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Abstract: In this paper it is studied a fractional order model for thee¢hstages of HIV epidemics with drug-resistance. The model
includes CD4 T cells, CTLs, macrophages, and the virus populations. Wiilsite the model for different values of the fractional
derivativea € [0.5,1.0]. The fractional order system untangles generous dynarheahcteristics, such as faster transients and slower
evolutions as time increases. These traits are not seetegeirorder models, since they are customary of memorsepvang systems.
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1 Introduction

AIDS is a deadly disease in untreated patients. In theses ctise since initial infection till death is approximatélyl0
years. The virus responsible for the development of AID8édtuman immunodeficiency virus (HIV). HIV is a retrovirus
that impairs the immune response system, by targeting th&"Cizlper T cells, macrophages and dendritic cells. The
cytotoxic lymphocytes (CTLs) or immune response cells,theecells set out to eliminate infection by Kkilling infected
cells.

A typical HIV infection is, in the absence of treatment, d@erized by three stageH [The first is the acute phase,
where there is a spike in HIV load and a sharp decrease in tle Gzells count. Patients in this stage suffer commonly
from fever, headaches, rash, pharyngitis. The second &dlje chronic phase, characterized by a dramatic drop in the
viral load, approaching a quasi-steady state, and an isern@athe CD4 cells’ count. This behavior is explained by the
balance between virus production and clearance r@le#\fter the chronic phase, AIDS takes place. In the lateg, th
number of CD4 T cells declines steadily and the viral load increases hapid

Treatment for HIV/AIDS consists in the administration oftiagtroviral drugs (ART) that suppress HIV viral load
below the limit of detection{50 copieghl). The most common ART classes are the reverse transcriptabéors (RTI),
the protease inhibitors (PI), the fusion/entry inhibit@¥&l), the integrase inhibitors (II), and the multidrugiinitors (MI).
Drug-resistance is associated to high virus replicatiahrantation rates, poor adherence to therapy, or poor alisorpt
and pharmacokinetic§].

In the last few decades, scientists have devoted a conbldeamount of their research time to the understanding of
HIV epidemics, namely, the immune response to HIV, host&sinteraction, and the efficacy of ART regimens. Perelson
et al [4] study a model for viral load data, collected from infectedients, after administration of a PIl. They calculate
the lifespan of productively infected cells and of plasmaovis, the virions production rate, and the HIV-1 generatio
time (namely, the intracellular delay from the time virioaie released until they infect another cell, and cause the
release of new viruses). Hadjandrestual [5], propose a model for long term HIV dynamics, subjected toticoious
and structured treatment interruptions (STI). Their rssgshow that an optimized scheduling, where the interplay
between the two virus strains (drug-resistant and drugepiible) is facilitated, favors better responses from the
patients. Optimized STI is thus promising in patients thaveh developed strong drug-resistance, and for whom
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continuous therapy fails. Hernandez-Vargas and MiddI¢&mevelop a model for the three stages of HIV infection.
They conclude that macrophage population plays a key ralleeiprogression to AIDS. Pinto and Carvali® $tudy a
model for HIV dynamics in HIV-specific CD4 T cells, including intracellular delays. The authors arthet a good
strategy to control HIV should focus on drugs to prolong titemt period and/or slow down the virus production.

In this paper, we propose a model for the three stages of H¢fion, including drug-resistance. We study the integer-
order model and its fractional order counterpart. In SecBpwe describe the model, and, in Section 3, compute the
reproduction number and the local stability of the disefase-equilibrium. In Section 4, we analyze several simalai
of the integer-order and fractional-order versions of tleeled, and discuss implications of the results. Finally, wedaude
our work in Section 5, and point out some future research.

1.1 Some concepts of fractional calculus

Fractional calculus (FC) is a generalization to an arbjttaon-integer) order of ordinary differentiation and igitation.
Leibniz and Newton were the first mathematicians to discewe unravel the power of FC. Leibniz wrote a letter to
L'Hopital, in 1695, where he questioned the possibilitygeieralizing the concept of integer order derivatives to-no
integer orders. L'Hopital asked what would be the consages of considering a/2 order derivative. Leibniz ends the
letter exchange stating that2 order would be a paradox leading to useful consequenchs fature. More on fractional
calculus can be seenif,p,10,11,12,13].

FC has been applied, in the last few decades, to a largeyafistientific problems. Some important applications are
in engineering4,15,16,17], physics [L8], biology [19,20], and others.

The concept of fractional-order derivative has been foatad in different, but equivalent, ways. The most usual
definitions are the Riemann-Liouville, the Grinwald-Liktv (GL), and the Caputo formulation&(,8]. Here, we use
the GL derivative, given by equatiof)(

SLDEf(t) = limp o s S0t (— 1) (f(’) f(t—kh),t>a a>0 @)

where[x] means the integer part &f andh represents the time step increment.

The GL definition inspired a discrete-time calculation aitjon, based on the approximation of the time increntent
by means of the sampling perid A practical implementation is achieved with théerm truncated series given by:

Zz{Dfv} 1 ! 1) l'(a+1)Zk 5
7t} T“ L KT (a—k+1) @
where, in order to have good approximations, it is requirkd@er and a small value of .
Expression 2) represents the Euler, or first backward difference, agpration in the so-called — z conversion
scheme. Another possibility, consists in the Tustin cosieer rule. The most often adopted generalization of the
generalized derivative operator consistsris R.

2 Description of the model

The model describes the dynamics of tiecells populations, macrophages, CTLs and viruses. Thexenare
compartments, namely, the uninfected CDR cells, T, susceptible T cellsTs, resistant T cellsT;, macrophagesy,
susceptible macrophagdds, resistant macrophaged;, CTLs,Z, susceptible viruse¥s, and resistant viruses;.

The first two terms in the equations modeling theand M cells, represent the source of néwand M cells,
respectively. CTLs are generated by the first three termkeotorresponding equation. The logistic term of Theells
prevents its number to exceed the maximum concentrdfigR The infection parametens;, kp, ks denote cells’
infection by viruses and infected macrophages. Ré&tesks denote the killing of the infected helper cells and
macrophages by CTLs, respectively. Death rates are reyiegbby §. Viruses are cleared at a rate The dynamics
concerning drug-resistance is as follows. Parameétets < [0, 1], represent the efficacy of RTls and Pls, respectively. A
value of 0 is associated with non-treatment and a value oftl full treatment. RTls inhibit the infection of CD4T
cells and macrophages by viruses. On the other hand, Plemiréve production of infectious viruses from already
infected cells.

Drug resistance results in the inability of RTIs to inhilbigtinfection of cells by resistant viruses. As a result,dtitan
rates by mutated viruses are considered to be reduced. e agaplies to the protease enzyme, thereby reducing the
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virus’ replicative capacity. All these factors suggest timaitated virus is less fit than the wild-type in terms of irifieg
and replicating capacity. This fithess factor is incorpedan the model equations above through paramgt@he efficacy
of the drugs on macrophagesfis, wheref; € [0,1] and subindex refers to each drug. Drug efficacy in macrophages
is lower than in CD4 T cells. Any viral mutations are accounted in the model viaplarameteun, which represents the
probability of mutation per replication cycl¥s andV; particles are produced by the corresponding infected ‘Caxd
macrophages populations, with bursting sizes of drugisemstrain,Ns, and of drug-resistant strail;.

The schematic diagram of the model can be found in Figure
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Fig. 1. Schematic diagram of the modé&)(

The nonlinear fractional order system describing the dyioaof the model is:

T = A+ BT (1) 1T () (1 (T (1) + Tolt) + T (1)) / Trand +

—(1—1t1) (ke Vs(t) + kaMs (1)) T (t) — P(kaVr () + koM (1)) T (t) — AT (1)
O — (21— ty) (KaVs(t) + kaMs(0)) T (t) — ksTs(1)Z(t) — 5, Ts(t)
EO = WikaVe(t) + koM ()T (1) — kaTy () Z(t) — 8Ty (1)

Ml — 2o+ %M(t) — ka(1— f1t))Vs(OM(t) — KalhV ()M (t) — S3M (1) o
Wt = ka(1— Fata)Vs(OM (1) — ksMs(t)Z(t) — SMs()

W = kaVe(OM(t) — ksMr (1)Z(t) — G3Mr (1)

dVdsBJU = Ns(1—U)((1—tp) & Ts+ (1 — fotp)3Ms) — CVa(t)

d\g&;” = N U((L—t2)&T; + (1= fotp) &M, ) — V(1)

dz

T.(‘) = A3+ Kg(Ts(t) + Tr (1)) Z(t) + ky(Ms(t) + M (1)) Z(t) — 04Z(1)

3 Stability of equilibria

In this subsection, we compute the stability of equilibrighe fractional model3).
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We begin by considering two sub-models of mod®l Model @) is obtained from model3) by setting the variables
concerning resistance dynamids,(M; andV;) to zero. On the other hand, mod&) follows from model 8) by setting
the variables concerning sensitive dynamiks s andVs) to zero.

T = Ag+ FRELT(0) + 1T (6) (1 (T (1) + Ts(t)),/ Tma)

—(1—1t1)(kaVs(t) +kaMs(t)) T (t) — ST (1)
T — (1) (kaVa(t) + keMs(t)) T (t) — ksTs(t)Z(t) — &Ts(t)
Myt ZEELM(t) —ka(1— fat)Vs()M(t) — SMI(1) @
e = ka(1— 1t V(M) — ksMs(D)Z(t) — S5Ms(t)
VW Ny(1— U)((1— )3 Ts + (1— Fala) B3Ms) — CVK(t)
S22 A3+ keTs()Z(t) + keMs(D)Z(t) — B4Z(t)

The disease-free equilibrium of modd) {s given by:
P} = (T, T2, MO M2 V2, 7%) =
N R = 00k 5)

2r ) 7&7 34

Lemma 1.The disease-free equilibriunjﬁ’s locally asymptotically stable if all eigenvalugsof the linearization matrix
of model 4), satisfy|arg(Ai)| > a5 .

ProofThe linearization matrix of mode#y at the disease-free equilibriulPé is as follows:

r(k%) & e 0 —(1-tkT® P (1-t)kT® 0
0 & kZ® 0 (1-tkeTO (1 -tk TO 0
My = 0 0 _5 0 2 (1 fit)MO 0
0 0 0 & kZ® Ke(1— ft)M® 0
0 Noe(1-U)(1—t)& O Ne(l—u)(1— fotp)5 —c 0
0 KeZ® 0 ki 20 0 5

The following eigenvalues are easily obtained and are allard negative:

0
r (1— 2T ) _61, _637 _547

max

The remaining eigenvalues are the roots of the charadgtegistiation of the X 3 matrix,M5, given below:
—& —ksZ® (1-ty)koTO (1—ty)ke T —A (I-t)keTO (1-t)keTO
Mo = 0 —G—ksZ® k(1M | = 0 B ky(1— fity)MO
Ne(1-U)(1-t)& Ns(1-U)(1 - fat2)d3 ¢ No(1-uD Ne(1-WE  —c

The determinanM, — Al3| = 0, wherels is the identity matrix of order 3, is equivalent to:

(=A=A)(=B—=A)(—C—A) 4 (1 —t1)koT%, (1 — f1t1)MONg(1 — u)D+

—Ns(1—u)D(=B—=A)(L—t1)kg T — Ng(1 — U)Ekg(1 — f1t1)MO(~A-A) =0«

(=A=A)(=B—A)(—c—A)+ (1 —t1)koT°HcD— GeD(—B—A) —HCE(-A—A) =0 &

A%+ (A+B+c)A+ (AB+Ac+Bc— GeD— HCE)A + ABc— (1 —ty)ke T°HeD — BGeD— HCEA=0
Thus, the characteristic polynomial is:

PiA) = A3+ agA? +ap) +ag (6)

where a; = A+ B+ ¢, a = AB+ Ac+ Bc— GDc — HEc, ag = ABc— (1 — t1)koT°HDc — BGDc — HEAG
G— (1t ks TONg(1—u) andH — (lffltl)k4M0N5(l—u).

Let D(P) be the discriminant of thé characteristic polynoniaif matrix M,. Thus:
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la a a3 O
01 & & as
D(P)=—|32a a 0 0|=18aapas+ (aud;)® - 4aga; —4a3 - 27a3
0 3 29 a O
00 3 Za

Ahmedet al[21] study some Routh-Hurwitz stability conditions for framtal order systems. D(P) > 0 the well known
Routh-Hurwitz conditions are necessary and sufficientdoy(A;)| > a J to be true, i.e.:

a; >0, a3>0, ajap > ag

These conditions and the discrimin@i(tP) are computed and are shown to be greater than zero for theetmavalues
given in Tablel. We obtain:

a;=2301>0; a=0.1771>0; az3=0.0003>0
ayap = 4.0756> az; D(P) = 1.5673>0

Thus, the disease-free equilibrit®h is locally asymptotically stable far € [0,1).

We proceed with the study of the stability of the disease-&guilibrium,P2, of model ).

T(t) = A+ LT +T @ (TO) + T (1)) Tmay
—(KaVi () + koM (1) T (8) — ST (1)

Tr (t) = Lﬂ(klvr (t) + koM (t))T(t) - T (t) —ksTr (t)Z(t)

M(t) = Ao+ M) — KathV (OM(D) — SM(D) 6
Mr (t) = kathVe ()M(t) —ksMr (D)Z(t) — S3M ()
Vr(t) = Neu((1—1t2)%Tr + (1— fato) 33My) — CV(r)
Z(t) = A3+keTr (1)Z(t) + kyM; (1)Z(t) — 54Z(t)
The disease-free equilibrium sta?é of model (7) is given by:
RZ = (T, T, M%, MP, VP, 7%

Tma| (1=30)+/ (802 k| N ®)
= ( |: 2r j|707g270707£

Lemma 2.The disease-free equilibriungﬁs locally asymptotically stable if all eigenvalugsof the linearization matrix
of model 7), satisfy|arg(Ai)| > a 5.

ProofThe linearization matrix of the moder) at Pg is given by:

r (1— ﬂ:x) —& -0 ke BT yigTO 0
0 —&—ksZ® 0 Pk TO WYk TO 0
M3 = 0 0o -& 0 MO 0
0 0 0 —&—ksZ° ks MO 0
0 Neu(1—1t2)% 0 Nu(l—fatp)83 —c 0
0 keZO 0 k20 0 —0

The following eigenvalues are easily obtained and are allard negative:

0
r<1—$L> -, —03, —04,

max

The remaining eigenvalues are the roots of the charadtegigtiation of a 3« 3 matrix,My, given by:
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—& — &ZO l[szTO l[JleO —A L[JkgTO l[Jleo
My = 0 ——-ksZ® kMO | = O —B kMO
Nru(l—1t2)% Nru(l— fatp)d3  —c N.uD NUE —c

The determinanMs — Al3| = 0 is equivalent to:

B—A)(—C—A)+ WkoT kg MON;uD — NyuD(—B — A ) ks T® — N(UE K MO (—A—A) =0
B—A)(

(=A=2)(
A=A —A)+ Yk T%JcD—1eD(~B—A) — JCE(~A—A) =0

-c
( ) —c

wherel = “’kl’\é'“TO, J= ‘”“4NCFUMO. The characteristic polynomial associated to ma#ixis thus:
P(A) =A%+ aiA? +ap) +az (9)

wherea; = A+B+c, ap = AB+Ac+Bc—IDc — JE G andag = ABc— (ko T%IDc— IDBc— JEAC Let D(P) = 18xyapas+
(aqap)? — 4agas — 4a3 — 27a3 be the discriminant of the characteristic polynonfglA ) of matrix Ms. Following Ahmed
etal[21], if D(P) > 0 the Routh-Hurwitz conditions are necessary and suffié@riargA;)| > a J to be true, i.e.:

a; >0, a3>0, ajap > as

These conditions and the discrimindntP) are computed and are shown to be greater than zero for theptavalues
given in Tablel. We obtain:

a; =2301>0; a»,=0.2308>0; az3=0.0005>0
ayap = 5.31> ag; D(P) =0.0002> 0

Thus, the disease-free equilibriu®d is locally asymptotically stable far € [0,1).

We continue with the study of the stability of the diseas:fequilibrium of the full model3). The disease-free
equilibrium statePy, of model @) is given by:

Po = (T, T2, T2, M% M2, MP, V2,0, )
Tma{<r761>+ (1—81)2+ Tk

A A
= 2r }aoaoaéaoaoaoaoai

(10)

Lemma 3.The disease-free equilibriung B locally asymptotically stable if all eigenvalugsof the linearization matrix
of model 8), satisfy|arg(A)| > a 7.

ProofThe linearization matrix of modeBf around the disease-free equilibritgnis given by:

r (17 Tzn::x) & —m 0 —(1-tykeTO SPleTO BTO (1t TO BTO— gkyTO 0
0 —& — ksZ0 0 0 (1—t1)koTO 0 (L—tg)ke TO 0 0
0 0 e YA 0 PkoTO 0 Yk TO 0
Me — 0 0 0 —& 0 0 %Mo—kll(lffltl)Mo %MofkupMO 0
5 0 0 0 0 —&;—ksZ° 0 Ka(1— fity)MO 0 0
0 0 0 0 0 —&3—ksZ0 0 kaMO 0
0 Ns(1—u)(1—1tp)5, 0 0 Ns(1—u)(1-fat)ds 0 —c 0 0
0 0 Nu(l-t2)3 0 0 Neu(1— fotp) 33 0 —c 0
0 keZ° keZ 0 krZ° k720 0 0 —&

The following eigenvalues are all real and negative, andyealstained:

0
r (1_ il ) _517 _637 _547

Tm ax

The remaining eigenvalues are the roots of the charadgtegigtiation of a 6< 6 matrix, Mg, given by:
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—3 —kaZ® 0 (1—t)koTO 0 (1—t)kyTO 0
0 —8— ksZ0 0 YkoTO 0 WYk TO
Me — 0 0 — &3 — ksZ0 0 Ky(1— fit)M® 0
6 0 0 0 & ksZ® 0 kaMO
Ns(1—u)(1—12)& 0 Ns(1—u)(1— fot2) 33 0 —c 0
0 Nru(1—1t2)& 0 Nru(1— fatz)ds 0 —C
—A 0 (l—tl)szO 0 (l—tl)leO 0
0 —A 0 Yo TO 0 Yk TO
_ 0 0 -B 0 k41— fit1)M° 0
o 0 0 0 -B 0 KaMO
Ns(1—uD 0 Ns(1-wE O —c 0
0 N;uD 0 N:uE 0 —c

The determinanMs — A lg| = 0, wherelg is the identity matrix of order 6, is equivalent to:

(~A=2)2(=B=2A) [(=B=A)(—C—A)? = NeUE(—C— A )kayMO] + (—A— A )?Ns(1 — U)E[Ka(1 — Fat1)MOkayMON-UE—
(—C—A)(~B—A)ka(1— F1t1)MO) — (~A— A)NeUD(~B — A)[(hka TO(~B— A)(—C— A) -

(—C— A )KatMOWK,TO — (—A— A )N UDNs(1 — U)E[kaTO%g (1 — f1t;)MOkgtyMO—

(7B*)\>k4(17 f]_tl)MOlllleO] — Ns(lf u)D(—Af)\)(lftl)szO[kz;(l— fltl)Mok4L,UM0NrUE

—(=C—A)(=B—A)kg(1— f1t1)MO] +Ns(1— u)D(~A—A)(—B—A)x

[(1—t)ka TORYWYMONFUE — (—C— A ) (—B — A) (1 — ty)ka TO] +

+Ns(1— U)DNeUD(L — t1)ka TO [ ko TO%a (L — F1t1)MOkgtyMO — (=B — A )ka(1 — f1t1) MOk TO] +
+Ns(1—u)DNuD(—B— ) [(1—t)ka TOka TO(—B — A ) — kKatyMOpko TO(1 —t1)ky TO] = O

After some algebra manipulation, we obtain:

[(“A=2)(=B—=A)(~c=A) = (~A—A)Ns(L1 — U)Eka(1 — fity)M°+
+Ns(1—u)D(1 —tg)kaT%g(1 — f1t1)M® — Ng(1 —u)D(—B—A) (L -tk T =0

P(A)=[(—wA=2A)(-B=A)(—c—A) — (A= A)NUEKyypM® + N, uDks yMOyko TO — NeuDyiky TO(—B—A)] =0

The first term of the characteristic polynomi¥A ) is the characteristic polynomial of mati, (6) and the second term
is the characteristic polynomial of matri, (9). Thus, as it is shown above, the disease-free equilBfiand P2 are
locally asymptotically stable, the®y is also locally asymptotically stable for e [0,1).

4 Numerical Results

In this section we present the numerical results for mo@IShe parameters used in the simulations are given in Table
and the initial conditions are set 1q0) = 1000,M(0) = 30,Z(0) = 333, and all other variables are set to@L.

Figure2 depicts the dynamics of the disease-free equilibrium (DFpfe {0.5,0.6,0.7,0.8,0.9,1.0}.

In Figures3-4, we observe the dynamics of the rapid progressors (RP) atie ddng-term non progressors (LTNP)
of the model 8), respectively, foo € {0.5,0.6,0.7,0.8,0.9,1.0}. RP are untreated patients whose CDicells decrease
below the AIDS threshold after, approximately, 3-5 ye&4.[On the other hand, LTNP are HIV patients, who without
therapy, manage to escape the common route to AIDS for 1%a6yRP and LTNP account for 10% and-107%,
respectively, of HIV infected patient2%]. Most non-treated patients, living with HIV, progress téDS within 8-10
years, after initial infection. Differences in the proggies route to AIDS have been associated with patients’ imenun
system status, genetic profile, and a4 [

From the observation of Fig2-4, some interesting features arise. Faster transients aweisévolutions towards the
disease-free equilibrium, RP and LTNP statesyas decreased from 1. Moreover, these distinct patternsdoraasing
o may bring new insights in the understanding of distinct pesgion routes to AIDS in individuals. We mean by this
that the fractional modeBj may help to predict when a particular individual will chanits HIV progression status, thus
helping the clinician to advise, in advance, the initiatmmthe change of HAART regimen. The diversity of patterns,
observed in the fractional model, are somewhat masked by#a® behavior seen in the deterministic models. There are
current studies that suggest the use of the cumulativeithgav HIV viremia, defined as the area under the curve of the
log viral load of each individual, to predict AIDS-relatedcanon-AlIDS-related malignancie2q]. Early treatment and
therapy adherence are considered crucial to reduce cuwauladividual HIV burden. Thus, better predictions of theav
load curve, induce better clinical judgment, improvingigats’ well being.

We expect to validate this claim in a near future, using detafPortuguese HIV infected patients.
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Parameter DF RP LTNP Reference
M 10 10 35 Bl
A2 0.15 0.15 0.15 q]
A3 5 5 4 Bl
& 0.02 0.02 0.01 g
& 0.28 0.28 0.28 g
& 0.005 0.0045 0.005 5
& 0.015 0.015 0.028 g

r 0.03 0.072 0.072 g

c 23 8 10

Tmax 1500 1500 1500 72
G 300 300 300 6]
C 220 220 200 6]
ty 0 0 0 Bl
to 0 0 0 Bl
u 0.01 0001 Q001 Bl
] 0.9 0.9 0.9 5]
p1 0.048 0.048 0.065 g
p2 0.0078 0.0078 0.0068 5
Ky 40%x108 40x10° 25x10°° [23)
ko 1x10°8 1x10°8 9.8x10°° [23]
ks 99x108 99x10% 99x10* [23]
ks 422x10°8 422x108 422x10°8 [23]
ks 66x10°% 66x10°% 96x10° [23]
ke 263x104 23x104 393x104 [23
k7 528x109 528x10°% 6.6x10° [23]
Ns 4800 4800 3000 12
Nr 3000 3000 2000 72
f1 0.34 0.34 0.34 g
fa 0.34 0.34 0.34 g

Table 1: Parameters used in the numerical simulations of m@&JeD(F - disease-free equilibrium; RP - rapid progressor;
LTNP - long-term non progressor.

5 Conclusion

We analyze a fractional order model for the three-stageslgfirfection, including drug-resistance. We compute the
stability of the disease-free equilibrium. The fractionadel depicts a broad variety of dynamics for the disease;fr
RP and the LTNP states. The later may help to explain pediggbetween individuals’ progression to AIDS, that may
help clinicians to advise, ‘a priori’ changes or initiatiohHAART regimen, contributing to patients’ well being. Ehi
conclusion will be validated with real data in a near future.
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