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1 Introduction possible a probabilistic sense of distance. Fuzzy metric
spaces were introduced in more than one ways by various
In this paper we prove certain coincidence point and fixedmeans of fuzzification as, for example il9 by
point results in partially ordered complex valued metric assigning any pair of points to a suitable fuzzy set and
spaces for a pair of compatible mappings which satisfyspelling out the triangular inequality by using a t-norm.
certain rational weak inequality involving two control Another example is in the work of Kaleva et aRf
functions. Coincidence points are natural extensions ofwhere any pair of points is assigned to a fuzzy number.
fixed points when we deal with more than one mappings.G-metric spaceq9] is another generalization in which
Metric fixed point theory is widely recognized as have every triplet of points is assigned to a non-negative real
been originated in the work of S. Banach in 198 [ number but in a different way than in 2-metric spaces.
where he proved the famous contraction mappingCone metric space®8| are introduced by allowing the
principle. Fixed point theory in partially ordered metric metric to assume values in Banach spaces. There are also
spaces is of relatively recent origin. An early result irsthi other extension of the metric which are not mentioned
direction is due to Turinici 37] in which fixed point above. It can be seen that in recent times efforts of
problems were studied in partially ordered uniform extending the concept of metric space has continued in a
spaces. Later, this branch of fixed point theory hasrapid manner. Simultaneously, metric fixed point and
developed through a number of works some of which arecoincidence point theory have been extended rapidly in
in [8,9,13,14,20,21,22,28,30,31]. these spaces over the recent years.
Also there are large efforts for generalizing metric
spaces by changing the form and interpretation of the Our interest is in some fixed point and coincidence
metric function. Ghaler18§] introduced 2-metric spaces point problems in partially ordered complex valued
where a real number is assigned to any three points of thenetric spaces. These spaces are generalizations of metric
space. Probabilistic metric spaces were introduced byspace where the metric function takes values from the
Schweiter et al. 33,34] in which any pair of points is field of complex numbers, thus opening the scope of the
assigned to a suitable distribution function making concepts from complex analysis for incorporation in the
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metric space structure. The space was originally(ii) if 0 = Xy 2 yn, forallne N, then limx, =X
introduced by Azam et al.4]. Fixed point theory has e
been studied in this space in a good number of papers, . ]
some of which we mention irL[7,15,35,36]. (i) if s Syn 3 20, forallneN, then limx, = lim z,=
Weak contraction principle is a generalization of x — lim y, = x.
Banach’s contraction principle which was first given by o e
Alber et al. in Hilbert spaces2]. It was subsequently Definition 2.1[4] Let X be a nonempty set. Suppose that
extended to metric spaces by Rhoad&?.[ Weak  @mappingd:XxX — ¢ satisfies:
contraction and weak contraqtive type conditions have (i) 0=d(x, y), forallx, y€ X andd(x,y) = 0 if and only ifx = y
been used and further generalized by many researchers t?.. q g for all X
establish fixed point and coincidence point results in _'_'_) () =d(y, x), forallx, y
metric and generalized metric spacd®,[L1,12 13,14, (iii) d(x, y) 3d(x, 2 +d(z y), forallx,y,ze X.
1517,28,38]. Thend is called a complex valued metric ohand(X, d
Dass and Gupta 1f] generalized the Banach's g ajieq a complex vaIFl)Jed metric space. v
contraction mapping principle by using a contractive .
condition of rational type. Fixed point theorems for Definition 2.2. Let (X, d) be a complex valued metric
contractive type conditions satisfying rational ineqiesi ~ SPace{xn} be a sequence X andx € X. _
in metric spaces and complex valued metric spaces have () If for every c € ¢ with 0 < ¢ there existsi € N
been developed in a number of woris,8,9,15,22,24].  such that for alh > no, d(x,, x) < ¢, then{x,} said to be
The concept of compatibility was introduced by convergent{x,} converges toxandxis the limit point of
Jungck P5). In common fixed point and coincidence {Xn}. We denote this by limx, =X, orx, — xasn — c.
point problems, this concept and its generalizations have (i) If for every ¢ € € with 0 < c there exist$iy € N such
been used extensively. Referenc8gb[14,27] are some  that for alln, m > no, d(Xn, Xm) < C, then{x,} is said to
examples of such works. be a Cauchy sequence.
(iii) If every Cauchy sequence iX is convergent, then
(X, d) is a complete complex valued metric space.

2 Mathematical Preliminaries Lemma 2.1[4] Let (X, d) be a complex valued metric
space andx,} be a sequence K. Then{x,} converges
to x if and only if | d(Xn, X) |— 0 asn — oo,

Note 2.1.We can also replace the limitin lemma 2.1 by the

[ = < x =<
and limy, =y = 0Zx23y,

Let € be the set of complex numbers ard 7, € ¥.
Define a partial order on% as follows:

21 37 ifand only if Re(z1) < Re(zz) and Im(zy) <1m(zp). equivalent limiting conditiom(x,, X) —» 0 asn — co.
It follows thatz; = 7 if one of the following conditionsis  Lemma 2.2[4] Let (X, d) be a complex valued metric
satisfied: space andxn} be a sequence in X. Thex,} is a Cauchy

sequence if and only ifd(X,, Xm) |— 0 asn,m— co.
Note 2.2 We can also replace the limitin lemma 2.2 by the

(i) Re(zs) = Re(z), Im(z1) < Im(z),

(i) Re(z1) < Re(z2), Im(z1) =1m(z), equivalent limiting conditiord(X,, Xm) —> 0 asn, m—
00,
(ili) Re(z) < Re(z), Im(z1) <1m(z), Definition 2.3[25] Let (X, d) be a metric space arfd g:

X X.Th ir(f, g)issaidtob tible if
(iv) Re(z1) = Re(z), Im(z2) = Im(z,). — e pair(f, g) is said to be compatible i

In particular, we will writez, X 2, if z1 # z, and one of (i), lim d(fgxn, gfxn) =0,
(i) and (iii) is satisfied and we will write; < 2z if only
(iii) is satisfied. whenever{x,} is a sequence iX such thatnli>mfxn =

By the notations%” and Int (%?), we denote the

following subsets of¢. lim, g% =, for somet € X.

In the following we give the definition of compatible

P ={2c€¢:037} ={z=x+iye¥:x>0,y>0}, mappings in complex valued metric spaces as follows.
and Definition 2.4. Let (X, d) be a complex valued metric
Int _ : i : space and, g: X — X. The pair(f, g) is said to be
nt(¥)={ze¢:0<z 0}{2 X+iye€:x>0,y> compatible if
In &2 every increasing sequence which is bounded lim d(fgxn, gfx,) =0,
n—oo

from above is convergent ( or every decreasing sequence
which is bounded from below is convergent).

Note that .
N2 <23 = 71<72, lim gxn =t, for somet € X.

wheneverx,} is a sequence iK such thammfxn =
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Definition 2.5[14] Let f andg be self-maps of a set
(i.,e., f, g: X — X). If fx=gx, for somex € X, thenxis
called a coincidence point dfandg.

Definition 2.6[14] Let (X, <) be a partially ordered set,
f: X — X andg: X — X. The mappingf is said to
be g - nondecrasing if for alk, y € X, gx < gy implies
fx < fy andg - nonincreasing if for alk, y € X, gx < gy
implies fx = fy.

Definition 2.7. Let (X, d) be a complex valued metric
space,f : X — X and xg € X. Then the functionf is
continuous akg if for any sequence€x,} in X, X, — Xo
implies fx, — fxo.

Definition 2.8. A subsetS of a complex valued metric
spaceX is closed if for every sequende} in Swhich
converges to somee X implies thatx € S.

Definition 2.9.Let ¢ : &2 — & be a function.

(i)We say yis strongly monotone increasing if fo, y €
P X3y = Px) 2 Y(y).

(i) yis said to be continuous at Xo €
2 if for any sequenc€xn} in 22, Xy — Xo = Y(Xn) —
Y (Xo)-

In our results in the following section we will use the
following class of functions.

We denote by the set of all functiongy : Int (£7) U
{0} — Int () U {0} satisfying

(iy) is continuous and strongly monotonic increasing

(liy) w(t)=0ifand only ift = 0;

and by® we denote the set of all functioms: Int (27) U
{0} — Int (%) U{0} such that

(ip) @(t)=0ifand only ift =0,
(lig) @(t) <tfortecint ().

Recently Choudhury and Metiyal$] proved these
following lemmas which will be used in our results.
Lemma 2.3[15 Let (X, d) be a complex valued metric

space such that(x,y) € Int (&), for x,y € X with X # y.
Let @ € @ be such that eitherp(t) = d(x,y) or
d(x,y) 2 ¢(t), fort € Int (£) andx,y € X. Let{x,} be a
sequence inX for which {d(xn, Xn+1)} is monotonic
decreasing. Thedd(x,, Xn+1)} IS convergent to either
r=0orrelint(2).

Lemma 2.4[15 Let (X, d) be a complex valued metric
space{x} a sequence iK andp € @. Then the sequence
{Xn} is a Cauchy sequence if and only if for everg ¢
with 0 < c there existsig € N such that(xn, xm) < ¢(c),
for all m,n > ng.

3 Main Results

Theorem 3.1.Let (X, <) be a partially ordered set and
suppose that there exists a complex valued mdtoa X
such that(X, d) is a complete complex valued metric

space withd(x, y) € Int (&) for x,y € X with x # y. Let
f andg be two continuous self mappings ohsuch that
f(X) Cg(X), f is g- nondecrasing with respect t& and
(f, g) is compatible pair. Suppose there exst ¥ and
a continuous functiop € @ such that

(i) t) Td(x,y)ord(x, y) Z ¢(t)
(i) w(d(fx fy)) T @(ux, y)) - @(d(gx, gy)).forall x, y € X
with gy < gx,

where

d(fy, gy) d(fy, gx)
1+d(gx, gy)

If there existsxg € X such thatgxy < fxg, thenf andg

have a coincidence point iX.

Proof. Let xg € X be such thagxy < fxg. Sincef(X) C

g(X), we can choosg; € X such thatgx; = fxp. Again
we can choosg, € X such thagx, = fx;. Continuing this
process we construct a sequetigg} in X such that

u(x,y) = +d(gx, gy).

OXnp1 = X, foralln>0.

1)

Sincegxp < fXp andgx; = fxg, we havegxg < gx; which
implies thatfxg < fx1. Now, fxg < fxq, that is,gx; < gx»
implies thatfx; < fxp. Again, fx; < fxo, thatis,gx, < gxs
implies thatfx, < fxs. Continuing this process, we have
OX0 2 OX1 20X 2 0X3 =X ... 2 0% = OXn+1 =X .oy
and
fXo <X fxg X fxo < fxg < <X <X FXper <

Since forx = xp andy = Xp—1, 9Xn—1 = OXn, applying the
condition(ii) of the theorem, we have

Y(d(G*n+1, 9%n)) = Y(d(FXn, Xn-1))
< Y(Uu(Xn, Xn-1)) — @(d(g%n, PXn-1)),

where d(t (1 )
Xn—1, PXn-1 Xn—1,9Xn

U(Xn, Xn—1) =

O Xo-1) L+ (G, P 1)
+ d(g%n, 9Xn-1)
d(fXn-1, 9% 1) d(9%n, OXn)
1+d(g%, 9%n-1)

+d(g%, 9%-1)

= d(9%n, Pn—1)-

Then it follows that

P(d(@xnt1, 9xn)) 3 P(d(gXn, Pn-1)) — P(d(G%n, gxnf(lg.
Using a property ofp, we have

Y(d(gxnr1, 9%n)) < W(d(9%n, 9¥n-1)), forallin=>1,
which, by a property ofy, implies that

d(gXn+1, O%n) = d(gXn, GXn-1), foralln> 1.

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

164

N SS ¥

B. S. Choudhury et al.: Coincidence point results with maggiin...

Therefore, {d(gX,+1, gX:)} iS @ monotone decreasing
sequence. Hence by lemma 2.3, there existsa® with
eitherr =0 orr € Int () such that

d(9Xn+1, OXn) —> F asn — co.

®3)

Taking the limit asn — o in (2), using @) and continuities
of g andy, we have

Yr) 2yr)—o(r) = o(r) 30,
which is a contradiction unless= 0. Therefore,

d(gXn+1, 9Xn) —> 0 @asn — co.

(4)

Next we show thafgx,} is a Cauchy sequence. If
{gxn} is not a Cauchy sequence, then there exists¢’
with 0 < ¢, forallng e N, 3 n, me Nwithn>m>ng
such that

d(g%m, 9%n) A ¢(C).
Hence by a property of @ in the theorem,
¢
{m(k)} and{n(k)} in N such that for all positive integers
K,

n(k) > m(k) >k and d(g%mnk), X)) < P(C)-

Assuming than(k) is the smallest such positive integer,
we get

d(QXn(k), Pmk)) < @(¢) and d(9xXnk)—1, PKm(k)) < @(C).

Now,
@(c) T d(Pxn(k)» Pmik)) S d(Pnk), Pnky—1)

. +d () -1, Plmk))s
that is,

@(c) 2 d(Pn(k): Pmk)) < d(Pn(k): Pn—1) + @(C).

Letting k — o in the above inequality and usind)( we
have
lim d(9ak)» Pmiy) = 9(C)- (5)

Again,
d(Xn(k)» Pmik)) < A(Pniky> Pncky+1)
+ d(PXn(k)+1, Pm(k)+1)
+ d(PXm(k)+1: Pm(k))
and
d(Xnk)+1 Pmky+1) < (P +1: Pnk))
+ d(GXnk), Pm(k))

+ (X > Pm(k)+1)-
Letting k — o in above inequalities, usingt and 6),
we have

lim (9 41, Pmir 1) = P(C)- (6)
Again,

d(Xn( > Pmik)) S A(BXni)s Plm(k)+1) + (P15 Pmiiy)

¢) 2 d(gxm, 9xn). Therefore, there exist two sequences

and

d(GXn(k)» Pm+1) S A(PXn(y> Pie)) + (P> Plimiiy1)-

Letting k — o in above inequalities, usingtl and 6),
we have

()

lim d(xn, P +2) = @(C)-

Since forx = Xy k) andy = Xk, Pmk) = Pn(k)» applying
the condition(ii) of the theorem, we have
P(d(Pnk)+1, Pmiky+1)) = P(A(FXn), FXm))

S Y (Ungs Xmk))) — @(d(PXngk» Pimiky))
where

(8)

d(FXmk)> PXmik))d(FXmy» Pnciy)
1+ d(9Xn(k)> Pmk))
+ d(PXnk)> Pn(k))
 d( Pk +1, Pmk))d (X1, Pngi))
1+ d(g%nk)> k)
+ d(9Xn(ky» Phm(i))-

U(Xn(ky» Xm(k)) =

Now
1im Uk, Xmo) = @(C) (using(4), (5) and(7)). (9)

Letting k — o in (8), using 6), (6), (9 and the
continuities ofp andy, we have

Y(e(c) 3 w(e(c) —e(e(c)) = @(p(c)) 30,

which is a contradiction by virtue of a property@fHence
{gxn} is a Cauchy sequence. From the completene3s of
there existz € X such that

fXn = OXn41 —>Z as N — oo, (20)
Sincef andg are compatible, angx, — z, fx, — zas
n —; oo, we have

r!lil;nood(fgxna gfxn) = 07

which, by the continuities off and g, implies that
d(fz, gz =0, that is, fz= gz that is,ze€ X is a
coincidence point of andg.

In our next theorem we relax the continuity and
compatibility assumption of the mappindgs and g in
Theorem 3.1 by considerirg X) to be a closed subset of
X and imposing the following order condition of the
complex valued metric spacé

If {xn} is a non-decreasing sequenceXnsuch that
Xn — X, thenx, < x, foralln e N.

Theorem 3.2.Let (X, <) be a partially ordered set and
suppose that there exists a complex valued mdtaa X
such that(X, d) is a complete complex valued metric
space withd(x, y) € Int (&) for x,y € X with X # V.
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Assume that if{x,} is a nondecreasing sequenceXn
such thatx, — X, thenx, < x, foralln € N. Let f andg
be two self mappings oK such thatf (X) C g(X), fisg

- nondecrasing with respect to andg(X) is closed inX.
Suppose that the conditior{s) and (ii) of theorem 3.1
hold, where the conditions updp, ) are the same as in
theorem 3.1. If there existg € X such thatgxy < fxg,
thenf andg have a coincidence point iX.

Proof. We take the same sequenog} as in the proof of
theorem 3.1. Then we have

OX0 X OX1 2 QX2 2 OX3 = ... X QX 2 Qhnp1 =

and

fXg X fxg X fxg X fxg < XX = TXp1 = e

Arguing similarly as in the proof of the theorem 3.1, we
can prove that sequendédx,}, that is,{gx,+1} satisfies
(10), that is, there existse X such that

fXh = gXh1 —>Z @S N — oo,

Since{fxn}, that is,{gxn+1} is a sequence ig(X) and
g(X) is a closed subset of, we have tharz € g(X). So,
there existsv € X such thaz = gw. Now, by the condition
of the theoremgx, < z=gw, for all n € N. Applying the
condition(ii) of the theorem 3.1 fox=w, y = X,, we have

WA(fw. x0)) 3 W(u(w %) — @(d(gw, gxa). (1)
where
_ d(fxn, gx)d(fxn, gw)
u(w, Xn) = 1+ d(gw, gx) +d(gw, gxn).
Now

Amo u(w, xn) =d(gw, z) =d(z, z) =0 (using(10)). (12)

Taking the limit asn — o in (11), using 0), (12) and
the properties ofp andy, we have

w(d(fw, 2)) 30, thatis w(d(fw, gw)) < 0.

It follows by a property ofy thatd(fw, gw) = 0, that is,
fw = gw, that is,w is a coincidence point of andg.

Consideringg to be the identity function in theorems
3.1 and 3.2, we have following corollaries.

corollary 3.3. Let (X, <) be a partially ordered set and
suppose that there exists a complex valued mdtoa X
such that(X, d) is a complete complex valued metric
space withd(x, y) € Int (2?) for x,y € X with x # y. Let

f : X — X be a continuous and nondecrasing mapping

with respect to< such that for alk, y € X with y < x,
Wd(fx fy)) S @ux y)) —ed(x, y)),

d(fy, y)d(fy, )
14+d(x, y)
conditions upor{¢, ) are the same as in theorem 3.1. If

(13)

where u(x,y) = +d(x, y), and the

there existsg € X such thatxg < fxg, thenf has a fixed
pointin X.

corollary 3.4. Let (X, <) be a partially ordered set and
suppose that there exists a complex valued mdtoa X
such that(X, d) is a complete complex valued metric
space withd(x, y) € Int (&) for x,y € X with x # y.
Assume that if{x,} is a nondecreasing sequenceXn
such thatx, — X, then x, < %, for all n € N. Let

f : X — X be a nondecrasing mapping with respect to
<. Suppose thatl@d) holds, where the conditions upon
(@, ) are the same as in theorem 3.1. If there exists
Xo € X such thaikg < fxg, thenf has a fixed point irX.

Theorem 3.5.In addition to the hypotheses of Corollary
3.3 and Corollary 3.4, in both of the corollaries, suppose
that for everyx, y € X there existz € X such thatx < z
andy < z Thenf has a unique fixed point.

Proof. It follows from the corollary 3.3 or corollary 3.4,
the set of fixed points of is non-empty. If possible, let
X, Y € X (X#Y) be two fixed points off, that is,x = fx
andy = fy. We distinguish two cases:

Case 1.
If y <%, then by the condition1(3), we have for alh > 1,

Y(d(x, y)) = @(d(fx, fy)) 2 @ux y)) —@d(X, y)),
where
d(fy, y)d(fy, x)

U(Xv y) = 1+d(X, y) —|—d(X, y)
_d(y, y)d(y, )
o 14+d(xy) +d(x )
=d(x y).

Then it follows that

Y(d(x y) S Y(dx y)) = (d(x, y)) = ¢(d(x, y)) 0,

which is a contradiction by a property ap, unless
d(x, y) =0, thatisx =Y.

Case 2.
If y £ %, then there existg € X such thak < zandy < z
Monotonicity of f implies thatf"x = x < f"zand f"y =
y=flz forn=0, 1, 2,...
By the condition (13), we have for alh > 1,

W(d(f"2 x)) = Y(d(f"z %))
S WUtz £7) — @(d(f" 1z, £771X))
3 WUtz X)) - p(d(f"'z, X)),

where

d(fx, x)d(fx, "1z

n-1  enol
T 1rd(flz iy +d(f" 1z fx)=d(f" 1z x).

u(f"1z x)

Hence it follows from the above inequality
Y(d(f"z X)) 3 Wd(f" 'z x) - @(d(f" 'z x)).
Using a property ofp, we have

Y(d(f"z x)) 3 (d(f" 'z X)),

(14)
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which, by monotone property af, implies that
d(f"z, x) < d(f"1z x).

Therefore, {d(f"z, x)} is a monotone decreasing

sequence. Following the lemma 2.3, it can be proved tha

there existg| € Int (£2) U {0} such that

limd(f"z x) =q.

n—o0

(15)

Lettingn — o in (14), using (L5) and the continuities of
@ andy, we have

Y(a) 2 ¥(a) —e(q) = ¢(q) 20,

which is a contradiction unlegg= 0.
Hence
limd(f"z x) =0.
n—oo

Similarly, it can proved that
. n B
rLl_r;rlcd(f z,y)=0.

Finally, the uniqueness of the limit gives xis-y.
From above two cases we have that fixed point &
unique.
Example 3.6.Let X = [0, 1] with usual partial order<'.
Letd: X x X — C be given as
o
i
dx, y) = [x—y| vV2e 4 = |x—y|(1+i), forx, y € X.
Then(X, d) is a complex valued metric space with the
required properties of theorem 3.1 and theorem 3.2.
Lety, @:Int (£)U{0} — Int (&)U {0} be defined
respectively as follows:
forz=x+iyelInt (£)uU{0},
0, if x=0and y=0,
X+iy, if 0<x<land O<y<1,

Wz)={ ¥+iy, if x>1land O<y<1,
x+iy?, if 0<x<land y>1,
X2 +iy?, if x>1land y>1,
and
vV .V :
@(z) = = +i =, where v=min{x, y}.

2 2
Then and ¢ have the properties mentioned in theorem
3.1 and theorem 3.2.

Let f, g: X — X be defined respectively as follows:

X X
fx_3—2 7 for xe X.

Then f andg have the required properties mentioned in

theorem 3.1 and theorem 3.2.

It can be verified that for alk, y € X with gy < gx,

condition (ii) of Theorem 3.1 and Theorem 3.2 are

and g(x) =

satisfied. Hence the conditions of theorem 3.1 and

Remark.Complex valued metric spaces have close
similarities with cone metric spaces in its structure,
although conceptually they are very different. In cone
metric spaces the metric takes up values in linear spaces
over the real field where the linear space may be infinite
Himensional, whereas in the case of complex valued
metric spaces the metric values are in the set of complex
number which is a one dimensional vector space over the
complex field. The type of rational inequality we consider
here is not meaningful in a cone metric space. This is an
instance which implies why fixed point theory should be
pursued independently in a complex valued metric space.
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