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The present investigation is concerned with deformation in an orthotropic micropolar
thermoelastic solid with two relaxation times as a result of inclined load. The inclined
load is assumed to be linear combination of a normal load and a tangential load. In-
tegral transform technique is used to solve the problem. Expressions of stresses and
temperature distribution are obtained in physical domain, by using a numerical inver-
sion technique. Various type of forces have been taken to illustrate the utility of the
approach. The expressions for frequency domain and steady state are also obtained
with appropriate change of variables. Stresses and temperature distribution are shown
graphically to evince the response of different forces and effect of change in angle of
inclination.
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1 Introduction

A micropolar elastic solid is an elastic solid whose deformation can be described by a
‘macro’ displacement together with a ‘micro’ rotation. Micropolar elastic materials are the
elastic materials with extra independent degree of freedom for local rotations. They include
certain class of materials with fibrous and elongated grains. The theory of micropolar
elasticity introduced and developed by Eringen [1–3] has aroused much interest in recent
years, because of its possible utility in investigating deformation properties of solids for
which the classical theory is inadequate. This theory is believed to be particularly useful
in investigating materials consisting of bar like molecules which exhibit microrotational
effects and which can support body and surface couples. Furthermore, the micropolar
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elastic model is considered to be more realistic than the classical elastic model in studying
earth science problems [4].

The linear theory of micropolar thermoelasticity was developed by extending the the-
ory of micropolar continua to include thermal effects by Nowacki [5] and Eringen [6].
Tauchert et al. [7] also derived the basic equations of linear theory of micropolar thermoe-
lasticity. Dost and Tabarrok [8] presented the micropolar generalised thermoelasticity by
using Green -Lindsay theory. One can refer to Dhaliwal and Singh [9] for a review on
the micropolar thermoelasticity. Chandrasekhariah [10] formulated a theory of micropolar
thermoelasticity which includes heat-flux among the constitutive variables.

The dynamic response functions of elastically anisotropic solids are of interest in many
fields including crystal acoustics, solid-state physics, nondestructive testing, material char-
acterisation, seismology, applied mathematics and mechanics. In recent years, the elasto-
dynamic response of anisotropic continuum has received the attention of several researches.

Iesan [11] studied the static theory of anisotropic micropolar elastic solids and proved
the positive definiteness of his operator for the first boundary value problem. Kumar et al.
[12–19] discussed various problems in inclined load and orthotropic micropolar continua.

The present investigation seeks to determine the components of normal stress, tangen-
tial couple stress and temperature distribution due to concentrated, distributed and moving
forces in time domain, frequency domain and steady state due to inclined load in micropo-
lar orthotropic generalized thermoelastic medium. The solution is obtained after employing
an integral transform technique, which is inverted by using a numerical method.

2 Formulation and Solution of the Problem

We consider an orthotropic micropolar generalized thermoelastic half-space, with x2-
axis pointing vertically into the medium. Suppose that an inclined load F0, per unit length
is acting along the interface on the x3-axis and its inclination with x2-axis is θ.

The basic equations in dynamic theory of the plain strain of a homogeneous, orthotropic
micropolar thermoelastic solid with two relaxation times in absence of body forces, body
couples and heat sources are

tji,j = ρüi, (2.1)

mik,i + εijktij = ρjφ̈k, i, j, k = 1, 2, 3, (2.2)

and heat conduction equation is

K∗
1

∂2T

∂x2
1

+ K∗
2

∂2T

∂x2
2

=
(∂T

∂t
+ τ0

∂2T

∂t2

)(
ρC∗ + β1T0

∂u1

∂x1
+ β2T0

∂u2

∂x2

)
. (2.3)

The constitutive relations are

t11 = A11ε11 + A12ε22 − β1(1 + τ1
∂

∂t
)T, t12 = A77ε12 + A78ε21,
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t22 = A12ε11 + A22ε22 − β2(1 + τ1
∂

∂t
)T, t21 = A78ε12 + A88ε21,

m13 = B66φ3,1, m23 = B44φ3,2, (2.4)

where
εij = uj,i + εji3φ3. (2.5)

Here the relations between βi and the coefficients of thermal expansions αi, i = 1, 2, are

β1 = A11α1 + A12α2, β2 = A21α1 + A22α2,

where α1 are the coefficients of linear thermal expansion.
In these relations, tij are components of the stress tensor, mij are components of the

couple stress, εij are components of micropolar strain tensor, ui are components of dis-
placement vector, φ3 is the component of microrotation vector, εijk is the permutation
symbol, τ0, τ1 are the relaxation times, C∗ is the specific heat at constant strain, K∗

1 and
K∗

2 are the thermal conductivities, A11, A12, A22, A77, A78, A88, B44, and B66 are char-
acteristic constants of the material.

For the two dimensional problem, we assume the components of the displacement and
microrotation vector for orthotropic micropolar generalized thermoelastic solid be of the
form


u = (u1, u2, 0), 
φ = (0, 0, φ3). (2.6)

We define the nondimensional variables by the expressions:

x′
1 =

ω∗x1

c1
, x′

2 =
ω∗x2

c1
, u′

1 =
ρc1ω

∗u1

β1T0
, u′

2 =
ρc1ω

∗u2

β1T0
, φ′

3 =
ρc2

1

β1T0
φ3, t′ij =

tij
β1T0

,

m′
23 =

ω∗

c1β1T0
m23, T ′ =

T

T0
, t′ = ω∗t, τ ′

0 = ω∗τ0, ω′ =
ω

ω∗ , (2.7)

where

ω∗ =
ρC∗c2

1

K∗
1

, c2
1 =

A11

ρ
.

With the help of equations (2.4)-(2.7), equations (2.1)-(2.3) take the form (on suppress-
ing the prime)( ∂2

∂x2
2

+d1d4
∂2

∂x2
1

)
u1+(d2+d3)

∂2u2

∂x1∂x2
−(d3−1)

∂φ3

∂x2
−d1d4

∂

∂x1

(
1+τ1

∂

∂t

)
T =d1d4

∂2u1

∂t2
,

(2.8)

d2+d3

d4

∂2u1

∂x1∂x2
+

( ∂2

∂x2
2

+
d5

d4

∂2

∂x2
1

)
u2− d5−d3

d4

∂φ3

∂x1
−β̄d1

∂

∂x2

(
1+τ1

∂

∂t

)
T = d1

∂2u2

∂t2
,

(2.9)( ∂2

∂x2
2

+d6
∂2

∂x2
1

−d7(d5 − 2d3+1)
)
φ3+d7(d3 − 1)

∂u1

∂x2
+ d7(d5 − d3)

∂u2

∂x1
= d8

∂2φ3

∂t2
,

(2.10)
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( ∂2

∂x2
1

+K̄
∂2

∂x2
2

)
T =

( ∂

∂t
+τ0

∂2

∂t2

)
T +ε

( ∂

∂t
+ τ0

∂2

∂t2

)(∂u1

∂x1
+β̄

∂u2

∂x2

)
, (2.11)

where

d1 =
A11

A22
, d2 =

A12

A88
, d3 =

A78

A88
, d4 =

A22

A88
, d5 =

A77

A88
, K̄ =

K∗
2

K∗
1

,

d6 =
B66

B44
, d7 =

A88c
2
1

B44ω∗2 , d8 =
ρjc2

1

B44
, β̄ =

β2

β1
, ε =

β2
1T0

ρK∗
1ω∗ .

We define Laplace and Fourier Transform as

f̄(x1, x2, p) =
∫ ∞

0

f(x1, x2, t)e−ptdt, (2.12)

and
f̃(ξ, x2, p) =

∫ ∞

−∞
f̄(x1, x2, p)eıξx1dx1, (2.13)

under the support of initial conditions

u1(x1, x2, 0) =
∂u1

∂t
|t=0 = 0, u2(x1, x2, 0) =

∂u2

∂t
|t=0 = 0,

φ3(x1, x2, 0) =
∂φ3

∂t
|t=0 = 0, T (x1, x2, 0) =

∂T

∂t
|t=0 = 0.

It is also assumed that u1, u2, φ3, T and their first order partial derivatives with respect to
x1 tend to zero as x2 −→ ±∞.

2.1 Boundary conditions

The boundary conditions on the surface x2 = 0 are given by

t22 = −P1ψ(x1, t), t21 = −P2ψ(x1, t), m23 = 0, T = 0, (2.14)

where P1 and P2 are the magnitudes of force and ψ(x1, t) is the known functions defined
below in the manuscript.

Applications

In all the following cases, we take η(t) = H(t), whose Laplace transform with respect
to t is

η̃(p) =
1
p
. (2.15)

Concentrated Force: In the case of concentrated force, we take

ψ(x1, t) = Ψ(x1)η(t), (2.16)
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where Ψ(x1) = δ(x1) is the Dirac delta function. Applying (2.12) and (2.13) in equation
(2.15), we get

ψ̃(ξ, p) = η̃(p). (2.17)

Distributed Force: The solution due to force distributed over a strip load of nondimen-
sional width 2a, applied at the boundary x2 = 0, is obtained by setting

Ψ(x1) = H(x1 + a) − H(x1 − a). (2.18)

In this case, we have

ψ̃(ξ, p) =
2 sin(ξa)

ξ
η̃(p). (2.19)

Moving Force: In the case of an impulsive force moving along the x1-axis with uniform
nondimensional speed V at x2 = 0, we set

ψ(x1, t) = δ(x1 − V t)η(t), (2.20)

in equation (2.16). Applying (2.13) in equation (2.20) and considering the value of η̃(p)
from (2.15), we can obtain

ψ̃(ξ, p) =
1

(p − iξV )
. (2.21)

2.2 Time domain solution

Applying the Laplace and Fourier transform defined by equations (2.12) and (2.13) in
equations (2.8)-(2.11), we obtain

( d2

dx2
2

− (ξ2 + p2)d1d4

)
ũ1 − iξ(d2 + d3)

dũ2

dx2
− (d3 − 1)

dφ̃3

dx2
+ iξd1d4(1 + τ1p)T̃ = 0,

(2.22)

−iξ(d2+d3)
d4

dũ1

dx2
+

( d2

dx2
2

− ξ2d5

d4
− d1p

2
)
ũ2+

iξ(d5 − d3)
d4

φ̃3 − β̄(1 + τ1p)d1
dT̃

dx2
= 0,

(2.23)( d2

dx2
2

− ξ2d6 − d7(d5 − 2d3 + 1) − d8p
2
)
φ̃3 + d7(d3 − 1)

dũ1

dx2
− d7iξ(d5 − d3)ũ2 = 0,

(2.24)( d2

dx2
2

− ξ2 + p + τ0p
2

K̄

)
T̃ − iξε(p + τ0p

2)
K̄

ũ1 − εβ̄(p + τ0p
2)

K̄

dũ2

dx2
= 0.

(2.25)

The system of equations (2.22)-(2.25) has a nontrivial solution if the determinant of coef-
ficient of (u1, u2, φ3, T ) vanishes. After solving these equation we obtain a bi-quadratic
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equation of the form

( d8

dx8
2

+ A
d6

dx6
2

+ B
d4

dx4
2

+ C
d2

dx2
2

+ D
)
(ũ1, ũ2, φ̃3, T̃ ) = 0, (2.26)

where

A = −f − a − a11 + β̄2g − h + b + d7e
2,

B = f [a + a11 + h − b − d7e
2] + g[−β̄2a − hβ̄2 − εξ2(2d2 + d3 + d4)β̄ − β̄2d7εe

2

+ ξ2εd4] + a(a11 + h − b) − a′ + p2hd1 − ξ2(d3 − d4)(d5 − d3)ed7

d4
− a11e

2d7,

C = f{a11d7e
2 + a[−a11 − h + 2b − 2hd1p

2 − ξ2(2d2 + d3 + d4)]}
+ g{ahβ̄2 + ξ2(d4 − d3)εβ̄a − 2β̄ξ2d7ε(d5 − d3)e + ξ2εd4a11} + (a + h)a′,

D = (fh − ξ2gd4ε)(a11a + a′),

a = ξ2d6 + d7(d5 − 2d3 + 1) + d8p
2, b = ξ2 (d2 + d3)(d2 + d4)

d4
,

e = (d3 − 1), f =
ξ2 + p + τ0p

2

K̄
, g = (1 + τ1p)

p + τ0p
2

K̄
d1,

h = (ξ2 + p2)d1d4, a11 = d1p
2 +

ξ2d5

d4
, a′ =

ξ2d7(d5 − d3)2

d4
.

The solution of equation (2.26) satisfying the radiation condition that ũ1, ũ2, φ̃3, T̃ → 0
as x2 → ∞ is

(ũ1, ũ2, φ̃3, T̃ ) =
4∑

i=1

Ai(1, ri, si, ti)e−qix2 , (2.27)

where

ri =
a1q

5
i + a2q

3
i + a3qi

a4q4
i + a5q2

i + a6
, si =

−a1q
3
i + a9qi + ri(a10q

2
i − a11

a7q2
i − a8

,

ti =
−(q2

i − h − iξqiri(d2 + d3) + iξsiqi(d3 − 1)
iξd1d4

, a1 =
β̄

iξd4
,

a2 =
−β̄h + ξ2(d2 + d3) − aβ̄ + d7e

2

iξd4
, a3 = a

β̄h − ξ2(d2 + d3) − ξ2d7e(d5 − d3)
d4iξ

,

a4 = 1 − β̄(d2 + d3)
d4

, a5 = −a11 − a4a − β̄e(d5 − d3)d7

d4
, a6 = aa11 − a′,

a7 =
β̄e

iξd4
, a8 =

iξ(d5 − d3)
d4

, a9 =
β̄h − ξ2(d2 + d3)

iξd4
, a10 = 1 − β̄(d2 + d3)

d4
.

Using equations (2.4), (2.6), and (2.7) in the boundary conditions (2.14) and then ap-
plying Laplace and Fourier transforms defined by equations (2.12) and (2.13) together with
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the help of (2.27), we obtain the transformed normal stress, tangential stress, tangential
couple stress and temperature distribution as

(t̃21, m̃23, t̃22, T̃ ) =
1
∆

4∑
k=1

∆k(a∗
k, b∗k, c∗k, tk)e−qkx2 , (2.28)

where

a∗
k =

−d3iξrk − qk − esk

d1d4
, b∗k = − qksk

d1d4d7
, c∗k =

−d2iξ − qkrkd4 − β̄tkd1d4

d1d4
,

∆ = (c∗1a
∗
2 − c∗2a

∗
1)(b

∗
3s4 − s3b

∗
4) + (c∗3a

∗
1 − c∗1a

∗
3)(b

∗
2s4 − s2b

∗
4)

+ (c∗1a
∗
4 − c∗4a

∗
1)(b

∗
2s3 − s2b

∗
3) + (c∗2a

∗
3 − c∗3a

∗
2)(b

∗
1s4 − s1b

∗
4)

+ (c∗4a
∗
2 − c∗2a

∗
4)(b

∗
1s3 − s1b

∗
3) + (c∗3a

∗
4 − c∗3a

∗
4)(b

∗
1s2 − s1b

∗
2),

∆1 = −{P̃1[a∗
2(b

∗
3s4 − b∗4s3) − a∗

3(b
∗
2s4 − b∗4s2) + a∗

4(b
∗
2s3 − b∗3s2)]

+ P̃2[c∗2(b
∗
3s4 − s3b

∗
4) − c∗3(s4b

∗
2 − s2b

∗
4) + c∗4(s3b

∗
2 − s2b

∗
3)]}ψ̃(ξ, p),

∆2 = {P̃1[a∗
1(b

∗
3s4 − b∗4s3) − a∗

3(b
∗
1s4 − b∗4s1) + a∗

4(b
∗
1s3 − b∗3s1)]

− P̃2[c∗1(b
∗
3s4 − b∗4s3) − c∗3(b

∗
1s4 − b∗4s1) + c∗4(b

∗
1s3 − b∗3s1)]}ψ̃(ξ, p),

∆3 = {−P̃1[a∗
1(b

∗
2s4 − b∗4s2) − a∗

2(b
∗
1s4 − b∗4s1) + a∗

4(b
∗
1s2 − b∗2s1)]

+ P̃2[c∗1(b
∗
2s4 − s2b

∗
4) − c∗2(b

∗
1s4 − s1b

∗
4) + c∗4(b

∗
1s2 − s1b

∗
2)]}ψ̃(ξ, p),

∆4 = P̃1[a∗
1(b

∗
2s3 − b∗3s2) − a∗

2(b
∗
1s3 − b∗3s1) + a∗

3(b
∗
1s2 − b∗2s1)]

+ P̃2[−c∗1(s3b
∗
2 − s2b

∗
3) + c∗2(b

∗
1s3 − b∗3s1) − c∗3(b

∗
1s2 − b∗2s2)]}ψ̃(ξ, p). (2.29)

2.3 Frequency domain solution

In this case we take time harmonic behaviour as

(u1, u2, φ3, T )(x1, x2, t) = (u1, u2, φ3, T )(x1, x2)eiωt. (2.30)

In frequency domain, boundary condition at x2 = 0 are given by

t22 = −P1ψ(x1)eiωt, t21 = −P2ψ(x1)eiωt, m23 = 0, T = 0. (2.31)

The expressions for normal stress, tangential stress, tangential couple stress and tempera-
ture distribution for concentrated and uniformly distributed forces in frequency domain can
be obtained by replacing p by iω in equations (2.28) and (2.29) and η̄(p) with eiωt. The
solution due to an impulsive harmonic force moving along the positive x1 axis with the
uniform nondimensional velocity V at x2 = 0 can be obtained by replacing ψ(x1, t) with
δ(x1 − V t), whose Fourier transform with respect to x1 is eiξV t.
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2.4 Steady state solution

Consider that the load is moving with a constant nondimensional velocity U in the
negative x1 direction then steady state is assumed to prevail in the neighborhood of the
load as seen by an observer moving with the same speed in the same direction as that
of the load. Following Fung [20], we introduce the Galilean transformation, i.e., x∗

1 =
x1 + Ut, x∗

2 = x2, t∗ = t, in the nondimensional equations, so that ψ(x1, t) in (2.14) will
take the form of ψ(x∗

1) defined by

ψ(x∗
1) =

{
δ(x∗

1), for concentrated force
H(x∗

1 + a) − H(x∗
1 − a), for uniformly distributed force.

(2.32)

Applying (2.13) on the boundary conditions (2.14) where ψ(x1, t) is replaced by (2.32),
and following the same procedure as in the case of time domain, we can obtain the expres-
sions for normal stress, tangential stress, tangential couple stress and temperature distribu-
tion in steady state by replacing p with −iξU in (2.28) and (2.29), when concentrated and
uniformly distributed forces are applied.

2.5 Inclined load

For an inclined load F0, per unit length, we have

P1 = F0 cos θ, P2 = F0 sin θ. (2.33)

Using equation (2.33) in equations (2.28)-(2.29), we obtain the corresponding expressions
for displacement and stress components in case of inclined load applied on the surface of
half space.

3 Inversion of the Transformation

The transformed stresses and temperature distribution are functions of y, the param-
eters of Laplace and Fourier transforms p and ξ, respectively, and hence are of the form
f̃(ξ, x2, p). To obtain the solution of the problem in the physical domain, we must invert
the transform in (2.28) using

f̄(x1, x2, p) =
1

2Π

∫ ∞

−∞
f̃(ξ, x2, p)e−iξx1dξ,

f̄(x1, x2, p) =
1

2Π

∫ ∞

−∞
[f̃e cos(ξx1) − i sin(ξx1)f̃0]dξ, (3.1)

where fe and f0 are respectively even and odd parts of the function f̃(ξ, x2, p). Thus,
expressions (3.1) give us the transform f̄(ξ, x2, p) of the function f(x1, x2, t). Now, for
the fixed values of ξ, x1 and x2, the f̄(x1, x2, p) in the expression (3.1) can be considered as
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the Laplace transformed function ḡ(p) of some function g(t). Following Honig and Hirdes
[21], the Laplace transformed function ḡ(p) can be converted as given below.

The function g(t) can be obtained by using

g(t) =
1

2πi

∫ c+i∞

c−i∞
eptḡ(p)dp, (3.2)

where c is an arbitrary real number greater than all the real parts of the singularities of ḡ(p).
Taking p = c + ix2, we get

g(t) =
ect

2πi

∫ ∞

−∞
eity ḡ(c + ix2)dx2. (3.3)

Now, taking e−ctg(t) as h(t) and expanding it as Fourier series in [0, 2L], we obtain ap-
proximately the formula

g(t) = g∞(t) + E′
D,

where

g∞(t) =
c0

2
+

∞∑
k=1

ck, 0 ≤ t ≤ 2L, ck =
ect

L
�

[
eikπt/Lḡ

(
c +

ikπ

L

)]
. (3.4)

ED is the discretization error and can be made arbitrarily small by choosing c large enough.
The value of c and L are chosen according to the criteria outlined by Honig and Hirdes [21].

Since the infinite series in equation (3.4) can be summed up only to a finite number of
N terms, the approximate value of g(t) becomes

gN (t) =
c0

2
+

N∑
k=1

ck, 0 ≤ t ≤ 2L. (3.5)

Now, we introduce a truncation error ET that must be added to the discretization error to
produce the total approximation error in evaluating g(t) using the above formula. Two
methods are used to reduce total error. The discretization error is reduced by using the
‘Korrecktur’ method, Honig and Hirdes [21] and then ‘ε-algorithm’ is used the truncation
error and hence to accelerate the convergence.

The ‘Korrecktur’ method formula, for evaluating the function g(t), is

g(t) = g∞(t) − e−2cLg∞(2L + t) + ED′ ,

where |E′
D| � |ED|. Thus, the approximate value of g(t) becomes

gNk
(t) = gN (t) − e−2cLgN ′(2L + t), (3.6)

where N ′ is an integer such that N ′ < N .
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We shall now describe the ε−algorithm which is used to accelerate the convergence of
the series in equation (3.5). Let N be a natural number and Sm =

∑m
k=1 ck be the sequence

of partial sums of equation (3.5). We define the ε-sequence by

ε0,m = 0, ε1,m = Sm,

εn+1,m = εn−1,m+1 +
1

εn,m+1 − εn,m
, n, m = 1, 2, 3 . . .

It can be shown by Honig and Hirdes [10] that the sequence ε1,1, ε3,1, . . . , εN,1 converges
to g(t) + ED − c0/2 faster than the sequence of partial Sm, m = 1, 2, 3, . . . The actual
procedure to invert the Laplace Transform reduces to the study of equation (3.6) together
with ε-algorithm.

The last step in the inversion process is to evaluate the integral (3.1). This has been
done using Romberg’s integration with adaptive size. This method uses the results from
successive refinements of the extended trapezoidal rule followed by extrapolation of the
results to the limit when the step size tends to zero. The details can be found in [22].

4 Numerical Results and Discussion

For numerical computations, we take the following nondimensional values for or-
thotropic micropolar thermoelastic solid:

d1 = 1.02, d2 = 0.7888, d3 = 1.9828, d4 = 6.0224,

d5 = 1.32, d6 = 1.53, d7 = .00104, d8 = 1.6543.

Following Gauthier [23] we take the following nondimensional values for aluminium epoxy
like composite:

d1 = 1, d2 = 0.667, d3 = .992, d4 = 5.977,

d5 = 1, d6 = 1, d7 = .001167, d8 = .847.

Graphical representation of normal stress, tangential couple stress and temperature distribu-
tion for orthotropic micropolar generalized thermoelastic solid have been shown in Figures
1-9, to show the comparison between three different cases, viz., time domain (TD), fre-
quency domain (FD) and steady state (SS). The computations were carried out at x2 = 0.1
over the interval (0, 10). The curves represented by solid lines with or without centre sym-
bol correspond to the case of orthotropic micropolar generalized thermoelastic solid in time
domain (TD), curves represented by dotted lines with or without centre symbol correspond
to the case of orthotropic micropolar generalized thermoelastic solid in frequency domain
(FD) and curves represented by large dashes lines with or without centre symbol corre-
spond to the case of orthotropic micropolar generalized thermoelastic solid in steady state
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(SS). All the results are presented for one value of nondimensional width a = 1 and for four
values of nondimensional speed V = 10, 20, 30, 40. In Figures 1-6, curves without center
symbol represent the variations corresponding to θ = 0 (initial angle), while the curves
with center symbol (− ◦ −) represent the variations for θ = 45 (intermediate angle) and
curves with center symbol (− × −) represent the variations for θ = 90 (extreme angle).
In Figures 7-9, curve without center symbol represent the variations for nondimensional
speed V = 10, whereas curve with center symbol (−◦−), (−∆−), (−×−) represent the
variations corresponding to nondimensional speed V = 20, 30, 40, respectively.
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4.1 Concentrated force

Figures 1-3 depict the variations of normal stress t22, tangential couple stress m23 and
temperature distribution T due to concentrated force.

Figure 1 shows the variation of normal stress t22 with distance in time domain, fre-
quency domain and steady state. In time domain and at all angles of inclination, the value
of normal stress t22 decreases sharply within the range 0 ≤ x1 ≤ 2.5, and then oscillate
with further increase in distance. Its value in frequency domain and at initial and inter-
mediate angle of inclination, initially increases then oscillate with very small amplitude,
whereas at extreme inclination angle its value increases with increase in distance. How-
ever, in the case of steady state, the values of t22 follows an oscillatory pattern about zero
value for all the values of θ.

It is evident from Figure 2 that in time domain and at θ = 0 the value of tangential
couple stress m23 initially decreases and then oscillate with very small amplitude, while
its behaviour get reversed with increase in angle of inclination. In frequency domain and
for all values of θ its value oscillates with large amplitude. However, the value of m23, in
the case of steady state, decreases with increase in distance when θ = 0, 45 and initially
increases and then decreases slowly with distance at extreme angle of inclination (θ = 90).
Figure 3 illustrates the variation of temperature distribution T with distance. The value of
T in time domain and for at all angle of inclination i.e θ = 0, 45, 90 increases sharply over
the interval (0, 2.5) and then oscillate with increasing amplitude. In frequency domain and
at θ = 0, 45, its value initially decreases, then increases and then oscillate with increase
in distance. For the case of steady state and at initial and intermediate angle of inclination
its value oscillates with small amplitude, while at extreme inclination, its value initially
increases and then decreases with increase in distance.

4.2 Distributed force

Figures 4-6 show the variations of normal stress t22, tangential couple stress m23 and
temperature distribution T with distance in time domain, frequency domain and steady
state when distributed force is applied. It is noticed from these figures that the variation
pattern of t22,m23, T almost same to the pattern as observed in the case of concentrated
force with difference in their amplitude of oscillation.

4.3 Moving force

Figures 7-9 show the variations of normal stress t22, tangential couple stress m23 and
temperature distribution T with distance x due to moving force.

It is depicted from Figure 7 that when V = 10, 30 the value of t22 initially decreases,
then increases with increase in distance, whereas for V = 20, 40 its value get increased
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with increase in distance. Figure 8 illustrates the variation of m23 with distance. At ini-
tial velocity its value increases within the range 0 ≤ x1 ≤ 5, 7 ≤ x1 ≤ 9, decreases for
remaining value of x1. However, with further increase in velocity, its value oscillates with
increase in distance. It is evident from Figure 7 that the maximum (absolute) tangential
couple stress m23 occur corresponding to the maximum velocity (V = 40), i.e., impact of
moving force is large for large velocities. Figure 9 shows the variation of temperature dis-
tribution T with distance. At initial velocity its value oscillates with decreasing amplitude.
However, with further increase in V its value initially decreases and then oscillate with x.

5 Conclusion

It is observed from above discussion that the variation of temperature distribution is
opposite to the variations obtained for normal stress in all the cases i.e. in time domain,
frequency domain and steady state. With increase in the angle of inclination, the value of
normal stress increases in amplitude in the case of time and frequency domain, while the
reverse behaviour is observed in the case of steady state. Also, the value of temperature
distribution in the cases of frequency domain and steady state increases with the increase
in angle of inclination, while its value shows the opposite behaviour in the time domain.
It is also depicted that the amplitude of the value of tangential couple stress increases with
increase in angle of inclination for the case of steady state, while decreases with increase
in θ in time domain. However, on the application of moving force, the value of tangential
couple stress get increased with increase in velocity, while oscillatory pattern is depicted in
the values of normal stress and temperature distribution.
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