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The presence of bounded orbits such as homoclinic and heteroclinic orbits are impor-
tant in a dynamical system. Chaotical behavior or the presence of periodic orbits of a
system is often preceded by destruction of a homoclinic or heteroclinic orbit. In this
work we give insights on a method of detecting homoclinic or heteroclinic orbits in a
three-dimensional dynamical system. The method can also be applied for multidimen-
sional systems.
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1 Introduction and Necessary Theoretical Notions

In this paper we present insights on a method dealing with detecting homoclinic or
heteroclinic orbits in a dynamical system generated by differential equations. The idea
is to trace the separatrices (stable and unstable manifolds) until they hit a given surface
and then look for conditions such that the separatrices meet one to another on this surface.
Finding homoclinic and heteroclinic orbits in a given dynamical system is not an easy task
but their presence tell us much about the behavior of the system. For example, destroying a
homoclinic or heteroclinic orbit can bring a system in chaos in some cases while in others
it leads only to the appearance of periodic orbits.

Consider a surface S in R
3 given by S : F (x, y, z) = 0, F ∈ C1(R3). A normal

vector to S at a point (x, y, z) ∈ S is the gradient vector gradF (x, y, z) = (F ′
x, F ′

y, F ′
z).

The surface S splits the space in two regions according to F > 0 (the positive region)
or F < 0 (the negative region) and assume the normal vector gradF (x, y, z) lies in the
positive region.
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If a trajectory (for t increasing ) of a differential system

u̇ = f(u), (1.1)

where u̇ = (ẋ, ẏ, ż), f(u) = (f1(x, y, z), f2(x, y, z), f3(x, y, z)), hits the surface S at a
point A(x0, y0, z0) coming from the positive region F > 0, then the vector field f at A

(which is tangent to the trajectory) makes with the gradient vector gradF at A an angle
larger than 90◦, see Fig.1.1. Since

cos(gradF, f) =
grad F · f

|grad F | · |f | ,

it follows that grad F · f < 0 at A. On the other hand,

d

dt
F (x, y, z)|F=0 = Fxẋ + Fy ẏ + Fz ż|F=0 = gradF · f < 0, at A.

grad F 

f
S

Figure 1.1: An orbit tangent to the vector field f at a point A, entering transversally the surface
S : F (x, y, z) = 0 coming from the positive region F > 0, makes with the gradient vector gradF at
A an angle larger than 900.

As a conclusion, we have

Proposition 1.1. If the derivative (for t increasing) along a trajectory of the system (1.1),

d

dt
F (x, y, z)|F=0 < 0,

then the trajectory hits the surface S : F (x, y, z) = 0 coming from the positive region

F (x, y, z) > 0. If
d

dt
F (x, y, z)|F=0 > 0,

then it crosses the surface S : F (x, y, z) = 0 coming from the negative region F (x, y, z) <

0. For t decreasing, the scenario is inversely, i.e. if

d

dt
F (x, y, z)|F=0 < 0,

the trajectory hits the surface S coming from the negative region and if

d

dt
F (x, y, z)|F=0 > 0,

the trajectory hits the surface S coming from the positive region.
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Remark 1.1. If
d

dt
F (x, y, z)|F=0 �= 0,

the surface S is called without contact for trajectories of the system or a transversally
section to the flow of the system. If

d

dt
F (x, y, z)|F=0 = 0

then the trajectory is included in S or tangent to it.

2 Tracing the Unstable Manifold W u
+

We will apply the method for detecting homoclinic orbits only but similarly it can be
applied for heteroclinic orbits. The system considered in this work is a Shimizu-Morioka-
like 3D model given by

ẋ = y, ẏ = (a + 1)(1 − z)x − ay, ż = x2 − z. (2.1)

Applications of Shimizu-Morioka models are suggested in [2]. In [3, 4] two types of
Lorenz-like attractors of this system are shown. Relationships with the theory of normal
forms are reported in [6, 8]. Computer–assisted results on the behavior of the system are
obtained in [5].

The equilibrium points of the system are O(0, 0, 0), O1(1, 0, 1), O2(−1, 0, 1). As the
system is invariant under the transformation x → −x, y → −y, its orbits are symmetrically
with respect to the Oz axis, so, with no loss of generality, we may restrict our investiga-
tions to x > 0. Since a homoclinic or heteroclinic orbit is bounded and for z < 0 the
derivative ż > 0, they will lie in z > 0, so we may restrict further to z > 0. The Jacobian
matrix associated to the system at O(0, 0, 0) has the eigenvalues 1,−1,−a − 1 and the
corresponding eigenvectors (1, 1, 0), (0, 0, 1), (−1/(a + 1), 1, 0), so O(0, 0, 0) is a saddle.
Assume a + 1 > 0. Therefore the system has a one-dimensional unstable manifold Wu

0

and a two-dimensional stable manifold W s
0 passing through O(0, 0, 0). We have also the

one-dimensional tangent space to Wu
0 at O(0, 0, 0),

TWu
0 = {(x, y, z) : x = y, z = 0}

and the two-dimensional tangent space to W s
0 at O(0, 0, 0),

TW s
0 = {(x, y, z) : y + x (a + 1) = 0, z ∈ R} .

The Jacobian matrix at O1,2 has the characteristic polynomial

p3 + (a + 1) p2 + ap + 2a + 2 = 0.
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From Routh-Hourwitz conditions, the characteristic polynomial has all roots with negative
real part if and only if a > 2. Notice that the positive part of Oz axis, denoted by d+,

belongs to W s
0 .

Denote Wu
+ the branch of Wu

0 lying in y > 0 and Wu
− the branch of Wu

0 lying in y < 0.

Consider the equation of Wu
+ in the neighborhood of O(0, 0, 0) given by

y = a1x + a2x
2 + a3x

3 + · · ·
z = b1x + b2x

2 + b3x
3 + b4x

4 + · · · (2.2)

As Wu
0 = Wu

+∪Wu
− is invariant under the action of the flow of the system, after computing

the coefficients, equations of Wu
+ for x small enough, are given by

y = x + · · · , z =
1
3
x2 + · · · . (2.3)

So for x small enough, Wu
+ lies in the region

R =
{

(x, y, z) : 0 < y < x,
1
3
x2 < z < x2, x > 0

}
.

In [7] we proved that Wu
+ lies in the region x2/3 < z < x2 not only for x small but for

all x > 0, y > 0.

We want to estimate now the x−coordinate of the point where Wu
+ crosses y = 0.

Consider the surface in R
3, y = x − bx2, 0 < z < x2, b > 0. As x − bx2 < x, b > 0

the surface y = x − bx2 is below Wu
+ for x small enough.

We are interested under what conditions, trajectories lying in x2/3 < z < x2 can cross
this surface.

Proposition 2.1. The surface in R3, y = x − bx2, 0 < z < x2, b > 0 is a surface without

contact for trajectories of the system. If t increases, trajectories of the system cross the

surface on the side

y < x − bx2 for all 0 < x <
b(a + 3)

a + 1 + 2b2
, b > 0.

In particular, if b = 1 we obtain that the trajectories of the system (and implicitly Wu
+) for

0 < z < x2 cross y = 0 for x ≥ 1.

Proof. if

x <
b (a + 3)

a + 1 + 2b2
:= x1

u,

we have

d

dt

(
y − x + bx2

) ∣∣
y=x−bx2 > −x2

(
x

(
a + 1 + 2b2

) − b (a + 3)
)

> 0.

We used z < x2. So the surface y = x−bx2, 0 < z < x2 is without contact for trajectories
of the system and for t increases, trajectories of the system cut the surface on the side
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y < x − bx2 for all 0 < x < x1
u, b > 0. Notice that x1

u ≥ 1/b for all b ≥ 1 and all
a + 1 > 0. Consequently, x1

u = 1 is the inferior (and maximum in this estimation) limit
which is valid for all a + 1 > 0 such that trajectories cross the plane y = 0 for x > 1.

Consider now a curve above Wu
+, y = cx−dx2, c > 1, d > 0. One may remark that for

any d > 0, c > 1 we have cx−dx2 > x for x small enough, more exactly if x < (c−1)/d.
So the surface y = cx − dx2 is above Wu

+ for x small enough.

Proposition 2.2. There exists c > 1, d > 0, c/d =
√

3 such that the surface in R
3,

y = cx − dx2,
1
3
x2 < z

is a surface without contact for trajectories of the system for all x > 0. If t increases,

trajectories of the system cross the surface for all a > 2, a2 − 8a − 8 > 0 on the side

y > cx − dx2. Consequently, for a > 2, a2 − 8a − 8 > 0 trajectories (and implicitly Wu
+)

starting in

y < cx − dx2,
1
3
x2 < z

cross y = 0 for x ≤ √
3.

Proof. We have

d

dt

(
y − cx + dx2

) ∣∣
y=cx−dx2 (2.4)

< −x

(
x2

(
2d2 +

a + 1
3

)
− d (a + 3c)x + c2 + ac − a − 1

)
< 0

for all x > 0 if

d2 (a + 3c)2 − 4
(

2d2 +
a + 1

3

) (
c2 + ac − a − 1

) ≤ 0,

or equivalently

0 < d ≤
√√√√4 (a + 1) (c − 1) (a + c + 1)

3
(
(a − c)2 + 8 (a + 1)

) := dm.

As the intersection of y = cx − dx2 with Ox is 0 and c/d, we are interested in the
maximum of d in order to see how low on Ox trajectories can cross y = 0. So take d = dm

and estimate the minimum of c/d for c > 1, a + 1 > 0.
Denoting p = c2/d2, we obtain

∂p

∂c
=

3
4

(
2c2 + 3ac − 8a − a2 − 8

) (
c2 − ac + 2a + 2

)
c

(a + c + 1)2 (a + 1) (c − 1)2
.

Further, ∂p/∂c = 0 implies ac − 2a − c2 − 2 = 0 with

c1 =
1
2
a +

1
2

√
a2 − 8a − 8, c2 =

1
2
a − 1

2

√
a2 − 8a − 8, a2 − 8a − 8 ≥ 0
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and 8a − 3ac + a2 − 2c2 + 8 = 0 with

c3 = −3
4
a +

1
4

√
64a + 17a2 + 64, c4 = −3

4
a − 1

4

√
64a + 17a2 + 64

for any a + 1 > 0.

Case 1. If a2 − 8a − 8 > 0 and a > 2 then we have

c4 < 1 < c2 < c3 < c1.

Evaluating the sign of ∂p/∂c for c on (1,+∞) we get that c1 and c2 are the minimum
points. Evaluating also p at c1 and c2 we get surprisingly,

p(c1) = p(c2) = 3, for any a > 2, a2 − 8a − 8 > 0.

So
x2

u := c/d =
√

3

is the limit for a > 2, a2 − 8a − 8 > 0, with the property that trajectories can cross y=0
only for x < x2

u.

Case 2. If a2 − 8a − 8 < 0 then c1,2 are not real anymore and c4 < 1 < c3 for
any a + 1 > 0. So the minimum in this case is c = c3 and one can show that the minimum
of x2

u = c/d is also
√

3.

Case 3. If a + 1 > 0, a < 2 and a2 − 8a + 8 > 0 then c1,2 are real again but
c1,2 < 1. We keep still c4 < 1 < c3 for any a + 1 > 0 and again c = c3 is the minimum.
With these constraints of a, x2

u = c/d is decreasing with respect to a, raging from +∞ to√
3. So these two last cases do not offer a better option for x2

u.

Remark 2.1. The above Propositions 2.1-2.2 say that, the separatrix Wu
+ crosses the plane

y = 0 in a point K(xu, 0, zu) with 1 < xu <
√

3 if a is large enough (in fact for a2 −8a−
8 > 0 and a > 2).

3 Tracing the Stable W s
0 Manifold

As the positive part of the Oz axis, denoted d+, belongs to W s
0 , we express W s

0 in
a small neighborhood of some parts of d+ in the form y = −f(t)x, z = z0e

−t, t > 0.

Denote TW s |A the tangent space to W s
0 at the point A. In [7] we proved the following

assertions.

Proposition 3.1. a) There exists a sequence

z0, z1, . . . , zk, . . . , zk+1 > zk, z0 > 1 +
a2

4(a + 1)
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such that the tangent space

TW s |Ak
= {(x, y, z) : y = 0},

where k = 0, 1, 2, . . . and Ak = (0, 0, zk).
b) For z < z0 we express TW s |A = {(x, y, z) : y = −f0(t)x, z = z0e

−t, t > 0}, where

A = (0, 0, z) and f0(t) is a solution of the Riccati equation (generally unsolvable)

f ′(t) = f2(t) − af(t) − (a + 1)(1 − z0e
−t), (3.1)

which is bounded for t > 0, f0(0) = 0 and such that

1
2

(
a +

√
(a + 2)2 − 4(a + 1)z0e−t

)
< f0(t) < a + 1, t > t0 > 0, (3.2)

where

t0 := ln
4(a + 1)z0

(a + 2)2
> 0.

This result implies that in the neighborhood of the integral line d+ : {x = y = 0, z >

0}, the two-dimensional manifold W s for z ≤ z0 can be expressed as

{y = −f0(t)x, z = z0e
−t, t ≥ 0}.

So for 0 < ε 	 1 we can find a curve

C = W s ∩ {x2 + y2 = ε2, 0 ≤ z ≤ z0}.
Proposition 3.2. Consider the region in R

3, R1 = {−(a + 1)x < y < 0} where y = 0
and y = −(a+1)x are seen as surfaces in R

3. Then the curve C ⊂ R1 for ε small enough.

In addition, for decreasing t, each trajectory starting on C up to its intersection with the

plane y = 0, remains in the region R1 and will cross this plane only for z > 1.

Proof. It is clear that the curve C lies in R1 because x > 0, f0(t) > 0, t > 0 so
y < 0 and from f0(t) < a + 1, t > 0 we get y + (a + 1)x > 0. Recall that TW s

0 =
{(x, y, z) : y + x (a + 1) = 0, z ∈ R} . We have also d

dt (y + (a + 1)x)
∣∣
y=−(a+1)x =

−(a + 1)xz �= for all xz �= 0. Hence, the surface y + (a + 1)x = 0 is a surface without
contact for trajectories of the system and the trajectories, for t decreasing, cross the surface
on the side y + (a + 1)x < 0 for any xz > 0. From d

dty |y=0 = (a + 1)(1 − z)x < 0 if
x > 0, z > 1, we have that, for t decreasing, trajectories can cross y = 0 on the side y < 0
only if x > 0, z > 1.

Consider in the following a surface in R
3 given by y = bx2 − cx, b > 0, c > a+1 with

z > 0. As bx2 − cx < −(a + 1)x for x small enough, this surface is below W s
0 for x small

enough. Evaluate,

d

dt
(y − bx2 + cx)

∣∣
y=bx2−cx = −x

(
z − a − ac + az + abx − 3bcx + c2 + 2b2x2 − 1

)
< 0 (3.3)
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as long as x > 0 and

2b2x2 + b(a − 3c)x + z − a − ac + az + c2 − 1 > 0. (3.4)

Relation (3.4) holds true if and only if

b2
(
8a − 8z + 2ac − 8az + a2 + c2 + 8

)
< 0,

that is, if z > (8a + 2ac + a2 + c2 + 8)/(8 + 8a). As the minimum of
(8a + 2ac + a2 + c2 + 8)/(8 + 8a) for c > a + 1 > 0 is attained at c = −a,

if −1 < a < −1/2 we can choose c = −a > a + 1 > 0. This leads to
z > 1. So if −1 < a < −1/2, there exists c = −a > a + 1 such that
d
dt (y − bx2 + cx)

∣∣
y=bx2−cx < 0 for any x > 0, z > 1 and for any b > 0. There-

fore, the surface in R
3, y = bx2 + ax, b > 0, −1 < a < −1/2 with z > 0, z �= 1, x > 0

is a surface without contact for trajectories of the system and the trajectories for t decreas-
ing cross this surface for z > 1 on the side y < bx2 + ax. As the curve C contains points
below z = 1, some trajectories starting on it may cross the surface y = bx2 + ax before
meeting z = 1, so for such trajectories we have no boundary. But, take b = −a > 0. The
nonzero intersection of the curve y = −ax2 + ax with the Ox axis is x = 1. Make now
the following assumption:

Assumption A. Assume that a trajectory lying in z > x2, starting on C and re-

maining in z < 1 before to cross the surface y = −ax2 + ax (if enters z > 1, it can not

cross the surface anymore), will cross first the surface z = x2.

With this assumption at hand, such a trajectory after crossing the surface z = x2, gives
z(t) decreasing and x(t) increasing (ż > 0, ẋ < 0), that is, the trajectory remains in z < 1
and it can not cross y = 0 (see Prop. 3.2) so it may escape on the surface z = 0.

As the trajectories starting in y > −ax2 + ax, x > 0 (in particular those starting on
C) can not cross y = −ax2 + ax for any x > 0, z > 1 they will cross y = 0 in a point
(x, 0, z) such that x < 1, z > 1. A trajectory, for t decreasing, starting on C at a point
such that z > 1 increases in y(t) because ẏ < 0. Also it increases in x(t) and in z(t)
as ẋ < 0, ż < 0 so it will cross surely the plane y = 0. It would decrease in z(t) after
crossing the plane z = x2 which is not possible because the surface z = x2, x ∈ (0, 1) is
below the surface z = 1, x ∈ (0, 1). If −1/2 ≤ a ≤ 0, we can not find anymore c and b

such that d
dt (y − bx2 + cx)

∣∣
y=bx2−cx < 0, so we only can infer that the curve C lies in

z > 1 in this case. Summarizing, we have the following useful intuitive conjecture. We
can not give it as a result since the trajectory may hit the surface y = −ax2 + ax first and
then z = x2.

Conjecture 1. Consider −1 < a ≤ 0. Then for t decreasing and −1 < a < −1/2, the
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trace of W s
0 through the flow of the system on the plane y = 0 is a curve lying completely

in x < 1, z > 1 and for −1/2 ≤ a ≤ 0 lying in z > 1.

The evolution of the curve C through the flow of the system for a ≥ 0 is summarized
in the following result.

Theorem 3.1. If a > 0 the trace of the curve C through the flow of the system on the plane

y = 0, is a curve Γ1 joining A0(0, 0, z0) with a point B1(x, 0, x2), lying on the curve

z = x2, and a point B2(x, 0, 1), x >
√

z0 lying on z = 1.

Proof. As a > 0 we have z0 > 1. For t decreases, trajectories starting on C for z > x2 and
for S := (a+1)(1−z)x−ay < 0 will increase in all three directions as ẋ < 0, ẏ < 0, ż < 0
and some of them will cross the plane y = 0 and others could meet the surface z = x2.

Considering z ≥ 0 arbitrarily fixed, the surface S is generated by the lines y = mx with
the slope m = (a + 1)(1 − z)/a, see Fig. 3.1. On the other hand, if S > 0 then they will
decrease in y(t), and if not meet S = 0 they will cross the surface z = x2. So we obtained a
curve Γ joining the points A0, B1 and O which belongs also to W s

0 . The part of the curve Γ
which does not lie in y = 0 and which is above the plane z = 1 is further translated through
the flow of the system in a curve Γ1 on the plane y = 0. Recall that from Proposition 3.2
trajectories can cross the plane y = 0 only for z > 1. The curve Γ1 ends in y = 0, z = 1
because at B2(x, 0, 1) the trajectory is tangent to the plane y = 0 as ẏ |y=0,z=1 = 0 and
after the tangency it returns to the region where y < 0 if x > 1 or crosses the plane y = 0
if x < 1. If x = 1 it remains there as (1, 0, 1) is an equilibrium point. A similar argument
is used in [1] where also is proved that the point B1 is unique.

0
2

4

−20
0

20
0

2

4
z

xy

Figure 3.1: Crossing the surface S given by y = (a+1)(1−z)x/a, the flow of the system approaches
or departs the plane y = 0.

Let us now describe the scenario leading to a homoclinic orbit considering the above
Conjecture 1 is valid. Denotes in the following by D+ the region on the plane y = 0
defined by the curve Γ1 and the lines z = 1, z = z0, x = 0 and by D− the remaining
region in the strip 1 < z < z0, x > 0.
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Define the function g(a) = minx,z d(xu, Γ1) · i(C), where xu is the Ox-coordinate
of the point P (xu, 0, zu) where Wu

+ crosses the plane y = 0, i(C) is +1 if the point P

lies in D+ and −1 otherwise and d(x, y) is the Euclidian distance in the plane. From
Conjecture 1 and Theorem 3.1 we have that the function g(a) is continuous with respect to
the parameter a for a + 1 > 0 and from Conjecture 1 and from Proposition 2.1 we have
in addition g(a) < 0 for a ∈ (−1,−1/2). For a > 2, a2 − 8a − 8 > 0 and again from
Theorem 3.1 we get that the intersection of the curve Γ1 with the region on y = 0, given by
x2 > z, z > 1 is a curve entirely contained in x >

√
3 because x >

√
z0 >

√
1 + a2

4(a+1)

while from Proposition 2.2 we have that P satisfies xu <
√

3 so P ∈ D+ and g(a) > 0.

Therefore, there exists a number a0 ∈ (−1/2, 8.9) such that g(a0) = 0.

Summarizing, we have the range of the parameter a where the system can have a
homoclinic loop.

Conjecture 2. There exists a value a0 ∈ (−1/2, 8.9) of intersection of the curve

Γ1 with Wu
+ such that, the system (2.1) corresponding to this value, has a homoclinic loop

to the saddle point O(0, 0, 0).

Numerical investigations reveal indeed a unique point a0 � 1.718 such that the system
possesses a homoclinic orbit. In Fig. 3.2 is presented a single homoclinic orbit lying
in x > 0, y > 0, z > 0 while Fig. 3.3 displays two symmetrical homoclinic orbits to
O(0, 0, 0) corresponding to a0.

0 1 2
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Figure 3.2: One homoclinic orbit of the system for a0.
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Figure 3.3: Two homoclinic orbits of the system for a0.
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Figure 3.4: Separatrices of the system for a = 2 (left) and a = 10 (right).
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Figure 3.5: Orbits of the system for a = 1.1 (left) and a = 0.5 (right).

4 Conclusions

Finding out closed orbits in a multidimensional dynamical system is a challenging prob-
lem. Of this type of orbits, homoclinic and heteroclinic ones play an important role in un-
derstanding the behavior of the system. Under some conditions, homoclinic or heteroclinic
bifurcations lead to periodic orbits or chaos in a system. We pointed out here details on
a method of detecting homoclinic orbits in a three-dimensional dynamical system. The
method is applicable for higher-order dynamical systems. Tracing the separatrices and
their intersections with a given surface, we showed that there are conditions for them to
meet one to another. Their intersections imply the existence of a homoclinic orbit. While
in this paper we registered some analytical results, others we had to left as conjectures.
Nevertheless, numerical results offer a good basis for these conjectures. In [7] we started
to improve these results.
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