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Abstract: In this paper we have used the homotopy analysis method (HMtain solution of space-time fractional advection-
dispersion equation. The fractional derivative is desttiim the Caputo sense. Some illustrative examples havegresanted. The
obtained results using homotopy analysis method demaestra reliability and efficiency of the proposed algorithm.
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1 Introduction

Fractional differential equations (FDEs) have been appiie modeling many physical, engineering problems and
fractional differential equations in nonlinear dynamiEsmding accurate and efficient methods for solving FDEs has
been an active research undertaking. Exact solutions of ofdse FDEs cannot be found easily, thus analytical and
numerical methods must be used. Several methods have bednaisolve Fractional differential equations, such as
Laplace transform methodl$], Fourier transform methodlp], Adomian’s decomposition method (ADML2,4],
Homotopy analysis metho®[12,13] and so on7,16,17]. The homotopy analysis method (HAM) was first proposed by
Liao in his Ph.D. thesisl[1]. This method has been successfully applied to solve magsstef nonlinear problem$§6,
12,13].

In this paper, we present an alternative approach based oM H@& approximate the solutions of the
advection-dispersion equation with time-and space-fraat derivatives of the form:

%u(xt) dPu(xt)  a%u(xt)
ta =—v ENE +k 552P , t>0,x>0, O<a,<1 Q)

subject to the initial conditions

U(O,t) = fl(t)ﬂ UX(Oﬂt) = f2(t)7 U(X, O) = g(X), (2)

whereu is the concentration of contaminamtjs the spatial domairt, is time anda, 3 are parameters describing the
order of the time- and space-fractional derivatives, retpaly. Herev andk represent the average fluid velocity and the
dispersion coefficient. In this paper, we consider that thetfonal derivatives are taken in Caputo sense for solthing
space-time fractional advection-dispersion equation.

The time fractional derivativg% is the Caputo fractional derivative of orderdefined as

DtaU(X,t) = 0'[70 AMu(xt)

m,
~0%u(xt) Im—“%&’f’t), m-l<a<m,
St a=meN.
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wherel 9 the Riemann-Liouville fractional integral operator of erd, is defined as

1 X
I"ux,t:—/ x— 1) tu(x, 1) dr, a>0, t>0. 3
futet) = ooy [0 ) ®)

Properties of the operatdf can be found in Refs1f], we mention only the following. Foa > 0 andy > —1:

m-1 0ku(x, 0+) tk

1 1°Df t)= t)— _—— -1 < t ) 4

¢ Dfu(xt) = u(xt) k;) Sk Mol<a<m t>0 4)
r(p+1)

2.19xH = — T T yatH 5

Fu+a+1) )

In the case ofr = B = 1, Eq (1) reduces to the classical advection-dispersion equafidiE]. We assume that,k > 0
so that the flow is from left to right and space-time fracticadvection-dispersion equation has a unique and suffigient
smooth solution under the above initial and boundary caombt (some results on existence and uniqueness are
developed in §]). The space-time fractional advection-dispersion eiguahas been recently treated by a number of
authors. Momani and Odibat4] used variational iteration method and Adomian decompmsinethod for solving the
space-time fractional advection-dispersion equationardu and Liu 9] considered the space-time fractional
advection-dispersion equation and the solution was obdiin terms of Green functions and the representations of the
Green function by applying the Fourier-Laplace transforiviidrm [18] used Homotopy perturbation method for
solving this equation. Also Huang et a] [used a finite element solution for the fractional adveciilispersion equation
The paper has been organized as follows. In Section 2 the topynanalysis method is described. In Section 3
applying HAM for linear and nonlinear fractional diffusiamave equation. Discussion and conclusions are presemted i
Section 4.

2 Homotopy analysis method

In this section the basic ideas of the homotopy analysis ate#re introduced. We consider the following fractional
equation we extend the applications of methdd fo the following fractional equation:

N[u(r,t)] =0, (6)

where N is a nonlinear operatarr,t) is unknown function of the independent variable r and t. Byanseof generalizing
the traditional homotopy method, Liat3] constructs the so-called zero-order deformation eqoatio

(1—q)L[e(r,t;q) — uo(r,t)] = ghH (r,t)N[e(r,t; q)], (7)

whereq € [0,1] is the embedding parametér; 0 is the auxiliary parameter which increases the resultsergence,
H(r,t) # 0 is the auxiliary function and = Df (n— 1 < a < m) is an auxiliary linear operator with the following property

L[g(r,t)] =0 when ¢(r,t) =0, (8)

uo(r,t) is an initial guess ofi(r,t), @(r,t; q) is a unknown function, respectively. Here, we emphasizeikaave freedom
to choose the auxiliary linear operatoand the initial guesgy(r,t). Obviously, wherg = 0 andg = 1, it holds

o(r,t;0) = up(r,1), o(r,t;1) = u(r,t) (9)

respectively. Thus, agincreases from 0 to 1, the solutigrr,t;q) varies from the initial guesses(r,t) to the solution
u(r,t). Expandingp(r,t;q) in Taylor series with respect ty we have

(p(r,t;q) = Uo(r,t) + Z Um(rvt)qmv (10)
m=1
1 9"g(r,t;q)
tn(rt) = - B Lo (11)

If the auxiliary linear operator, the initial guess, the #iaxy parameter h, and the auxiliary function are so prgper
chosen, the series E@@) converges at =1, then we have

u(r,t) = ug(r,t) + i Um(r, t). (12)
m=1
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Now we define the vector ot as follows:
Um={uo(r,t),ur(r,t),...,un(r,t)}.

Differentiating Eq{) for mtimes with respect to the embedding paramgtand setting g=0 and finally dividing by m!,
we will have the so-called mth order deformation equatiotin@following form:

Lum(r,t) — XmUm-1(r,t)] = ﬁH(r,t)Rm(ﬁm,l(r,t)), (13)
where L amin .

Ro( T 2)1) = 2 ey (14)
and

_JOo,m<1,
Am=11 m>1.

Operating the Riemann-Liouville integral operaltron both side of Eq.1(3), we have
n—1 (I) ti
um(rvt) = Xmum_l(r,t) — Xm % um_l(r7 0)|_| +hH (rat)l O{Rm(ﬁm—l(rvt))- (15)
& !

In this way, it is easily to obtaiom(r,t) for mm> 1, at Mth order, we have

u(r,t) = % um(r,t). (16)
m=0

WhenM — o, we get an accurate approximation of the original equapn (

3 Application

To demonstrate the effectiveness of this method for solspage-time fractional advection dispersion equations.
Example 1: We consider the following time-fractional advection-disgion equation

a 2
2%u(x,t) vdu(x,t) +k0 u(x,t)

S = - 52 0 1>0,x>0, 0<a<1 (7)

with initial conditions as
u(x,0) = sin(x). (18)

To solve the Eq17) by means of homotopy analysis method, according to thiaiicibndition denoted in1(8), it is natural
to choose
Uo(x,t) = sin(x). (19)

Thus, we choose the linear operator
o 2%u(x,t)
L[qo(xatuq)] - 0ta

with the propertyt[c] = 0,where c is constant.
We now define a nonlinear operator as

a 2
_09u(x.t) n au(x,t) _kd u(x,t).

Using above definition, with assumptiét(x,t) = 1 we construct the zeroth-order deformation equation
(1—g)L{e(x.t;0) — Uo(x;t)] = gAN[g(t; ). (21)
Obviously, wherg=0 andq =1,
qD(X,t,O) = UO(X,t), qD(X,t, 1) = U(Xat)' (22)
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Thus, we obtain theth-order deformation equations
L{um(Xt) — XmUm-1(Xt)] = ARm( T m-1), (23)

where
oup 1 (x) | dUm a(Xt) | 0%0Um 1(Xt)
ata ox ox? ’

Now the solution of thenth-order deformation equation23)

Rm(Um-1(x)) =

Um(%,t) = XmUm-1(6t) + AL Ren(Tm-1(x,1)). (24)
Finally, we have
u(x,t) =Uo(X,t) + » Um(x;t).
m=1

From (18) and @4), we obtain

Uo(X,t) = sin(x),

up(x,t) = h(ksin(x) + vcos(x))m,

o

(a(t) = i+ 1) (ksin(X) + v 00sX)) =

2a

. t
+ R? ((k? - v?) sin(x) + 2kv cog(x)) Fea D

a

Us(x,t) = A(A+ 1)2(ksin(x) + voosN) F o

t2(1

I(2a+1)
t3(1

rBa+1)’

+ 2R?(1+ ) ((k? — v2) sin(x) + 2kv cog(x) )

+ R ((3k%v — v3) cogx) + k (K — 3v?) sin(x))

In the same manner the rest of components can be obtainese@aoently, we obtained the following expansion:

u(x,t) = sin(x) +Aksin(x) + vcogx)) r(Tiul) +h(1+h)(ksin(x) + vcogx)) F(Taﬂ)
+ P2 (K — v?) sin(x) + 2kv cog(x)) %
+ A(A+1)2(ksin(x) + vcos(X)),-(Til)
+ 2R%(1+h) ((k? — v®) sin(x) + 2kv cogx)) % NI (25)

Figs.1-3 show the evolution results for the approximate solutions@f(17) obtained for different values af using the
homotopy analysis method. It is to be noted that only five seofithe homotopy analysis series were used in evaluating
the approximate solutions in Figs. 1-3.

Example 2: In this example we consider the following nonhomogeneoaseiiractional equation

2%Pu(x,t)  du(xt) _ du(xt)

ox2B ox ot

+(2-2t—2x), t>0,x>0, 0<pB<1 (26)

with initial conditions as
u(0,t) =t? uy(0,t) =0 u(x,0) = (27)
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Fig. 1: Approximate solutions foa(x,t) with a =1 andv = k= 1.

e
e
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Fig. 2: Approximate solutions fou(x,t) with a = 0.75 andv = k= 1.

Fig. 3: Approximate solutions fou(x,t) with a = 0.5 andv =k=1
natural to choose

2—-2t
Up(X,t) =t24+ r

2B 2
(2B+1)

To solve the EqZ6), by means of homotopy analysis method, according to thilidondition denoted inQ7), it is
_ X2L3+l.
r2+2)

(28)
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We choose the linear operator

oy L 92Pulxt)
Lle(xt;q)] = o2k
with the propertyL[c] = 0 with ¢ being a constant.
We now define a nonlinear operator as
_ 0%Pu(x,t) du(x,t) du(xt)
Using above definition, with assumptiét(x,t) = 1 we construct the zeroth-order deformation equation
(1-a)L[p(x,t;q) — uo(x,t)] = qAN[g(t; q)]. (30)
Obviously, wherg= 0 andq =1,
(p(X,t,O) = UO(Xat)v (p(X,t, 1) = U(X,t). (31)
Thus, we obtain theth-order deformation equations
L[Um(Xt) = XmUm-1(Xt)] = ARm(TUm-1), (32)
where 2
_0Pu(xt)  du(xt) du(xt)
Rn(Tm-1(x,t)) = 5 o ot xm2-2-29).
Now the solution of thenth-order deformation equation32)
Um(X,t) = XmUm-1(Xt) + AL~ Rn(Tm-1(x.1)). (33)

Finally, we have
u(x,t) =Uo(x,t) + > um(x.t).
m=1

From 27) and @3), we obtain

2-2 2B _ 2 2B+1
(26+1) r2p+2)

)

%MU=¥+F

. _oR o R(2— 20)2B7 (2B) 5.
t(xt) = r(2[3+1)XZB+r(4B+1)X4ﬁ_ r(2B+1)r (4B) e
2M(2B+ 1T (2B+1) 4
r2+2)r@4g+1)"

and so on, in this manner the rest of components can be obitaihe solution in series form is given by

22t 2 2ht 2R
ueet) =t r(2B+1)XZB ; r(25+2)xzﬁ+l_ r(25+1)xzﬁ + r(4p+1)x4p
~ h2-20)2Br (2B) 451, 2A(2B+ VI (2B+1) 45
r(2B+1)r(4p) s r(23+2)r(43+1)x4 * (34)

It is obvious that the self-canceling noise terms appeavéat various components of the approximate solution.riggtti
B =1,h= —1 and canceling the noise terms in the HAM solutidd)(yields the exact solution, for this special case,
given by

u(x,t) = t2+x2. (35)

Figs.4,5 show the evolution results for exact and approximate swigtof Eq. 26) whenf = 1. Figs.6 and7 show the
evolution results for the approximate solutions of E2f) (obtained for different values ¢ using the homotopy analysis
method.

Example 3: We next consider the following space-time fractional adie@edispersion equation with initial conditions:

0%Bu(x,t)  APu(x,t)  d%u(x,t)
_ = < . <
5528 9P ota , >0, x>0, O<a<1 05<B<1 (36)
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Fig. 4: the solutionu(x,t) whenf = 1: exact solution.

1

Fig. 5: Approximate solutions fou(x,t) with a =1 andv =k = 1.

Fig. 6: Approximate solutions fou(x,t) with o = 0.75 andv =k = 1.

subject to the boundary and initial conditions

u(0,t) = fa(t) ux(0,t) = fa(t) u(x,0) =g(x). (37)
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Fig. 7: Approximate solutions fou(x,t) with a = 0.5 andv =k =1.

To solve the Eq36)by using the homotopy analysis method, according to thimlmiondition denoted in37), it is natural

to choose
Up(X,t) = f1(t) + xfa(t).
We choose the linear operator
_ 3%Pu(x,t)
Llo(xt;q)] = TV

with the propertyL[c] = 0.where c is constant.
We define a nonlinear operator as

_ 0%Pu(x,t)  dPu(x,t) A%u(xt)

Using above definition, with assumptiét(x,t) = 1 we construct the zeroth-order deformation equation
(1-a)L[p(x,t;q) — Uo(x,t)] = qhAN[g(t; q)].

Itis clear that whem = 0 andg =1,
P(x,t;0) =up(x,t),  @(Xt;1) =u(xt).
Thus, we obtain theth-order deformation equations
L{um(Xt) = XmUm-1(Xt)] = ARm( T m-1),
where 0%Pu(x,t)  APu(x,t) A%u(xt)
Rm(Tm-10x1)) = deB’ B de’ B 0t0'7

Now the solution of thenth-order deformation equation32)

Um(X,t) = Xmum_l(x,t) + ﬁLilRm(ﬁm—l(th))'

Finally, we have
u(x,t) =Uo(x,t) + H um(x.t).
m=1

From 27) and @3), we obtain

Uo(X,t) = fl(t)—l—sz(t),

hf.(t) B hfa(t) B+ _ hDf" fa(t) 2B _ hDf fa(t) 2B+1
(B+1) r(B+2) r2g+1 r(2B+2) ’

(38)

(39)

(40)

(41)

(42)

(43)
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and so on, in this manner the rest of components can be obtdihe solution in series form is given by

hfy(t) B hf,(t) B hD{ f1(t) 2B
(B+1) r(B+2) rp+1)

e (44)

u(x,t) = fy(t) +xfa(t) — r

D fa(t) w2B+1
r(2B+2)

Clear conclusion can be drawn from the analytical resul&xamples 1-3 that the homotopy analysis method provides
highly accurate numerical solutions without spatial désization for the problem. It is evident that the efficienéyreese
approaches can be dramatically enhanced by computingfugtms or further componentsu, t) when the homotopy
analysis method is used.

4 Conclusions

In this paper, the homotopy analysis method has been applistlidy the fractional partial differential equations.eTh
explicit series solutions the space-time fractional atwadlispersion equation are obtained, which are the sarti®as
results given by VIM and ADM 14] and HPM [18]. It is worth pointing out that this method presents a rapidvergence
for the solutions. HAM also do not require large computer mmgnand discretization of the variableandx. The results
show that HAM is powerful mathematical tool for solving ftemal partial differential equations having wide apptioas
in engineering. Mathematica has been used for computdtidhss paper.
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