q− k)!(k!)Γ (k−σ +1)(ak)

m

∑
h=0

m

∑
i=0

m

∑
j=0

Chi jP
a
h (x)P

b
i (y)P

c
j (z),

≈
m

∑
h=0

m

∑
i=0

m

∑
j=0

q

∑
k=⌈σ⌉

(−1)q+k(q+ k)!
(q− k)!(k!)Γ (k−σ +1)(ak)

Chi jP
a
h (x)P

b
i (y)P

c
j (z),

≈
m

∑
h=0

m

∑
i=0

m

∑
j=0

Cqrs
hi j Pa

h (x)P
b
i (y)P

c
j (z).

(35)

Where

Cqrs
hi j =

δ(r,i)δ(s, j)(2h+1)

a

h

∑
l=0

q

∑
k=⌈σ⌉

(−1)q+k+h+l(q+ k)!(h+ l)!
(q− k)!(k!)Γ (k−σ +1)(ak)(h− l)!(l!)2(k+ l−σ +1)

. (36)
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Using the notations,n′ = M2h+Mi+ j+1, n = M2q+Mr+ s+1 andΩn,n′ =Cqrs
hi j for h, i, j,q,r,s = 0,1,2,3, ..m, we get

the desired proof.�

Theorem 4.0.2Consider the function vectorΨ (a,b,c)(x,y,z) as defined in (11), then the operational matrix of fractional
integral of orderσ of Ψ (a,b,c)(x,y,z) w.r.t x is generalized as

Iσ
x Ψ (a,b,c)(x,y,z) = xV (σ ,a,b,c)

M3×M3 Ψ (a,b,c)(x,y,z). (37)

WherexV (σ ,a,b,c)
M3×M3 is defined as

xV (σ ,a,b,c)
M3×M3 =













Ω1,1 Ω1,2 · · · Ω1,n′ · · · Ω1,M3

Ω2,1 Ω2,2 · · · Ω2,n′ · · · Ω2,M3

...
...

...
...

...
...

Ωn,1 Ωn,2 · · · Ωn,n′ · · · Ωn,M3

...
...

...
...

...
...

ΩM3,1 ΩM3,2 · · · ΩM3,n′ · · · ΩM3,M3













, (38)

wheren′ = M2h+Mi+ j+1, n = M2q+Mr+ s+1, h, i, j,q,r,s = 0,1,2, ...,m and

Ωn,n′ =Cqrs
hi j =

δ(r,i)δ(s, j)(2h+1)

a

h

∑
l=0

q

∑
k=0

(−1)q+k+h+l(q+ k)!(h+ l)!
(q− k)!(k!)Γ (k+σ +1)(ak)(h− l)!(l!)2(k+ l+σ +1)

. (39)

Proof:Consider the general elementP(a,b,c)
n (x,y,z) as defined by (7), then the fractional order integral of orderσ of

P(a,b,c)
n (x,y,z) w.r.t x is given by relation

Iσ
x (P

(a,b,c)
n (x,y,z)) = Pb

r (y)P
c
s (z)

q

∑
k=0

(−1)q+k(q+ k)!
(q− k)!(k!)2(ak)

Iσ
x xk.

Using the definition 2.1 we may write

Iσ
x (P

(a,b,c)
n (x,y,z)) =

q

∑
k=0

(−1)q+k(q+ k)!
(q− k)!(k!)Γ (k+σ +1)(ak)

Pb
r (y)P

c
s (z)x

k+σ . (40)

ApproximatingPb
r (y)P

c
s (z)x

k+σ by M terms of Legendre polynomials in three variables, we get

Pb
r (y)P

c
s (z)x

k+σ ≈
m

∑
h=0

m

∑
i=0

m

∑
j=0

Chi jP
a
h (x)P

b
i (y)P

c
j (z), (41)

whereChi j =
(2h+1)(2i+1)(2 j+1)

abc

∫ c
0

∫ b
0

∫ a
0 Pb

r (y)P
c
s (z)x

k+σ Pa
h (x)P

b
i (y)P

c
j (z)dxdydz, Using the orthogonality condition we

may write

Chi j =
δ(r,i)δ(s, j)(2h+1)

a

h

∑
l=0

(−1)h+l(h+ l)!
(h− l)!(l!)2(k+ l+σ +1)

, (42)

where

δ(r,i) =
{

1, if r = i
0, if i 6= u.

Hence it follows that

Dσ
x Pa

q (x)P
b
r (y)P

c
s (z)≈

q

∑
k=0

(−1)q+k(q+ k)!
(q− k)!(k!)Γ (k+σ +1)(ak)

m

∑
h=0

m

∑
i=0

m

∑
j=0

Chi jP
a
h (x)P

b
i (y)P

c
j (z),

≈
m

∑
h=0

m

∑
i=0

m

∑
j=0

q

∑
k=0

(−1)q+k(q+ k)!
(q− k)!(k!)Γ (k+σ +1)(ak)

Chi jP
a
h (x)P

b
i (y)P

c
j (z).

≈
m

∑
h=0

m

∑
i=0

m

∑
j=0

Cqrs
hi j Pa

h (x)P
b
i (y)P

c
j (z).

(43)
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Where

Cqrs
hi j =

δ(r,i)δ(s, j)(2h+1)

a

h

∑
l=0

q

∑
k=0

(−1)q+k+h+l(q+ k)!(h+ l)!
(q− k)!(k!)Γ (k+σ +1)(ak)(h− l)!(l!)2(k+ l+σ +1)

. (44)

Using the notations,n′ = M2h + Mi + j + 1, n = M2q + Mr + s + 1 and Ωn,n′ = Cqrs
hi j for h, i, j,q,r,s = 0,1,2,3, ..m,

completes the proof.�

Theorem 4.0.3:Let Ψ (a,b,c)(x,y,z) be the function vector as defined in (11), then the fractional derivative of orderσ of
Ψ (a,b,c)(x,y,z) w.r.t y is given by

Dσ
y Ψ (a,b,c)(x,y,z) = yW (σ ,a,b,c)

M3×M3 Ψ (a,b,c)(x,y,z). (45)

WhereyW (σ ,a,b,c)
M3×M3 is the operational matrix of differentiation of orderσ , and is defined as

yW (σ ,a,b,c)
M3×M3 =

[
Ωn,n′

]
, (46)

wheren′ = M2h+Mi+ j+1, n = M2q+Mr+ s+1, h, i, j,q,r,s = 0,1,2, ...,m and

Ωn,n′ =Cqrs
hi j =

δ(h,q)δ(s, j)(2i+1)

b

i

∑
l=0

r

∑
k=⌈σ⌉

(−1)r+k+i+l(r+ k)!(i+ l)!
(r− k)!(k!)Γ (k−σ +1)(bk)(i− l)!(l!)2(k+ l−σ +1)

, (47)

With Cqrs
hi j = 0 if r < σ .

Proof:The proof of this Lemma is similar as theorem (4.0.1).

Theorem 4.0.4:Consider the function vectorΨ (a,b,c)(x,y,z) as defined in (11), then the operational matrix of orderσ of
Ψ (a,b,c)(x,y,z) w.r.t z is generalized as

Dσ
z Ψ (a,b,c)(x,y,z) = zW (σ ,a,b,c)

M3×M3 Ψ (a,b,c)(x,y,z). (48)

WherezW (σ ,a,b,c)
M3×M3 is defined as

zW (σ ,a,b,c)
M3×M3 =

[
Ωn,n′

]
, (49)

wheren′ = M2h+Mi+ j+1, n = M2q+Mr+ s+1, h, i, j,q,r,s = 0,1,2, ...,m and

Ωn,n′ =Cqrs
hi j =

δ(h,q)δ(i,r)(2i+1)

c

j

∑
l=0

s

∑
k=⌈σ⌉

(−1)s+k+ j+l(s+ k)!( j+ l)!
(s− k)!(k!)Γ (k−σ +1)(ck)( j− l)!(l!)2(k+ l−σ +1)

, (50)

With Cqrs
hi j = 0 for s < σ .

Proof:By similar arguments as in Theorem (4.0.1) we may easily prove this Theorem.�

Theorem 4.0.5Consider the function vectorΨ (a,b,c)(x,y,z) as defined in (11), then operational matrix of orderσ of
Ψ (a,b,c)(x,y,z) w.r.t y is generalized as

Iσ
y Ψ (a,b,c)(x,y,z) = yV (σ ,a,b,c)

M3×M3 Ψ (a,b,c)(x,y,z). (51)

WhereyV (σ ,a,b,c)
M3×M3 is defined as

yV (σ ,a,b,c)
M3×M3 =

[
Ωn,n′

]
, (52)

wheren′ = M2h+Mi+ j+1, n = M2q+Mr+ s+1, h, i, j,q,r,s = 0,1,2, ...,m and

Ωn,n′ =Cqrs
hi j =

δ(h,q)δ(s, j)(2i+1)

b

i

∑
l=0

r

∑
k=0

(−1)r+k+i+l(r+ k)!(i+ l)!
(r− k)!(k!)Γ (k+σ +1)(bk)(i− l)!(l!)2(k+ l+σ +1)

, (53)

Proof:Using the arguments as in Theorem (4.0.2) we may prove the Theorem.
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Theorem 4.0.6:Consider the function vectorΨ (a,b,c)(x,y,z) as defined in (11), then the operational matrix of fractional
integral of orderσ of Ψ (a,b,c)(x,y,z) w.r.t z is given by

Iσ
z Ψ (a,b,c)(x,y,z) = zW (σ ,a,b,c)

M3×M3 Ψ (a,b,c)(x,y,z). (54)

WherezW (σ ,a,b,c)
M3×M3 is defined as

zW (σ ,a,b,c)
M3×M3 =

[
Ωn,n′

]
, (55)

wheren′ = M2h+Mi+ j+1, n = M2q+Mr+ s+1, h, i, j,q,r,s = 0,1,2, ...,m and

Ωn,n′ =Cqrs
hi j =

δ(h,q)δ(i,r)(2i+1)

c

j

∑
l=0

s

∑
k=0

(−1)s+k+ j+l(s+ k)!( j+ l)!
(s− k)!(k!)Γ (k+σ +1)(ck)( j− l)!(l!)2(k+ l+σ +1)

, (56)

Proof: The proof of this Theorem is similar as Theorem (4.0.2).�

Theorem 4.0.7:[36] The operational matrix of integration ofΨ τ (t) ,as defined in (6) is generalized as

Iα(Ψ(t)τ)≃ PαΨ τ (t), (57)

wherePα is defined by

Pα =













∑0
k=0Θ0,0,k ∑0

k=0Θ0,1,k · · · ∑0
k=0Θ0, j,k · · · ∑0

k=0Θ0,m, j

∑1
k=0Θ1,0,k ∑1

k=0Θ1,1,k · · · ∑1
k=0Θ1, j,k · · · ∑1

k=0Θ1,m, j
...

...
...

...
...

...
∑i

k=0Θi,0,k ∑i
k=0Θi,1,k · · · ∑i

k=0Θi, j,k · · · ∑i
k=0Θi,m,k

...
...

...
...

...
...

∑m
k=0Θm,0,k ∑m

k=0Θm,1,k · · · ∑m
k=0Θm, j,k · · · ∑m

k=0Θm,m,k













, (58)

where

Θi, j,k =
(2 j+1)

τ

j

∑
l=0

(−1)i+ j+k+l(i+ k)!(l+ j)!
(i− k)!k!Γ (k+α +1)( j− l)!(l!)2(k+ l+α +1)

. (59)

5 Application of the new matrices to Fractional order Partial differential equations

The operational matrices derived in the previous section play important role in approximating the solution of fractional
order partial differential equations. Consider a typical fractional order heat equation on cubic structure. For simplicity of
notation we use simplified notation for the operational matrices. We usePσ

x ,P
σ
y andPσ

z to represent operational matrices
of integration of orderσ in x,y andz direction respectively. Similarly we useDσ

x ,Dσ
y andDσ

z to represent operational
matrices for derivative of orderσ .
The governing is

χt
∂ σU
∂ tσ = λx

∂ β1U

∂xβ1
+λy

∂ β2U

∂yβ2
+λz

∂ β3U

∂ zβ3
+ I(t,x,y,z),

U(0,x,y,z) = f (x,y,z), U(t,0,y,z) = g1(t,y,z),
∂
∂x

U(t,0,y,z) = g2(t,y,z),

U(t,x,0,z) = h1(t,x,z),
∂
∂y

U(t,x,0,z) = h2(t,x,z),

U(t,x,y,0) = l1(t,x,y), U(t,x,y,c) = l2(t,x,y),

(60)

whereχt is the volumetric heat capacity(J/(m3K)), λx,λy,λz are thermal conductivities(W/m.K) in x, y andz directions
respectively, 0< α ≤ 1, 1< βi ≤ 2, t ∈ [0,τ], x ∈ [0,a], y ∈ [0,b] andz ∈ [0,c]. By making the following substitution in
(60)

Û =U −
z
c

l2(t,x,y)−
(c− z)

c
l1(t,x,y), (61)
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we may write

χt
∂ σÛ
∂ tσ = λx

∂ β1Û

∂xβ1
+λy

∂ β2Û

∂yβ2
+λz

∂ β3Û

∂ zβ3
+ Î(t,x,y,z),

Û(0,x,y,z) = f̂ (x,y,z), Û(t,0,y,z) = ĝ1(t,y,z)
∂
∂x

Û(t,0,y,z) = ĝ2(t,y,z),

Û(t,x,0,z) = ĥ1(t,x,z)
∂
∂y

Û(t,x,0,z) = ĥ2(t,x,z),

Û(t,x,y,0) = 0 Û(t,x,y,c) = 0,

(62)

Where f̂ , ĥ1, ĥ2, ĝ1, ĝ2, Î can be obtained using relation (61).
We seek the solution of the above problem in terms of shifted Legendre polynomials such that the following holds.

∂ β1+β2

∂xβ1∂yβ2
Û =Ψ (τ)(t)T KM×M3Ψ (a,b,c)(x,y,z) =

︷ ︸︸ ︷

KM×M3 . (63)

(Note that
︷︸︸︷

A = Ψ (τ)(t)T AΨ (a,b,c)(x,y,z), and is used through out only for the simplicity of notation.)Applying
fractional integral of orderβ1 w.r.t x on (63) we get

∂ β2

∂yβ2
Û =

︷ ︸︸ ︷

KM×M3Pβ1
x +

︷︸︸︷

G . (64)

where
︷︸︸︷

G = ∂ β2

∂yβ2
(ĝ1(t,y,z)+ xĝ2(t,y,z)) . Similarly application of fractional integral of orderβ2 w.r.t y on (63) we get

∂ β1

∂xβ1
Û =

︷ ︸︸ ︷

KM×M3Pβ2
y +

︷︸︸︷

H , (65)

where
︷︸︸︷

H = ∂ β1

∂xβ1

(
ĥ1(t,x,z)+ yĥ2(t,x,z)

)
. Now applying fractional order integral of orderβ2 w.r.t y on (64) we get

Û =

︷ ︸︸ ︷

KM×M3Pβ1
x Pβ2

y +

︷ ︸︸ ︷

GPβ2
y +

︷︸︸︷

H1 (66)

Where
︷︸︸︷

H1 = ĥ1(t,x,z)+ yĥ2(t,x,z). Using (66) we may write

∂ β3

∂ zβ3
Û =

︷ ︸︸ ︷

KM×M3Pβ1
x Pβ2

y Dβ3
z +

︷ ︸︸ ︷

GPβ2
y Dβ3

z +

︷ ︸︸ ︷

H1Dβ3
z . (67)

Using (67), (65) and (64) in (62), we get

χt
∂ σÛ
∂ tσ =λx

(
︷ ︸︸ ︷

KM×M3Pβ2
y +

︷︸︸︷

H

)

+λz

(
︷ ︸︸ ︷

KM×M3Pβ1
x Pβ2

y Dβ3
z +

︷ ︸︸ ︷

GPβ2
y Dβ3

z +

︷ ︸︸ ︷

H1Dβ3
z

)

+λy

(
︷ ︸︸ ︷

KM×M3Pβ1
x +

︷︸︸︷

G

)

+
︷︸︸︷

I .

(68)

Where
︷︸︸︷

I = Î(t,x,y,z).On further simplification and using modified notation we get

∂ σÛ
∂ tσ =

︷ ︸︸ ︷

KM×M3B(β1,β2,β3)+
︷︸︸︷

Z . (69)

WhereB(β1,β2,β3) = λx
χt

Pβ2
y + λz

χt
Pβ1

x Pβ2
y Dβ3

z +
λy
χt

Pβ1
x , and

︷︸︸︷

Z = λx
χt

︷︸︸︷

H + λz
χt

(
︷ ︸︸ ︷

GPβ2
y Dβ3

z +

︷ ︸︸ ︷

H1Dβ3
z

)

+
λy
χt

(
︷︸︸︷

G

)

+ 1
χt

︷︸︸︷

I .

By the application of fractional integral of orderσ w.r.t variablet we get

Û =

︷ ︸︸ ︷

Pσ T KM×M3B(β1,β2,β3)+

︷ ︸︸ ︷

Pσ T Z+
︷︸︸︷

F1 . (70)
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(a) xW
(.9,1,1,1)
M 3

×M 3 (b) yW
(.9,1,1,1)
M 3

×M 3
(c) zW

(.9,1,1,1)
M 3

×M 3

Fig. 1 The image display of operational matrices with selecting σ = 0.9 andM = 7.

Where
︷︸︸︷

F1 = f̂ (x,y,z).
Now comparing (70) and (66) we get the following relation.

︷ ︸︸ ︷

Pσ T KM×M3B(β1,β2,β3)+

︷ ︸︸ ︷

Pσ T Z+
︷︸︸︷

F1 −

︷ ︸︸ ︷

KM×M3Pβ1
x Pβ2

y +

︷ ︸︸ ︷

GPβ2
y +

︷︸︸︷

H1 = 0. (71)

Equation (71) is generalized Sylvester type matrix equation and can be easily solvable for the unknown matrixKM×M3 .

Using the value ofK in (66) we get approximate solution̂U(t,x,y,z). Using the value ofÛ in (61) will lead us to the
desire solution of the problem.

6 Numerical Aspects of operational matrices

The operational matrices derived in the previous section are highly sparse in structure. And that is the reason that the
resulting algebraic system of equations is easily solvable. For visualization purpose we show the image display of these

matrices with the help of matlab command ”imshow”. Fig(1) show the matricesxW (0.9,a,b,c)
M3×M3 ,yW (0.9,a,b,c)

M3×M3 andzW (0.9,a,b,c)
M3×M3

at scale levelM = 7, while Fig(2) shows these matrices forα = 1.9. One can easily observe the sparse structure of these
matrices.

The operational matrices as shown above are very sparse. However they can approximate the fractional order partial
derivatives very efficiently. To show the efficiency of the operational matrices we calculate fractional order partial
derivatives of some test functions whose analytic form of the fractional derivatives are known.We select
f1 = (xyzt)5 − x4y3z2t5 + (xyzt)3, f2 = sin(x)cos(y) + sin(z) + cos(t) and f3 = (xyzt)4sin(x)sin(y) + cos(z)cos(t). In
order to measure the accuracy we calculate the quantityE fi for every test functions at different scale level. WhereE fi is
defined by the relation

E f1 =
1

τabc

∫ τ

0

∫ a

0

∫ b

0

∫ c

0
|Dα

x f (x,y,z, t)− f (α)
approx|dzdydxdt,

where f (α)
approx is the fractional derivative of functionf of orderα calculated with the help of operational matrix. The

results are displayed in Table(1). One can easily see that the accuracy increase with the increase of scale level.
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Fig. 2 The image display of operational matrices with selecting σ = 1.9 andM = 7.

Table 1: The approximated norm of calculating fractional derivatives
α = 0.7 α = 1.5

M = 5 M = 6 M = 7 M = 5 M = 6 M = 7

E f1

Dα
x 0.0026 5.45×10−4 3.41×10−5 0.021 0.0093 1.4×10−4

Dα
y 0.0091 1.1×10−3 0.9×10−4 0.009 0.00012 1.5×10−5

Dα
z 0.0072 7.3×10−4 6.9×10−5 0.062 0.0013 4.6×10−4

E f2

Dα
x 0.0142 0.0092 1.6×10−3 0.00123 1.7411×10−4 9.2045×10−5

Dα
y 0.07628 0.00163 4.9×10−3 3.9×10−3 7.613×10−4 2.8×10−5

Dα
z 0.0071 2.49×10−3 7.773×10−4 0.0719 0.00182 2.65×10−3

E f3

Dα
x 0.0038 1.4×10−3 6.565×10−4 0.0931 0.00192 2.39×10−4

Dα
y 0.0094 9.7×10−3 1.947×10−4 0.0751 7.91×10−3 4.99×10−4

Dα
z 0.05932 0.00734 2.89×10−4 0.0104 5.53×10−3 4.052×10−4

6.1 Illustrative Examples

To show the applicability of the method, we solve some test problems.
Example 1As a First example consider the following integer order heatconduction equation.

χt
∂U
∂ t

= λx
∂ 2U
∂x2 +λy

∂ 2U
∂y2 +λz

∂ 2U
∂ z2 + I,

U(0,x,y,z) = (1− y)e(x+z), U(t,0,y,z) = (1− y)e(z+2t) ∂
∂x

U(t,0,y,z) = (1− y)e(z+2t),

U(t,x,0,z) = e(x+z+2t) ∂
∂y

U(t,x,0,z) =−e(x+z+2t),

U(t,x,y,1) = (1− y)e(x+z+2) ∂
∂x

U(t,x,y,1) = (1− y)e(x+z+2),

(72)

Also let χt = λx = λy = λz = 1 , t ∈ [0,1], x ∈ [0,1], y ∈ [0,1] andz ∈ [0,1]. It can be easily verified that the exact solution
of the problem is

U(t,x,y,z) = (1− y)e(x+z+2t).

We approximate the solution of this problem with proposed method, and as expected we found that the approximate
solution matches very well with the exact solution. We display the exact and approximate solution of the problem at some
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Fig. 3 Comparison of exact(surface) and approximate solution (dots) of example 1 at different value ofz M = 13, t = 0.3.
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Fig. 4 Comparison of exact(surface) and approximate solution (dots) of example 1 at different value ofz M = 13, t = 0.6.

fixed value oft,ie t = 0.3,0.6,0.9 and at each value oft the solution is displayed at fix value ofz, the results are displayed in
Fig(3),Fig(4) andFig(5). Note that here we fixM = 10. We observe that the method yields a very high accurate estimate
of the solution.And the error of approximation (absolute error) decreases significantly by the increase of the scale level M.
We approximate the absolute error atM = 7,8,9 and we observe that as the scale level increases the error decreases.Fig(6)
andFig(7) shows amount of absolute error at point(x,y,z) = (0.2,0.2,0.2) and point(x,y,z) = (0.8,0.8,0.8) respectively.
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Fig. 6 The absolute error of example 1 at different value ofM.Here we fix(x,y,z) = (0.2,0.2,0.2),σ = 1

Example 2Consider the time fractional heat conduction problem

∂ 0.7U
∂ t0.7 =

∂ 2U
∂x2 +

∂ 2U
∂y2 +

∂ 2U
∂ z2 + I,

U(0,x,y,z) = x2 y2 z2− y4z4, U(t,0,y,z) = t3z3 ∂
∂x

U(t,0,y,z) = 0,

U(t,x,0,z) = t3z3 ∂
∂y

U(t,x,0,z) = 0,

U(t,x,y,0) = (txy)2, U(t,x,y,1) = t3+(xy+ txy)2+ t4x4y4,

(73)

Take the source term

I(t,x,y,z) =
30108612877763975t

3
10
(
4000t3x4 y4 z4+3300t2z3+2530t x2 y2+3289x2y2 z

)

44437017523264684032
.
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Fig. 8 Comparison of exact(dots) and approximate solution (surface) of example 2 at different value ofz M = 13, t = 0.3.

Then the unique analytic solution of the problem is

U(t,x,y,z) = t3z3− y4z4+(txy+ xyz)2+ t4x4y4z4.

We compare the exact with the approximate solution obtainedwith the proposed method at different value oft and
z. The results are displayed inFig(8),Fig(9) andFig(10). One can easily see that atM = 12 the approximate solution
matches very well with the exact solution. The absolute error is approximated at different points of xt-plane and yz-plane.
One can see that the absolute error is much more less than 10−12, seeFig(11) andFig(12).
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Example 3As a third example, we consider the space and time fractionalHeat conduction equation as given.

∂ 0.7U
∂ t0.7 =

∂ 1.8U
∂x1.8 +

∂ 1.8U
∂y1.8 +

∂ 1.8U
∂ z1.8 + I,

U(0,x,y,z) = x2 y2 z2− yz, U(t,0,y,z) = t2 z2 − yz
∂
∂x

U(t,0,y,z) = 0,

U(t,x,0,z) = t2z2 ∂
∂y

U(t,x,0,z) =−z,

U(t,x,y,0) = (txy)2, U(t,x,y,1) = t2− y+(xy+ t xy)2+ t3x3 y3,

(74)

where

I(t,x,y,z) =0.0330t1/5{75(xyz)3t2+55(xy)2t +55tz2+66(xy)2z}

−1.0891z1/5{5z(xyt)3+2t2+2(xy)2}−1.0891φ(t,x,y,z){x2y1/5+ x1/5y2}.

Where
φ(t,x,y,z) = 5xyt3z3+2t2+4tz+2z2.
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Fig. 12 The absolute error of example 2 atM = 12 on two different points of theyz− plane.

This problem has exact analytic solution as

U = t2z2+(txy+ xyz)2− yz+ t3x3y3z3.

One can easily check it by direct substitution. We approximate the solution of this problem at different scale level. We
compare exact and approximate solution of this problem Fig (13)and Fig (14) and observe the high accuracy of the
approximate solution. We approximate the absolute error atdifferent scale level. We observe the convergence of
approximate solution to the exact solution with the increase of the scale level. We approximate the absolute error of this
example at three fix value oft while z is fix to be 0.5, see Fig (15).

7 conclusion

The algorithm presented in this paper is complicated but provides a very high accurate estimate of the approximate
solution.The method is spectral method and its accuracy depends on the smoothness of solution. We observe that the
method can easily solve fractional order partial differential equations in four variables. It is also expected that themethod
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may provide a more accurate estimate by using some other families of orthogonal polynomials like Brenstein and
Laguerre.
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