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1 Introduction and Preliminaries

Let A(p) denote the class of functions of the form

f(z) = zp +
∞∑

k=p+n

akzk, (n, p ∈ IN), (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1} and let S(p) denote the
class of functions defined by (1.1) which are analytic and multivalent in U . Consider the
subclass T (p) of S(p) consisting of functions of the form

f(z) = zp −
∞∑

k=p+n

akzk (ak ≥ 0, n, p ∈ IN). (1.2)
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A function f(z) ∈ S(p) is said to be multivalently starlike of order s, 0 ≤ s < p in U , if

Re

{
z
f ′(z)
f(z)

}
> s (1.3)

and multivalently convex of order s, 0 ≤ s < p in U , if

Re

{
1 +

zf ′′(z)
f ′(z)

}
> s. (1.4)

A function f(z) ∈ S(p) is said to be uniformly convex in U , if f(z) is convex in U and
has the property that every circular are γ, contained in U with center ξ in U , arc f(γ) is
convex with respect to f(ξ).

This definition of uniformly convex functions was given by A. W. Goodman [4] in
1991.

The class of uniformly convex functions is denoted by UCV . We have the characteri-
zation: f ∈ UCV , if and only if

Re

{
1 + z

f ′′(z)
f ′(z)

}
≥

∣∣∣∣1 + z
f ′′(z)
f ′(z)

− p

∣∣∣∣. (1.5)

We can further generalize the class UCV by introducing a parameter α,−p ≤ α < p.
f ∈ UCV (α) if and only if

Re

{
1 + z

f ′′(z)
f ′(z)

− α

}
≥

∣∣∣∣1 + z
f ′′(z)
f ′(z)

− p

∣∣∣∣. (1.6)

Further, let 0 ≤ β < ∞. Then the function f ∈ S(p) is said to be β-uniformly convex in
U , if the image of every circular arc γ contained in U , with center ξ in U , where |ξ| ≤ β, is
convex. For fixed β, the class of all β-uniformly convex functions is denoted by β−UCV .
Notice that, 0−UCV = CV , set of all convex functions and 1−UCV = UCV as defined
in (1.5).

0 − UCV (α) = CV (α), set of all convex functions of order α,−p ≤ α < p, 1 −
UCV (α) = UCV (α) as defined in (1.6) as before. We again note that f ∈ β −UCV (α),
if and only if

Re

{
1 + z

f ′′(z)
f ′(z)

− α

}
≥ β

∣∣∣∣1 + z
zf ′′(z)
f ′(z)

− p

∣∣∣∣. (1.7)

The class β −UCV was introduced by S. Kanas et al. [5], where its geometric proper-
ties and connections with convex domains were considered. S. Kanas and H. M. Srivastava
[6] studied this class in detail. Later on, A. Gangadharan et al. [3] used linear operators to
find the connections between the class β − UCV and the different subclasses of the class
of analytic and univalent functions defined in the unit disc.

Let the function f(z) and g(z) defined by

f(z) = zp −
∞∑

k=p+n

akzk (1.8)
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and

g(z) = zp −
∞∑

k=p+n

bkzk (1.9)

belong to K(µ, γ, η, a, b, c, α, β) and K(µ, γ, η, a, b, c, ξ, β), respectively. Then the modi-
fied Hadamard product of f and g is defined by

(f ∗ g)(z) = zp −
∞∑

k=p+n

akbkzk. (1.10)

The incomplete beta function φp(a, c; z) is defined by

φp(a, c; z) = zp +
∞∑

k=p+n

(a)k−p

(c)k−p
zk (1.11)

for a ∈ IR and c ∈ IR \ z0 where z0 = {0,−1,−2, . . .}, z ∈ U. (a)k is the Pochhammer
symbol defined by

(a)k =
Γ(a + k)

Γ(a)
=

{
1 , k = 0

a(a + 1) · · · (a + k − 1) , k ∈ IN
.

Next, we consider the Carlson-Shaffer operator [1] defined by

Lp(a, c)f(z) = φp(a, c; z) ∗ f(z), for f ∈ S(p) = zp +
∞∑

k=p+n

(a)k−p

(c)k−p
akzk. (1.12)

The Gaussian hypergeometric function denoted by 2F1(a, b; c; z) and is defined by

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, z ∈ U (1.13)

and a + b < c.
Now, using the convolution theorem we can define the Hohlov operator Fp(a, b; c) :

T (p) → T (p) by the following relation:

Fp(a, b; c)(f(z)) = zp
2F1(a, b; c; z) ∗ f(z) = zp −

∞∑
k=p+n

(a)k−p(b)k−p

(c)k−p(k − p)!
akzk, (1.14)

a, b ∈ IR and c ∈ IR \ z0, where z0 = {0,−1,−2, . . .}, z ∈ U . Notice that, Hohlov
operator reduces to Carlson-Shaffer operator if b = 1. Also for a = m + 1, b = c = 1, we
get the famous Ruscheweyh derivative operator of order m. We can write

Fp(a, b; c)f(z) = zp −
∞∑

k=p+n

(a)k−p(b)k−p

(c)k−p(1)k−p
akzk. (1.15)
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Definition 1.1. Let µ > 0 and γ, η ∈ IR. Then the generalized fractional integral operator
Iµ,γ,η
0,z of a function f(z) is defined by

Iµ,γ,η
0, f(z) =

z−µ−γ

Γ(µ)

∫ z

0

(z − t)µ−1f(t) 2F1

(
µ + γ,−η;µ; 1 − t

z

)
dt, (1.16)

where f(z) is analytic in a simply-connected region of the z-plane containing the origin,
with order

f(z) = 0(|z|r), z → 0, (1.17)

where r > max{0, µ − η} − 1 and the multiplicity of (z − t)µ−1 is removed by requiring
log(z − t) to be real, when (z − t) > 0 and is well defined in the unit disc.

Definition 1.2. Let 0 ≤ µ < 1 and γ, η ∈ IR. Then the generalized fractional derivative
operator Jµ,γ,η

0,z of a function f(z) is defined by

Jµ,γ,η
0,z f(z) =

1
Γ(1−µ)

d

dz

{
zµ−γ

∫ z

0

(z−t)−µf(t) 2F1

(
γ−µ, 1−η; 1−µ; 1− t

z

)
dt

}
, (1.18)

where the function is analytic in the simply-connected region of z-plane containing the ori-
gin, with the order as given in (1.17) and multiplicity of (z − t)−µ is removed by requiring
log(z − t) to be real when (z − t) > 0. Notice that, we have the following relationships
with the fractional integral and derivative operators of order µ.

Iµ,−µ,η
0,z f(z) = D−µ

0,z f(z) (µ > 0),

Jµ,µ,η
0,z f(z) = Dµ

0,zf(z) (0 ≤ µ < 1).

Consider the fractional operator Uµ,γ,η
0,z defined in terms of Jµ,γ,η

0,z as follows:

Uµ,γ,η
0,z f(z)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Γ(1+p−γ)Γ(1+p+η−µ)
Γ(1 + p)Γ(1 + p + η − γ)

zγJµ,γ,η
0,z (f(z), 0 ≤ µ < 1

Γ(1+p−γ)Γ(1+p+η−µ)
Γ(1 + p)Γ(1 + p + η − γ)

zγI−µ,γ,η
0,z f(z), −∞ < µ < 0

. (1.19)

Let

Lf(z) = Mµ,γ,η,a,b,c
0,z f(z)

= Fp(a, b; c; z) ∗ Uµ,γ,η
0,z f(z)

= zp +
∞∑

k=p+n

(a)k−p(b)k−p(1 + p)k−p(1 + p + η − γ)k−p

(c)k−p(1)k−p(1 + p + η − µ)k−p(1 + p − γ)k−p
akzk (1.20)

for a, b ∈ IR, c ∈ IR \ z0, z0 = {0,−1,−2, . . .}, −∞ < µ < 1,−∞ < γ < 1, η ∈ IR+,

− p ≤ α < p, β ≥ 0 and f ∈ S(p).
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For convenience, we will write Lf as follows:

Lf(z) = zp +
∞∑

k=p+n

g(k)akzk, (1.21)

where

g(k) =
(a)k−p(b)k−p(1 + p)k−p(1 + p + η − γ)k−p

(c)k−p(1)k−p(1 + p + η − µ)k−p(1 + p − γ)k−p
. (1.22)

Let K(µ, γ, η, a, b, c, α, β) denote the class of function f ∈ S(p) satisfying

Re

{
1 +

z(Lf)′′

(Lf)′
− α

}
≥ β

∣∣∣∣1 +
z(Lf)′′

(Lf)′
− p

∣∣∣∣, (1.23)

where (a, b ∈ IR, c ∈ IR \ z0, z0 = {0,−1,−2, . . .},−∞ < µ < 1,−∞ < γ < 1, η ∈
IR+, and −p ≤ α < p, β ≥ 0, z ∈ U).

It is very interesting to notice that the class K(µ, γ, η, a, b, c) reduces to the class of
convex, β-uniformly convex parabolic convex functions for suitable choice of the parame-
ters a, b, c, µ, γ, η, α and β. For instance,

1. If a = c, b = 1, µ = γ = 0 the class reduces to β − UCV (α).

2. If a = c, b = 1, µ = γ = 0, α = 2ρ − 1, (0 ≤ ρ < 1) the class reduces to parabolic
convex of order ρ.

Other interesting classes studied by different authors can be derived from
K(µ, γ, η, a, b, c, α, β).

2 Some Results for the Class K(µ, γ, η, a, b, c)

Theorem 2.1. A function f ∈ T (p) is in the class K(µ, γ, η, a, b, c) if and only if

∞∑
k=p+n

k[k(1 + β) − (α + pβ)]g(k)ak ≤ p(p − α). (2.1)

The result is sharp for the function

f(z) = zp − p(p − α)
k[k(1 + β) − (α + pβ)]g(k)

zp+n, n ∈ IN. (2.2)

Proof. Assume that f ∈ K(µ, γ, η, a, b, c) and z is real. Then we have from (1.23)

p2 − ∑∞
k=p+n k2g(k)akzk−p

p − ∑∞
k=p+n kg(k)akzk−p

− α ≥ β

∣∣∣∣
∑∞

k=p+n(k − p)g(k)akzk−p

p − ∑∞
k=p+n kg(k)akzk−p

∣∣∣∣.
Allowing z → 1 along the real axis, we obtain the desired inequality (2.1).
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Conversely, let us assume that (2.1) holds, then we show that

β

∣∣∣∣1 +
z(Lf)′′

(Lf)′
− p

∣∣∣∣ − Re

{
1 +

z(Lf)′′

(Lf)′
− p

}
≤ p − α.

Notice that

β

∣∣∣∣1 + z
(Lf)′′

(Lf)′
− p

∣∣∣∣ − Re

{
1 +

z(Lf)′′

(Lf)′
− p

}
≤ (1 + β)

∣∣∣∣1 +
z(Lf)′′

(Lf)′
− p

∣∣∣∣
≤ (1 + β)

∑∞
k=p+n(k − p)g(k)ak

p − ∑∞
k=p+n kg(k)ak

.

This expression is bounded above by (p − α) if
∞∑

k=p+n

k[k(1 + β) − (α + pβ)]g(k)ak ≤ p(p − α).

Corollary 2.1. Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, a, b, c, α, β).
Then

ak ≤ p(p − α)
k[k(1 + β) − (α + pβ)]g(k)

, (k ≥ p + n, n ∈ IN)

with equality for the function f(z) given by (2.2).

Theorem 2.2. Let the function f and g be in the class K(µ, γ, η, a, b, c). Then for λ ∈
[0, 1], the function

h(z) = (1 − λ)f(z) + λg(z) = zp −
∞∑

k=p+n

dkzk

is in the class K(µ, γ, η, a, b, c).

Proof. Since f and g are in the class K(µ, γ, η, a, b, c), they satisfy the inequality (2.1).
Thus, the function h(z) defined by

h(z) = (1 − λ)f(z) + λg(z) = zp −
∞∑

k=p+n

[(1 − λ)ak + λbk]zk

is also in the class K(µ, γ, η, a, b, c). This immediately follows by setting dk = (1−λ)ak+
λbk > 0. Therefore, K(µ, γ, η, a, b, c) is a convex set.

Theorem 2.3. Let f(z) and g(z) defined by (1.8) and (1.9) be in the class

K(µ, γ, η, a, b, c). Then the function h(z) defined by

h(z) = zp −
∞∑

k=p+n

(a2
k + b2

k)zk

is in the class K(µ, γ, η, a, b, c, θ, β), where

θ = p − 2p(1 + β)(p − α)2

(1 + p)(1 + p + β − α)2g(p + 1) − 2p(p − α)2
.
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Proof. In view of Theorem 2.1 it is sufficient to show that

∞∑
k=p+n

k[k(1 + β) − (θ + pβ)]
p(p − θ)

g(k)(a2
k + b2

k) ≤ 1. (2.3)

Notice that f(z) and g(z) belong to K(µ, γ, η, a, b, c, α, β), thus

∞∑
k=p+n

{
k[k(1+β) − (α+pβ)]g(k)

p(p − α)

}2

a2
k ≤

[ ∞∑
k=p+n

k[k(1+β) − (α+pβ)]g(k)ak

p(p − α)

]2

≤ 1,

(2.4)
∞∑

k=p+n

{
k[k(1+β) − (α+pβ)]g(k)

p(p − α)

}2

b2
k ≤

[ ∞∑
k=p+n

k[k(1+β) − (α+pβ)]g(k)bk

p(p − α)

]2

≤ 1.

(2.5)

Adding (2.4) and (2.5), we get

∞∑
k=p+n

1
2

{
k[k(1 + β) − (α + pβ)g(k)

p(p − α)

}2

(a2
k + b2

k) ≤ 1. (2.6)

Thus, (2.3) will hold if

k(1 + β) − (θ + pβ)
(p − θ)

≤ 1
2

k[k(1 + β) − (α + pβ)]2g(k)
p(p − α)2

.

That is, if

θ ≤ p − 2p(1 + β)(k − p)(p − α)2

k[k(1 + β) − (α + pβ)]2g(k) − 2p(p − α)2
. (2.7)

Notice that, θ can be further improved by using the fact that g(k) is a non-increasing func-
tion of k, for k ≥ p + n, n ∈ IN . Thus, g(p + n) ≤ g(p + 1) for n ∈ IN and

g(p + 1) =
ab(1 + p)(1 + p + η − γ)

c(1 + p + η − µ)(1 + p − γ)
. (2.8)

Therefore,

θ = p − 2p(1 + β)(p − α)2

(1 + p)(1 + p + β − α)2g(p + 1) − 2p(p − α)2
,

where g(p + 1) is given by (2.8).

Next, we give another inclusion property of the class.

Theorem 2.4. Let fj(z) defined by

fj(z) = zp −
∞∑

k=p+n

ak,jz
k, j = 1, 2, . . . , 
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belong to the class K(µ, γ, η, a, b, c, α, β). Then the function

h(z) =
1



�∑
j=1

fj(z)

is also in the class K(µ, γ, η, a, b, c, α, β).

Proof. Since fj(z) ∈ K(µ, γ, η, a, b, c, α, β), in view of Theorem 2.1, we have

∞∑
k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

ak,j ≤ 1. (2.9)

Now,

h(z) =
1



�∑
j=1

fj(z) = zp − 1



�∑
j=1

∞∑
k=p+n

ak,jz
k = zp −

∞∑
k=p+n

ekzk,

where

ek =
1



�∑
j=1

ak,j .

Notice that
∞∑

k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

1



�∑
j=1

ak,j ≤ 1

using (2.9). Thus, h(z) ∈ K(µ, γ, η, a, b, c, α, β).

3 Connections with Other Fractional Calculus Operators

Theorem 3.1. Let
ab(1 + p)(1 + p + η − γ)

c(1 + p + η − µ)(1 + p − γ)
≤ 1 (3.1)

for a, b ∈ IR, c ∈ IR \ z0, z0 = {0,−1,−2, . . .},−∞ < µ < 1,−∞ < γ < 1, η ∈ IR+,

− p ≤ α < p, β ≥ 0. Also let the function f(z) defined by (1.2) satisfy

∞∑
k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

ak ≤ c(1 + p + η − µ)(1 + p − γ)
ab(1 + p)(1 + p + η − γ)

. (3.2)

Then Lf(z) ∈ K(µ, γ, η, a, b, c, α, β) where g(k) is given by (1.22).

Proof. We have,

Lf(z) = zp −
∞∑

k=p+n

g(k)akzk, (3.3)

where

g(k) =
(a)k−p(b)k−p(1 + p)k−p(1 + p + η − γ)k−p

(c)k−p(1)k−p(1 + p + η − µ)k−p(1 + p − γ)k−p
.
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Under the hypothesis of the theorem, we observe that the function g(k) is a non-increasing
function, that is, g(p + n) ≤ g(p + 1), n ∈ IN . Thus,

0 < g(p + n) ≤ g(p + 1) =
ab(1 + p)(1 + p + η − γ)

c(1 + p + η − µ)(1 + p − γ)
. (3.4)

In view of (3.2) and (3.4), we now have
∞∑

k=p+n

k[k(1 + β) − (α + pβ)]g2(k)
p(p − α)

ak ≤ g(p + 1),

∞∑
k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

≤ 1.

Therefore, by Theorem 2.1, we conclude that

Lf(z) ∈ K(µ, γ, η, a, b, c, α, β).

Remark 3.1. The equality in (3.2) is attained for the function

f(z) = zp − cp(p − α)(1 + p + η − µ)(1 + p − γ)
ab(1 + p + β − α)(1 + p)2(1 + p + η − γ)

zp+1. (3.5)

Corollary 3.1. Let µ, γ, η be such that µ ≥ 0, γ < 1 + p, and

max{µ, γ} − (1 + p) < η ≤ µ(γ − (2 + p))
γ

. (3.6)

Also let the function f(z) by (1.2) satisfy

∞∑
k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

ak ≤ (1 + p + η − µ)(1 + p − γ)
(1 + p)(1 + p + η − γ)

(3.7)

for −p ≤ α < p, β ≥ 0. Then

Lf(z) = Jµ,γ,η
0,z f(z) ∈ β − UCV (α).

Proof. The corollary follows from Theorem 3.1 by setting a = c, b = 1.

Corollary 3.2. Let µ, γ, η ∈ IR such that µ ≥ 0, γ < 1 + p, and

max{µ, γ} − (1 + p) < η ≤ µ(γ − (2 + p))
γ

.

Also let the function f(z) defined by (1.2) satisfy

∞∑
k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

ak ≤ (1 + p − µ)
(1 + p)

for −p ≤ α < p, β ≥ 0. Then

Lf(z) = Dµ
0,f(z) ∈ β − UCV (α).
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Proof. The corollary follows from Theorem 3.1 by setting a = c, b = 1, µ = γ.

Corollary 3.3. Let µ, γ, η ∈ IR such that µ ≥ 0, γ < 1 + p, and

max{µ, γ} − (1 + p) < η ≤ µ(γ − (2 + p))
γ

.

Also, let the function f(z) defined by (1.2) satisfy

∞∑
k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

ak ≤ c

ab
.

Then Lf(z) = Fp(a, b; c)f(z) ∈ β − UCV (α).

Proof. Corollary follows from Theorem 3.1 by setting µ = γ = 0.

Corollary 3.4. Let the hypothesis of Corollary 3.3 be true and

∞∑
k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

ak ≤ c

a
.

then

Lf(z) = Lp(a, c)f(z) ∈ β − UCV (α).

Proof. The corollary follows from Theorem 3.1 by setting µ = γ = 0, b = 1.

4 Results on Modified Hadamard Product

Theorem 4.1. Let the function f(z) and g(z) defined by

f(z) = zp −
∞∑

k=p+n

akzk (4.1)

and

g(z) = zp −
∞∑

k=p+n

bkzk (4.2)

belong to K(µ, γ, η, a, b, c, α, β) and K(µ, γ, η, a, b, c, ξ, β), respectively. Also assume

that
ab(1 + p)(1 + p + η − γ)

c(1 + p + η − µ)(1 + p − γ)
≤ 1.

Then (f ∗ g)(z) ∈ K(µ, γ, η, a, b, c, δ, β), where

δ = p − p(1 + β)(p − α)(p − ξ)
k(1 + p + β − α)(1 + p + β − ξ)g(p + 1) − p(p − α)(p − ξ)

, (4.3)
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and the result is sharp for

f(z) = zp − p(p − α)
(p + 1)(1 + p + β − α)g(p + 1)

zp+1,

g(z) = zp − p(p − ξ)
(p + 1)(1 + p + β − ξ)g(p + 1)

zp+1.

Proof. To prove the theorem it is sufficient to show that

∞∑
k=p+n

k[k(1 + β) − (δ + pβ)]
p(p − δ)

g(k)akbk ≤ 1, (4.4)

where g(p + 1) is defined by (3.4).
Since f(z) ∈ K(µ, γ, η, a, b, c, α, β) and g(z) ∈ K(µ, γ, η, a, b, c, ξ, β) , we have

∞∑
k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

ak ≤ 1, (4.5)

∞∑
k=p+n

k[k(1 + β) − (ξ + pβ)]g(k)
p(p − ξ)

bk ≤ 1. (4.6)

Applying Cauchy-Schwarz inequality to (4.5) and (4.6), we get

∞∑
k=p+n

k
√

[k(1 + β) − (α + pβ)][k(1 + β) − (ξ + pβ)]g(k)
p
√

(p − α)(p − ξ)

√
akbk ≤ 1. (4.7)

In view of (4.4) it suffices to show that

∞∑
k=p+n

k[k(1 + β) − (δ + pβ)]g(k)
p(p − δ)

akbk

≤
∞∑

k=p+n

k
√

[k(1 + β) − (α + pβ)][k(1 + β) − (ξ + pβ)]g(k)
p
√

(p − α)(p − ξ)

√
akbk.

Or equivalently, for k ≥ p + 1.

√
akbk ≤

√
k[(1 + β) − (α + pβ)][k(1 + β) − (ξ + pβ)√

(p − α)(p − ξ)
(p − δ)

[k(1 + β) − (δ + pβ)]
. (4.8)

In view of (4.7) and (4.8) it is enough to show that

p
√

(p − α)(p − ξ)
k
√

[k(1 + β) − (α + pβ)][k(1 + β) − (ξ + pβ)]g(k)

≤
√

[k(1 + β) − (α + pβ)][k(1 + β) − (ξ + pβ)(p − δ)√
(p − α)(p − ξ)[k(1 + β) − (δ + pβ)]

,
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which simplices to

δ ≤ p − p(k − p)(1 + β)(p − α)(p − ξ)
k[k(1 + β) − (α + pβ)][k(1 + β) − (ξ + pβ)]g(k) − p(p − α)(p − ξ)

with g(k) given by (1.22). Using the fact that g(k) is a decreasing function of k (k ≥ p+1),
we can choose δ such that

δ = p − p(1 + β)(p − α)(p − ξ)
k(1 + p + β − α)(1 + p + β − ξ)g(p + 1) − p(p − α)(p − ξ)

,

where

g(p + 1) =
ab(1 + p)(1 + p + η − γ)

c(1 + p + η − µ)(1 + p − γ)
.

Theorem 4.2. Let the function f(z) and g(z) defined by (4.1) and (4.2) be in the class

K(µ, γ, η, a, b, c, α, β). Then (f ∗ g)(z) ∈ K(µ, γ, η, a, b, c, δ, β) where

δ = p − p(1 + β)(p − α)2

k(1 + p + β − α)2g(p + 1) − p(p − α)2

for g(p + 1) given by (2.8).

Proof. Substituting α = β in Theorem 4.1, the result follows.

Corollary 4.1. Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, a, b, c, α, β)
and let g(z) = zp−∑∞

k=p+n bkzk for |bk| ≤ 1. Then (f ∗g)(z) ∈ K(µ, γ, η, a, b, c, α, β).

5 Extreme Points of the Class K(µ, γ, η, a, b, c, α, β)

Theorem 5.1. Let f(z)p = zp and

fk(z) = zk − p(p − α)
k[k(1 + β) − (α + pβ)]

g(k)zk, (k ≥ p + 1).

Then f(z) ∈ K(µ, γ, η, a, b, c, α, β) if and only if f(z) can be expressed in the form

f(z) =
∞∑

k=p

λkfk(z), (5.1)

where λk ≥ 0 and
∑∞

k=p λk = 1.

Proof. Let f(z) be expressible in the form

f(z) =
∞∑

k=p

λkfk(z) = zk −
∞∑

k=p+1

p(p − α)
k[k(1 + β) − (α + pβ)]g(k)

λkzk.
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But
∞∑

k=p+1

p(p − α)λk

k[k(1+β)−(α+pβ)]g(k)
k[k(1 + β)−(α+pβ)]g(k)

p(p − α)
=

∞∑
k=p+1

λk = 1 − λp ≤ 1.

Therefore, f(z) ∈ K(µ, γ, η, a, b, c, α, β). Conversely, suppose that f(z) ∈
K(µ, γ, η, a, b, c, α, β). Setting

λk =
k[k(1 + β) − (α + pβ)]g(k)

p(p − α)
ak and λp = 1 −

∞∑
k=p+1

λk

we see that f(z) can be expressed in the form (5.1).

Corollary 5.1. The extreme points of the class K(µ, γ, η, a, b, c, α, β) are fp(z) = zp and

fk(z) = zp − p(p − α)
k[k(1 + β) − (α + pβ)]g(k)

zk, k ≥ p + 1.

6 Growth and Distortion Theorems

Theorem 6.1. Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, a, b, c, α, β).
Then

||Lf(z)| − |z|p| ≤ cp(p − α)(1 + p − γ)(1 + p + η − µ)
ab(1 + p)(1 + p + η − γ)(1 + p + β − α)

|z|p+1, (6.1)

and

||(Lf(z))′| − p|z|p−1| ≤ cp(p − α)(1 + p − γ)(1 + p + η − µ)
ab(1 + p + η − γ)(1 + p + β − α)

|z|p. (6.2)

Remark 6.1. The result (6.1) and (6.2) are sharp for the extremal function f(z) given by

f(z)=zp − cp(p − α)(1 + p − γ)(1 + p + η − µ)
ab(1 + p)(1 + p + η − γ)(1 + p + β − α)

zp+1. (6.3)

Corollary 6.1. Let Lf(z) ∈ K(µ, γ, η, a, b, c, α, β) then the disc |z| < 1 is mapped onto

a domain that contains the disc

|w| < 1 − cp(p − α)(1 + p − γ)(1 + p + η − µ)
ab(1 + p)(1 + p + η − µ)(1 + p + β − α)

.

Also (Lf(z))′ maps the disc |z| < 1 onto a domain that contains the disc

|w| < p − cp(p − α)(1 + p − γ)(1 + p + η − µ)
ab(1 + p + η − γ)(1 + p + β − α)

.

Remark 6.2. We can obtain the Growth and Distortion Theorems for Jµ,γ,η
0, f(z),

Dµ
0,zf(z), Fp(a, b; c)f(z) and Lp(a, c)f(z) by accordingly initializing the parameters.
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7 Class Preserving Integral Operators

The integral operator F (z) defined by

F (z) = zp−1

∫ z

0

f(t)
tp

dt (7.1)

is class preserving. The Komatu integral operator [5] is defined by

H(z) = P d
c,pf(z) =

(c + p)d

Γ(d)zc

∫ z

0

tc−1
(

log
z

t

)d−1

f(t)dt, d > 0, c > −p, z ∈ U

(7.2)
and the integral operator

I(z) = Qd
c,pf(z) =

(
d + c + p − 1

c + p − 1

)
d

zc

∫ z

0

tc−1

(
1 − t

z

)d−1

f(t)dt, (7.3)

(d > 0, c > −p, z ∈ U), is also class preserving. We note that

H(z) = zp −
∞∑

k=p+n

(
c + p

c + k

)d

akzk (7.4)

and

I(z) = zp −
∞∑

k=p+n

Γ(c + k)Γ(d + c + p)
Γ(d + c + k)Γ(c + p)

akzk. (7.5)

It can be easily proved that these are class preserving integral operators.

Theorem 7.1. Let d > 0, c > −p and f(z) belong to the class K(µ, γ, η, a, b, c, α, β).
Then the function H(z) defined by (7.2) is p-valent in the disc |z| < R1, where

R1 = inf
k

{
[k(1 + β) − (α + pβ)]g(k)(c + k)d

(p − α)(c + p)d

}1/(k−p)

. (7.6)

The result is sharp for the function f(z) given by

f(z) = zp − (p − α)(c + 1)d

[k(1 + β) − (α + pβ)]g(k)(c + k)d
zp+n, n ∈N.

Proof. We show that ∣∣∣∣H ′(z)
zp−1

− p

∣∣∣∣ ≤ p in |z| < R1, (7.7)

where R1 is given by (7.6).
In view of (7.4), we have∣∣∣∣H ′(z)

zp−1
− p

∣∣∣∣ =
∣∣∣∣ −

∞∑
k=p+n

k

(
c + p

c + k

)d

akzk−p

∣∣∣∣ ≤
∞∑

k=p+n

k

(
c + p

c + k

)d

ak|z|k−p.
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The last inequality is bounded above by p if
∞∑

k=p+n

k

p

(
c + 1
c + k

)d

ak|z|k−p ≤ 1. (7.8)

Also, f(z) ∈ K( γ, η, , a, b, c, α, β) and so
∞∑

k=p+n

k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

ak ≤ 1. (7.9)

Thus, inequality (7.8) will hold if

k

p

(
c + p

c + k

)d

|z|k−p ≤ k[k(1 + β) − (α + pβ)]g(k)
p(p − α)

.

That is, if

|z| ≤
{

[k(1 + β) − (α + pβ)]g(k)(c + k)d

(p − α)(c + p)d

}1/(k−p)

for k ≥ p + n, n ∈ IN.

The result follows by setting |z| = R1.

Theorem 7.2. Let d > 0, c > −p and f(z) belong to the class K(µ, γ, η, a, b, c, α, β).
Then the function I(z) defined by (7.3) is p-valent in the disc |z| < R2, where

R2 = inf
k

{
[k(1 + β) − (α + pβ)]Γ(c + d + k)Γ(c + p)g(k)

(p − α)Γ(c + k)Γ(d + c + p)

}1/(k−p)

.

The result is sharp for the function given by

f(z) = zp − (p − α)Γ(c + k)Γ(d + c + p)
[k(1 + β) − (α + pβ)]Γ(c + d + k)Γ(c + p)g(k)

zp+n, n ∈ IN.

Proof. In view of the arguments similar to Theorem 7.1 and relation (7.5), we get

|z| =
{

[k(1+β) − (α+pβ)]Γ(c + d + k)Γ(c + p)g(k)
(p − α)Γ(c + k)Γ(d + c + p)

}1/(k−p)

for k ≥ p+n, n ∈ IN.

8 Radius of β-Uniform Convexity

Theorem 8.1. Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, a, b, c, α, β).
Then f(z) is β-uniformly convex in |z| < R3 of order δ, 0 ≤ δ < p, 0 ≤ α + δ < p where

|z| < R3 = inf
k

{
[k(1 + β) − (α + pβ)]g(k)(p − δ − α)

(p − α)[β(k − p) − (p − δ − α)]

}
.

the result is sharp for

f(z) = zp −
∞∑

k=p+n

p(p − α)
k[k(1 + β) − (α + pβ)]g(k)

zk for some k.
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Proof. To prove the result it is sufficient to show that

β

∣∣∣∣1 +
zf ′′(z)
f ′(z)

− p

∣∣∣∣ + α ≤ p − δ. (8.1)

Simplifying by fairly straight forward calculations and using Theorem 2.1, we get

|z|k−p ≤ [k(1 + β) − (α + pβ)]g(k)(p − δ − α)
(p − α)[β(k − p) − (p − δ − α)]

. (8.2)

Setting |z| = R3 in (8.2) we get the desired result.
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