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Abstract: In this paper it is studied a fractional order model for the three stages of HIV epidemics with drug-resistance. The model
includes CD4+ T cells, CTLs, macrophages, and the virus populations. We simulate the model for different values of the fractional
derivativeα ∈ [0.5,1.0]. The fractional order system untangles generous dynamicalcharacteristics, such as faster transients and slower
evolutions as time increases. These traits are not seen in integer-order models, since they are customary of memory-preserving systems.
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1 Introduction

AIDS is a deadly disease in untreated patients. In these cases, time since initial infection till death is approximately9-10
years. The virus responsible for the development of AIDS is the human immunodeficiency virus (HIV). HIV is a retrovirus
that impairs the immune response system, by targeting the CD4+ helper T cells, macrophages and dendritic cells. The
cytotoxic lymphocytes (CTLs) or immune response cells, arethe cells set out to eliminate infection by killing infected
cells.

A typical HIV infection is, in the absence of treatment, characterized by three stages [1]. The first is the acute phase,
where there is a spike in HIV load and a sharp decrease in the CD4+ T cells count. Patients in this stage suffer commonly
from fever, headaches, rash, pharyngitis. The second stageis the chronic phase, characterized by a dramatic drop in the
viral load, approaching a quasi-steady state, and an increase in the CD4 cells’ count. This behavior is explained by the
balance between virus production and clearance rates [2]. After the chronic phase, AIDS takes place. In the later, the
number of CD4+ T cells declines steadily and the viral load increases rapidly.

Treatment for HIV/AIDS consists in the administration of antiretroviral drugs (ART) that suppress HIV viral load
below the limit of detection (∼50 copies/ml). The most common ART classes are the reverse transcriptaseinhibitors (RTI),
the protease inhibitors (PI), the fusion/entry inhibitors(FEI), the integrase inhibitors (II), and the multidrug inhibitors (MI).
Drug-resistance is associated to high virus replication and mutation rates, poor adherence to therapy, or poor absorption
and pharmacokinetics [3].

In the last few decades, scientists have devoted a considerable amount of their research time to the understanding of
HIV epidemics, namely, the immune response to HIV, host/virus interaction, and the efficacy of ART regimens. Perelson
et al [4] study a model for viral load data, collected from infected patients, after administration of a PI. They calculate
the lifespan of productively infected cells and of plasma virions, the virions production rate, and the HIV-1 generation
time (namely, the intracellular delay from the time virionsare released until they infect another cell, and cause the
release of new viruses). Hadjandreouet al [5], propose a model for long term HIV dynamics, subjected to continuous
and structured treatment interruptions (STI). Their results show that an optimized scheduling, where the interplay
between the two virus strains (drug-resistant and drug-susceptible) is facilitated, favors better responses from the
patients. Optimized STI is thus promising in patients that have developed strong drug-resistance, and for whom
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continuous therapy fails. Hernandez-Vargas and Middleton[6] develop a model for the three stages of HIV infection.
They conclude that macrophage population plays a key role inthe progression to AIDS. Pinto and Carvalho [7] study a
model for HIV dynamics in HIV-specific CD4+ T cells, including intracellular delays. The authors arguethat a good
strategy to control HIV should focus on drugs to prolong the latent period and/or slow down the virus production.

In this paper, we propose a model for the three stages of HIV infection, including drug-resistance. We study the integer-
order model and its fractional order counterpart. In Section 2, we describe the model, and, in Section 3, compute the
reproduction number and the local stability of the disease-free equilibrium. In Section 4, we analyze several simulations
of the integer-order and fractional-order versions of the model, and discuss implications of the results. Finally, we conclude
our work in Section 5, and point out some future research.

1.1 Some concepts of fractional calculus

Fractional calculus (FC) is a generalization to an arbitrary (non-integer) order of ordinary differentiation and integration.
Leibniz and Newton were the first mathematicians to discoverand unravel the power of FC. Leibniz wrote a letter to
L’Hôpital, in 1695, where he questioned the possibility ofgeneralizing the concept of integer order derivatives to non-
integer orders. L’Hôpital asked what would be the consequences of considering a 1/2 order derivative. Leibniz ends the
letter exchange stating that 1/2 order would be a paradox leading to useful consequences in the future. More on fractional
calculus can be seen in [8,9,10,11,12,13].

FC has been applied, in the last few decades, to a large variety of scientific problems. Some important applications are
in engineering [14,15,16,17], physics [18], biology [19,20], and others.

The concept of fractional-order derivative has been formulated in different, but equivalent, ways. The most usual
definitions are the Riemann-Liouville, the Grünwald-Letnikov (GL), and the Caputo formulations [10,8]. Here, we use
the GL derivative, given by equation (1).

GL
a Dα

t f (t) = limh→0
1

hα ∑
[ t−a

h ]
k=0 (−1)k

(

α
k

)

f (t − kh) , t > a, α > 0 (1)

where[x] means the integer part ofx, andh represents the time step increment.

The GL definition inspired a discrete-time calculation algorithm, based on the approximation of the time incrementh
by means of the sampling peridT. A practical implementation is achieved with ther-term truncated series given by:

Z {Dα f (t)}
Z { f (t)}

=
1

Tα

r

∑
k=0

(−1)kΓ (α +1)
k! Γ (α − k+1)

z−k (2)

where, in order to have good approximations, it is required alarger and a small value ofT.
Expression (2) represents the Euler, or first backward difference, approximation in the so-calleds→ z conversion

scheme. Another possibility, consists in the Tustin conversion rule. The most often adopted generalization of the
generalized derivative operator consists inα ∈ R.

2 Description of the model

The model describes the dynamics of theT cells populations, macrophages, CTLs and viruses. There are nine
compartments, namely, the uninfected CD4+ T cells, T, susceptible T cells,Ts, resistant T cells,Tr , macrophages,M,
susceptible macrophage,Ms, resistant macrophages,Mr , CTLs,Z, susceptible viruses,Vs, and resistant viruses,Vr .

The first two terms in the equations modeling theT and M cells, represent the source of newT and M cells,
respectively. CTLs are generated by the first three terms of the corresponding equation. The logistic term of theT cells
prevents its number to exceed the maximum concentrationTmax. The infection parametersk1, k2, k4 denote cells’
infection by viruses and infected macrophages. Ratesk3, k5 denote the killing of the infected helper cells and
macrophages by CTLs, respectively. Death rates are represented byδi . Viruses are cleared at a ratec. The dynamics
concerning drug-resistance is as follows. Parameterst1, t2 ∈ [0,1], represent the efficacy of RTIs and PIs, respectively. A
value of 0 is associated with non-treatment and a value of 1 with full treatment. RTIs inhibit the infection of CD4+ T
cells and macrophages by viruses. On the other hand, PIs prevent the production of infectious viruses from already
infected cells.

Drug resistance results in the inability of RTIs to inhibit the infection of cells by resistant viruses. As a result, infection
rates by mutated viruses are considered to be reduced. The same applies to the protease enzyme, thereby reducing the
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virus’ replicative capacity. All these factors suggest that mutated virus is less fit than the wild-type in terms of infecting
and replicating capacity. This fitness factor is incorporated in the model equations above through parameterψ . The efficacy
of the drugs on macrophages isfiti , where fi ∈ [0,1] and subindexi refers to each drug. Drug efficacy in macrophages
is lower than in CD4+ T cells. Any viral mutations are accounted in the model via the parameteru, which represents the
probability of mutation per replication cycle.Vs andVr particles are produced by the corresponding infected CD4+ and
macrophages populations, with bursting sizes of drug-sensitive strain,Ns, and of drug-resistant strain,Nr .

The schematic diagram of the model can be found in Figure1.

Fig. 1: Schematic diagram of the model (3).

The nonlinear fractional order system describing the dynamics of the model is:

dTα (t)
dtα = λ1+

p1(Vs(t)+Vr (t))
Vs(t)+Vr (t)+C1

T(t)+ rT (t)(1− (T(t)+Ts(t)+Tr(t))/Tmax)+

−(1− t1)(k1Vs(t)+ k2Ms(t))T(t)−ψ(k1Vr(t)+ k2Mr(t))T(t)− δ1T(t)
dTα

s (t)
dtα = (1− t1)(k1Vs(t)+ k2Ms(t))T(t)− k3Ts(t)Z(t)− δ2Ts(t)

dTα
r (t)

dtα = ψ(k1Vr(t)+ k2Mr(t))T(t)− k3Tr(t)Z(t)− δ2Tr(t)
dMα (t)

dtα = λ2+
p2(Vs(t)+Vr (t))
C2+Vs(t)+Vr (t)

M(t)− k4(1− f1t1)Vs(t)M(t)− k4ψVr(t)M(t)− δ3M(t)
dMα

s (t)
dtα = k4(1− f1t1)Vs(t)M(t)− k5Ms(t)Z(t)− δ3Ms(t)

dMα
r (t)

dtα = k4ψVr(t)M(t)− k5Mr(t)Z(t)− δ3Mr(t)
dVα

s (t)
dtα = Ns(1−u)((1− t2)δ2Ts+(1− f2t2)δ3Ms)− cVs(t)

dVα
r (t)

dtα = Nru((1− t2)δ2Tr +(1− f2t2)δ3Mr)− cVr(r)
dZα (t)

dtα = λ3+ k6(Ts(t)+Tr(t))Z(t)+ k7(Ms(t)+Mr(t))Z(t)− δ4Z(t)

(3)

3 Stability of equilibria

In this subsection, we compute the stability of equilibria of the fractional model (3).
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We begin by considering two sub-models of model (3). Model (4) is obtained from model (3) by setting the variables
concerning resistance dynamics (Tr , Mr andVr ) to zero. On the other hand, model (7) follows from model (3) by setting
the variables concerning sensitive dynamics (Ts, Ms andVs) to zero.

dTα (t)
dtα = λ1+

p1Vs(t)
Vs(t)+C1

T(t)+ rT (t)(1− (T(t)+Ts(t))/Tmax)

−(1− t1)(k1Vs(t)+ k2Ms(t))T(t)− δ1T(t)

dTα
s (t)

dtα = (1− t1)(k1Vs(t)+ k2Ms(t))T(t)− k3Ts(t)Z(t)− δ2Ts(t)

dMα (t)
dtα = λ2+

p2Vs(t)
C2+Vs(t)

M(t)− k4(1− f1t1)Vs(t)M(t)− δ3M(t)

dMα
s (t)

dtα = k4(1− f1t1)Vs(t)M(t)− k5Ms(t)Z(t)− δ3Ms(t)

dVα
s (t)

dtα = Ns(1−u)((1− t2)δ2Ts+(1− f2t2)δ3Ms)− cVs(t)

dZα (t)
dtα = λ3+ k6Ts(t)Z(t)+ k7Ms(t)Z(t)− δ4Z(t)

(4)

The disease-free equilibrium of model (4) is given by:

P1
0 = (T0,T0

s ,M
0,M0

s ,V
0
s ,Z

0) =

=





Tmax

[

(r−δ1)+

√

(r−δ1)2+
4rλ1
Tmax

]

2r ,0, λ2
δ3
,0,0, λ3

δ4





(5)

Lemma 1.The disease-free equilibrium P1
0 is locally asymptotically stable if all eigenvaluesλi of the linearization matrix

of model (4), satisfy|arg(λi)|> α π
2 .

Proof.The linearization matrix of model (4) at the disease-free equilibriumP1
0 is as follows:

M1 =











r
(

1− 2T0

Tmax

)

− δ1 − rT 0

Tmax
0 −(1− t1)k2T0 p1T0

C1
− (1− t1)k1T0 0

0 −δ2− k3Z0 0 (1− t1)k2T0 (1− t1)k1T0 0

0 0 −δ3 0 p2M0

C2
− k4(1− f1t1)M0 0

0 0 0 −δ3− k5Z0 k4(1− f1t1)M0 0
0 Ns(1−u)(1− t2)δ2 0 Ns(1−u)(1− f2t2)δ3 −c 0
0 k6Z0 0 k7Z0 0 −δ4











The following eigenvalues are easily obtained and are all real and negative:

r

(

1−
2T0

Tmax

)

− δ1, −δ3, −δ4,

The remaining eigenvalues are the roots of the characteristic equation of the 3×3 matrix,M2, given below:

M2 =

(

−δ2− k3Z0 (1− t1)k2T0 (1− t1)k1T0

0 −δ3− k5Z0 k4(1− f1t1)M0

Ns(1−u)(1− t2)δ2 Ns(1−u)(1− f2t2)δ3 −c

)

=

(

−A (1− t1)k2T0 (1− t1)k1T0

0 −B k4(1− f1t1)M0

Ns(1−u)D Ns(1−u)E −c

)

The determinant|M2−λ I3|= 0, whereI3 is the identity matrix of order 3, is equivalent to:

(−A−λ )(−B−λ )(−c−λ )+(1− t1)k2T0k4(1− f1t1)M0Ns(1−u)D+
−Ns(1−u)D(−B−λ )(1− t1)k1T0−Ns(1−u)Ek4(1− f1t1)M0(−A−λ ) = 0⇔
(−A−λ )(−B−λ )(−c−λ )+(1− t1)k2T0HcD−GcD(−B−λ )−HcE(−A−λ)= 0⇔
λ 3+(A+B+ c)λ 2+(AB+Ac+Bc−GcD−HcE)λ +ABc− (1− t1)k2T0HcD−BGcD−HcEA= 0

Thus, the characteristic polynomial is:
P1(λ ) = λ 3+a1λ 2+a2λ +a3 (6)

where a1 = A + B + c, a2 = AB+ Ac+ Bc− GDc− HEc, a3 = ABc− (1 − t1)k2T0HDc − BGDc− HEAc,

G= (1−t1)k1T0Ns(1−u)
c , andH = (1− f1t1)k4M0Ns(1−u)

c .
Let D(P) be the discriminant of the characteristic polynomialP of matrixM2. Thus:
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D(P) =−

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a1 a2 a3 0
0 1 a1 a2 a3
3 2a1 a2 0 0
0 3 2a1 a2 0
0 0 3 2a1 a2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 18a1a2a3+(a1a2)
2−4a3a

3
1−4a3

2−27a2
3

Ahmedet al [21] study some Routh-Hurwitz stability conditions for fractional order systems. IfD(P)> 0 the well known
Routh-Hurwitz conditions are necessary and sufficient for|arg(λi)|> α π

2 to be true, i.e.:

a1 > 0, a3 > 0, a1a2 > a3

These conditions and the discriminantD(P) are computed and are shown to be greater than zero for the parameter values
given in Table1. We obtain:

a1 = 23.01> 0; a2 = 0.1771> 0; a3 = 0.0003> 0
a1a2 = 4.0756> a3; D(P) = 1.5673> 0

Thus, the disease-free equilibriumP1
0 is locally asymptotically stable forα ∈ [0,1).

We proceed with the study of the stability of the disease-free equilibrium,P2
0 , of model (7).

Ṫ(t) = λ1+
p1Vr (t)

Vr (t)+C1
T(t)+ rT (t)(1− (T(t)+Tr(t))/Tmax)

−ψ(k1Vr(t)+ k2Mr(t))T(t)− δ1T(t)

Ṫr(t) = ψ(k1Vr(t)+ k2Mr(t))T(t)− δ2Tr(t)− k3Tr(t)Z(t)

Ṁ(t) = λ2+
p2Vr (t)

C2+Vr (t)
M(t)− k4ψVr(t)M(t)− δ3M(t)

Ṁr(t) = k4ψVr(t)M(t)− k5Mr(t)Z(t)− δ3Mr(t)

V̇r(t) = Nru((1− t2)δ2Tr +(1− f2t2)δ3Mr)− cVr(r)

Ż(t) = λ3+ k6Tr(t)Z(t)+ k7Mr(t)Z(t)− δ4Z(t)

(7)

The disease-free equilibrium stateP2
0 of model (7) is given by:

P2
0 = (T0,T0

r ,M
0,M0

r ,V
0
r ,Z

0)

=





Tmax

[

(r−δ1)+

√

(r−δ1)2+
4rλ1
Tmax

]

2r ,0, λ2
δ3
,0,0, λ3

δ4





(8)

Lemma 2.The disease-free equilibrium P2
0 is locally asymptotically stable if all eigenvaluesλi of the linearization matrix

of model (7), satisfy|arg(λi)|> α π
2 .

Proof.The linearization matrix of the model (7) at P2
0 is given by:

M3 =















r
(

1− 2T0

Tmax

)

− δ1 − rT 0

Tmax
0 −ψk2T0 p1T0

C1
−ψk1T0 0

0 −δ2− k3Z0 0 ψk2T0 ψk1T0 0

0 0 −δ3 0 p2M0

C2
− k4ψM0 0

0 0 0 −δ3− k5Z0 k4ψM0 0
0 Nru(1− t2)δ2 0 Nru(1− f2t2)δ3 −c 0
0 k6Z0 0 k7Z0 0 −δ4















The following eigenvalues are easily obtained and are all real and negative:

r

(

1−
2T0

Tmax

)

− δ1, −δ3, −δ4,

The remaining eigenvalues are the roots of the characteristic equation of a 3×3 matrix,M4, given by:
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M4 =

(

−δ2− k3Z0 ψk2T0 ψk1T0

0 −δ3− k5Z0 k4ψM0

Nru(1− t2)δ2 Nru(1− f2t2)δ3 −c

)

=

(

−A ψk2T0 ψk1T0

0 −B k4ψM0

NruD NruE −c

)

The determinant|M4−λ I3|= 0 is equivalent to:

(−A−λ )(−B−λ )(−c−λ )+ψk2T0k4ψM0NruD−NruD(−B−λ )ψk1T0−NruEk4ψM0(−A−λ ) = 0
(−A−λ )(−B−λ )(−c−λ )+ψk2T0JcD− IcD(−B−λ )− JcE(−A−λ )= 0

whereI = ψk1Nr uT0

c , J = ψk4Nr uM0

c . The characteristic polynomial associated to matrixM4 is thus:

P2(λ ) = λ 3+a1λ 2+a2λ +a3 (9)

wherea1 =A+B+c, a2=AB+Ac+Bc− IDc−JEc, anda3 =ABc−ψk2T0JDc− IDBc−JEAc. LetD(P) = 18a1a2a3+
(a1a2)

2−4a3a3
1−4a3

2−27a2
3 be the discriminant of the characteristic polynomialP2(λ ) of matrixM4. Following Ahmed

et al [21], if D(P)> 0 the Routh-Hurwitz conditions are necessary and sufficientfor |arg(λi)|> α π
2 to be true, i.e.:

a1 > 0, a3 > 0, a1a2 > a3

These conditions and the discriminantD(P) are computed and are shown to be greater than zero for the parameter values
given in Table1. We obtain:

a1 = 23.01> 0; a2 = 0.2308> 0; a3 = 0.0005> 0
a1a2 = 5.31> a3; D(P) = 0.0002> 0

Thus, the disease-free equilibriumP2
0 is locally asymptotically stable forα ∈ [0,1).

We continue with the study of the stability of the disease-free equilibrium of the full model (3). The disease-free
equilibrium state,P0, of model (3) is given by:

P0 = (T0,T0
s ,T

0
r ,M

0,M0
s ,M

0
r ,V

0
s ,V

0
r ,Z

0)

=





Tmax

[

(r−δ1)+

√

(r−δ1)2+
4rλ1
Tmax

]

2r ,0,0, λ2
δ3
,0,0,0,0, λ3

δ4





(10)

Lemma 3.The disease-free equilibrium P0 is locally asymptotically stable if all eigenvaluesλi of the linearization matrix
of model (3), satisfy|arg(λi)|> α π

2 .

Proof.The linearization matrix of model (3) around the disease-free equilibriumP0 is given by:

M5 =





















r
(

1− 2T0

Tmax

)

− δ1 − rT 0

Tmax
− rT 0

Tmax
0 −(1− t1)k2T0 −ψk2T0 p1

C1
T0− (1− t1)k1T0 p1

C1
T0−ψk1T0 0

0 −δ2− k3Z0 0 0 (1− t1)k2T0 0 (1− t1)k1T0 0 0
0 0 −δ2− k3Z0 0 0 ψk2T0 0 ψk1T0 0
0 0 0 −δ3 0 0 p2

C2
M0− k4(1− f1t1)M0 p2

C2
M0− k4ψM0 0

0 0 0 0 −δ3− k5Z0 0 k4(1− f1t1)M0 0 0
0 0 0 0 0 −δ3− k5Z0 0 k4ψM0 0
0 Ns(1−u)(1− t2)δ2 0 0 Ns(1−u)(1− f2t2)δ3 0 −c 0 0
0 0 Nru(1− t2)δ2 0 0 Nru(1− f2t2)δ3 0 −c 0
0 k6Z0 k6Z0 0 k7Z0 k7Z0 0 0 −δ4





















The following eigenvalues are all real and negative, and easily obtained:

r

(

1−
2T0

Tmax

)

− δ1, −δ3, −δ4,

The remaining eigenvalues are the roots of the characteristic equation of a 6×6 matrix,M6, given by:

c© 2015 NSP
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M6 =













−δ2− k3Z0 0 (1− t1)k2T0 0 (1− t1)k1T0 0
0 −δ2− k3Z0 0 ψk2T0 0 ψk1T0

0 0 −δ3− k5Z0 0 k4(1− f1t1)M0 0
0 0 0 −δ3− k5Z0 0 k4ψM0

Ns(1−u)(1− t2)δ2 0 Ns(1−u)(1− f2t2)δ3 0 −c 0
0 Nru(1− t2)δ2 0 Nru(1− f2t2)δ3 0 −c













=













−A 0 (1− t1)k2T0 0 (1− t1)k1T0 0
0 −A 0 ψk2T0 0 ψk1T0

0 0 −B 0 k4(1− f1t1)M0 0
0 0 0 −B 0 k4ψM0

Ns(1−u)D 0 Ns(1−u)E 0 −c 0
0 NruD 0 NruE 0 −c













The determinant|M6−λ I6|= 0, whereI6 is the identity matrix of order 6, is equivalent to:

(−A−λ )2(−B−λ )
[

(−B−λ )(−c−λ )2−NruE(−c−λ )k4ψM0
]

+(−A−λ )2Ns(1−u)E[k4(1− f1t1)M0k4ψM0NruE−
(−c−λ )(−B−λ )k4(1− f1t1)M0]− (−A−λ )NruD(−B−λ )[ψk1T0(−B−λ )(−c−λ )−
(−c−λ )k4ψM0ψk2T0]− (−A−λ )NruDNs(1−u)E[ψk2T0k4(1− f1t1)M0k4ψM0−
(−B−λ )k4(1− f1t1)M0ψk1T0]−Ns(1−u)D(−A−λ )(1− t1)k2T0[k4(1− f1t1)M0k4ψM0NruE
−(−c−λ )(−B−λ )k4(1− f1t1)M0]+Ns(1−u)D(−A−λ )(−B−λ)×
[

(1− t1)k1T0k4ψM0NruE− (−c−λ )(−B−λ )(1− t1)k1T0
]

+
+Ns(1−u)DNruD(1− t1)k2T0

[

ψk2T0k4(1− f1t1)M0k4ψM0− (−B−λ )k4(1− f1t1)M0ψk1T0
]

+
+Ns(1−u)DNruD(−B−λ )

[

(1− t1)k1T0ψk1T0(−B−λ )− k4ψM0ψk2T0(1− t1)k1T0
]

= 0

After some algebra manipulation, we obtain:

[(−A−λ )(−B−λ )(−c−λ )− (−A−λ )Ns(1−u)Ek4(1− f1t1)M0+
+Ns(1−u)D(1− t1)k2T0k4(1− f1t1)M0−Ns(1−u)D(−B−λ )(1− t1)k1T0] = 0

P(λ ) =
[

(−A−λ )(−B−λ )(−c−λ )− (−A−λ)NruEk4ψM0+NruDk4ψM0ψk2T0−NruDψk1T0(−B−λ )
]

= 0

The first term of the characteristic polynomialP(λ ) is the characteristic polynomial of matrixM2 (6) and the second term
is the characteristic polynomial of matrixM4 (9). Thus, as it is shown above, the disease-free equilibriaP1

0 andP2
0 are

locally asymptotically stable, thenP0 is also locally asymptotically stable forα ∈ [0,1).

4 Numerical Results

In this section we present the numerical results for models (3). The parameters used in the simulations are given in Table1
and the initial conditions are set toT(0) = 1000,M(0) = 30,Z(0) = 333, and all other variables are set to 0.001.

Figure2 depicts the dynamics of the disease-free equilibrium (DF) for α ∈ {0.5,0.6,0.7,0.8,0.9,1.0}.
In Figures3-4, we observe the dynamics of the rapid progressors (RP) and ofthe long-term non progressors (LTNP)

of the model (3), respectively, forα ∈ {0.5,0.6,0.7,0.8,0.9,1.0}. RP are untreated patients whose CD4+ T cells decrease
below the AIDS threshold after, approximately, 3-5 years [24]. On the other hand, LTNP are HIV patients, who without
therapy, manage to escape the common route to AIDS for 15-20 years. RP and LTNP account for 10% and 10− 17%,
respectively, of HIV infected patients [25]. Most non-treated patients, living with HIV, progress to AIDS within 8-10
years, after initial infection. Differences in the progression route to AIDS have been associated with patients’ immune
system status, genetic profile, and age [24].

From the observation of Figs.2-4, some interesting features arise. Faster transients and slower evolutions towards the
disease-free equilibrium, RP and LTNP states, asα is decreased from 1. Moreover, these distinct patterns for decreasing
α may bring new insights in the understanding of distinct progression routes to AIDS in individuals. We mean by this
that the fractional model (3) may help to predict when a particular individual will change its HIV progression status, thus
helping the clinician to advise, in advance, the initiationor the change of HAART regimen. The diversity of patterns,
observed in the fractional model, are somewhat masked by themean behavior seen in the deterministic models. There are
current studies that suggest the use of the cumulative individual HIV viremia, defined as the area under the curve of the
log viral load of each individual, to predict AIDS-related and non-AIDS-related malignancies [26]. Early treatment and
therapy adherence are considered crucial to reduce cumulative individual HIV burden. Thus, better predictions of the viral
load curve, induce better clinical judgment, improving patients’ well being.

We expect to validate this claim in a near future, using data from Portuguese HIV infected patients.
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Parameter DF RP LTNP Reference
λ1 10 10 35 [5]
λ2 0.15 0.15 0.15 [5]
λ3 5 5 4 [5]
δ1 0.02 0.02 0.01 [5]
δ2 0.28 0.28 0.28 [5]
δ3 0.005 0.0045 0.005 [5]
δ4 0.015 0.015 0.028 [5]
r 0.03 0.072 0.072 [5]
c 23 8 10

Tmax 1500 1500 1500 [22]
C1 300 300 300 [6]
C2 220 220 200 [6]
t1 0 0 0 [5]
t2 0 0 0 [5]
u 0.01 0.001 0.001 [5]
ψ 0.9 0.9 0.9 [5]
p1 0.048 0.048 0.065 [5]
p2 0.0078 0.0078 0.0068 [5]
k1 4.0×10−8 4.0×10−5 2.5×10−5 [23]
k2 1×10−8 1×10−8 9.8×10−9 [23]
k3 9.9×10−8 9.9×10−8 9.9×10−4 [23]
k4 4.22×10−8 4.22×10−8 4.22×10−8 [23]
k5 6.6×10−6 6.6×10−6 9.6×10−6 [23]
k6 2.63×10−4 2.3×10−4 3.93×10−4 [23]
k7 5.28×10−9 5.28×10−9 6.6×10−9 [23]
Ns 4800 4800 3000 [22]
Nr 3000 3000 2000 [22]
f1 0.34 0.34 0.34 [5]
f2 0.34 0.34 0.34 [5]

Table 1: Parameters used in the numerical simulations of model (3). DF - disease-free equilibrium; RP - rapid progressor;
LTNP - long-term non progressor.

5 Conclusion

We analyze a fractional order model for the three-stages of HIV infection, including drug-resistance. We compute the
stability of the disease-free equilibrium. The fractionalmodel depicts a broad variety of dynamics for the disease-free,
RP and the LTNP states. The later may help to explain peculiarities between individuals’ progression to AIDS, that may
help clinicians to advise, ‘a priori’ changes or initiationof HAART regimen, contributing to patients’ well being. This
conclusion will be validated with real data in a near future.
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Fig. 2: Dynamics of disease-free equilibrium of the fractional order model (3) for α ∈ {0.5,0.6,0.7,0.8,0.9,1.0}.
Parameter values are those of Table1 and initial conditions are given in the text.
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Fig. 3: Dynamics of the rapid progressors of the fractional order model (3) for α ∈ {0.5,0.6,0.7,0.8,0.9,1.0}. Parameter
values are those of Table1 and initial conditions are given in the text.
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Fig. 4: Dynamics of the long term non-progressors of the fractionalorder model (3) for α ∈ {0.5,0.6,0.7,0.8,0.9,1.0}.
Parameter values are those of Table1 and initial conditions are given in the text.
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