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The presence of bounded orbits such as homoclinic and heteroclinic orbits are impor-
tant in a dynamical system. Chaotical behavior or the presence of periodic orbits of a
system is often preceded by destruction of a homoclinic or heteroclinic orbit. In this
work we give insights on a method of detecting homoclinic or heteroclinic orbits in a
three-dimensional dynamical system. The method can also be applied for multidimen-

sional systems.
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1 Introduction and Necessary Theoretical Notions

In this paper we present insights on a method dealing with detecting homoclinic or
heteroclinic orbits in a dynamical system generated by differential equations. The idea
is to trace the separatrices (stable and unstable manifolds) until they hit a given surface
and then look for conditions such that the separatrices meet one to another on this surface.
Finding homoclinic and heteroclinic orbits in a given dynamical system is not an easy task
but their presence tell us much about the behavior of the system. For example, destroying a
homoclinic or heteroclinic orbit can bring a system in chaos in some cases while in others
it leads only to the appearance of periodic orbits.

Consider a surface S in R3 given by S : F(z,y,2) = 0, F € C'(R?). A normal
vector to S at a point (z,y,z) € S is the gradient vector gradF(z,y, 2) = (Fy, F, F.).
The surface S splits the space in two regions according to £ > 0 (the positive region)
or F' < 0 (the negative region) and assume the normal vector gradF(z,y, z) lies in the
positive region.
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If a trajectory (for ¢ increasing ) of a differential system

= f(u), (1.1)

where & = (2,9, 2), f(u) = (fi(z,y,2), fa(z,y, 2), f3(z,y, z)), hits the surface S at a
point A(xg, yo, 20) coming from the positive region F > 0, then the vector field f at A
(which is tangent to the trajectory) makes with the gradient vector gradF" at A an angle
larger than 90°, see Fig.1.1. Since

grad F - f
|grad F[ - | f|"

it follows that grad F' - f < 0 at A. On the other hand,

cos(gradF, f) =

d
$F(x,y, 2)|p=0 = Fo@ + Fyy + F,2|p=o = gradF - f < 0,at A.

grad F

S

f ¥

Figure 1.1: An orbit tangent to the vector field f at a point A, entering transversally the surface
S : F(z,y,z) = 0 coming from the positive region F' > 0, makes with the gradient vector gradF’ at
A an angle larger than 90°.

As a conclusion, we have

Proposition 1.1. If the derivative (for t increasing) along a trajectory of the system (1.1),
@ Py, 9)lrm0 <0

dt Z,Y,Z)|F=0 )

then the trajectory hits the surface S : F(x,y,z) = 0 coming from the positive region
F(z,y,2) > 0.1f

d
@F(xayaz)‘F:O > Oa

then it crosses the surface S : F(x,y, z) = 0 coming from the negative region F (z,y, z) <
0. For t decreasing, the scenario is inversely, i.e. if

d

&F(l’, Y, Z)‘F:O < 07

the trajectory hits the surface S coming from the negative region and if

d
aF(xvyvz)‘F=0 > O:

the trajectory hits the surface S coming from the positive region.
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Remark 1.1. If

d
%F(I,?J,Z”F:o 7£ 07

the surface S is called without contact for trajectories of the system or a transversally
section to the flow of the system. If

d
aF(xay7 Z)|F:0 =0

then the trajectory is included in .S or tangent to it.

2 Tracing the Unstable Manifold W}

We will apply the method for detecting homoclinic orbits only but similarly it can be
applied for heteroclinic orbits. The system considered in this work is a Shimizu-Morioka-
like 3D model given by

t=y, = (a+1)(1—-2)x—ay, 2 =22 2.1
Applications of Shimizu-Morioka models are suggested in [2]. In [3, 4] two types of
Lorenz-like attractors of this system are shown. Relationships with the theory of normal
forms are reported in [6, 8]. Computer—assisted results on the behavior of the system are
obtained in [5].

The equilibrium points of the system are O(0,0,0), 01(1,0,1),02(—1,0,1). As the
system is invariant under the transformation x — —x,y — —y, its orbits are symmetrically
with respect to the Oz axis, so, with no loss of generality, we may restrict our investiga-
tions to x > 0. Since a homoclinic or heteroclinic orbit is bounded and for z < 0 the
derivative z > 0, they will lie in z > 0, so we may restrict further to z > 0. The Jacobian
matrix associated to the system at O(0,0,0) has the eigenvalues 1,—1, —a — 1 and the
corresponding eigenvectors (1,1, 0), (0,0,1), (=1/(a + 1),1,0), so O(0, 0, 0) is a saddle.
Assume a + 1 > 0. Therefore the system has a one-dimensional unstable manifold W'
and a two-dimensional stable manifold W passing through O(0,0,0). We have also the
one-dimensional tangent space to W§ at O(0,0,0),

TWs ={(z,y,2) 1z =y,z =0}
and the two-dimensional tangent space to W at O(0, 0, 0),
TWy ={(2,9,2) :y+ax(a+1) =0,z € R}.
The Jacobian matrix at O 5 has the characteristic polynomial

P>+ (a+1)p* +ap+2a+2=0.
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From Routh-Hourwitz conditions, the characteristic polynomial has all roots with negative
real part if and only if @ > 2. Notice that the positive part of Oz axis, denoted by d*,
belongs to W
Denote W' the branch of W lying in yy > 0 and W the branch of W lying iny < 0.
Consider the equation of W} in the neighborhood of O(0, 0,0) given by

y:alx—i-ang—l—agwg—l—n-

z = bix + by + b3a® + bya* + - - 2.2)

As W = WUW™ is invariant under the action of the flow of the system, after computing
the coefficients, equations of W for x small enough, are given by

1

So for  small enough, W lies in the region

1
R:{(x7y,z):0<y<x, §x2<z<x2, x>0}.

In [7] we proved that W' lies in the region 22/3 < z < 22 not only for z small but for
allz > 0,y > 0.

We want to estimate now the x—coordinate of the point where W crosses y = 0.

Consider the surface in R3, y =z — b2, 0 < z < 22,b > 0. Asz — bz? < 2,b > 0
the surface y = = — bx? is below W for x small enough.

We are interested under what conditions, trajectories lying in #2/3 < z < 2 can cross
this surface.

Proposition 2.1. The surface in R®,y = x — bx?,0 < z < 22,b > 0 is a surface without
contact for trajectories of the system. If t increases, trajectories of the system cross the
surface on the side

bla +3)

—— b .
a+1+42b2° >0

y<z—>br? forall0<z<

In particular, if b = 1 we obtain that the trajectories of the system (and implicitly W) for
0<z<a?crossy=0forx>1.

Proof. if
ba+3)
arilror w

we have

% (y— x—l—bxz) |y:z_bz2 > —z2 (z(a+1+ 2b2) —b(a+3))>0.

We used z < 22. So the surface y = 2 —bx2,0 < z < 22 is without contact for trajectories
of the system and for ¢ increases, trajectories of the system cut the surface on the side
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y < x—brtforall0 <z < zL,b > 0. Notice that 1 > 1/b for all b > 1 and all
a+ 1 > 0. Consequently, . = 1 is the inferior (and maximum in this estimation) limit
which is valid for all @ + 1 > 0 such that trajectories cross the plane y = 0 forx > 1. [

Consider now a curve above Wi, y = cx — dz?,c > 1,d > 0. One may remark that for
any d > 0, ¢ > 1 we have cx —dz? > z for 2 small enough, more exactly if v < (¢c—1)/d.
So the surface y = cx — dz? is above W for x small enough.

Proposition 2.2. There exists ¢ > 1,d > 0,c¢/d = V'3 such that the surface in R?,

1
y = cx — da?, §$2<z

is a surface without contact for trajectories of the system for all x > 0. If t increases,
trajectories of the system cross the surface for all a > 2,a%> — 8a — 8 > 0 on the side
y > cx — dx?. Consequently, for a > 2,a? — 8a — 8 > 0 trajectories (and implicitly wi)
starting in

y < cx — dx?, %xz <z
crossy = 0 for z < /3.

Proof. We have

d
% (y —cx+ dTQ) |y=cz—d:ﬂ2 (24)

1
< —x (1‘2 (2d2+a§ >—d(a+3c)x+c2+ac—a—1) <0
forall x > 0 if
1
d2(a+3c)2—4(2d2+%) (*+ac—a—1) <0,

or equivalently

0<d< 4(a+1)(c=1)(a+c+1) —d

3<(a—c)2+8(a+1))

As the intersection of y = cx — dz? with Oz is 0 and ¢/d, we are interested in the
maximum of d in order to see how low on Oz trajectories can cross y = 0. So take d = d,,
and estimate the minimum of ¢/d for¢ > 1,a + 1 > 0.

Denoting p = ¢?/d?, we obtain

op 3(202+3ac—8a—a2—8) (02—a6+2a+2)c

Oc 4 (a—!—c—|—1)2(a—4—1)(c—1)2

Further, Op/0c = 0 implies ac — 2a — ¢ — 2 = 0 with

—1+1\/2 8a —8 _ 1 1\/2 8a—8, a> — 81 —8>0
clf2a 2(1 a ,02f2a 2a a , @ a >
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and 8a — 3ac + a? — 2¢? + 8 = 0 with
3 1 3 1
c3 = —Za—i— ZV 64a + 17a2 + 64,c4 = 7%~ ZV 64a + 17a2 + 64

forany a +1 > 0.
Case 1. Ifa®> — 8a — 8 > 0 and a > 2 then we have

cy<l<cy<esz<e.

Evaluating the sign of dp/dc for ¢ on (1,400) we get that ¢; and ¢y are the minimum
points. Evaluating also p at ¢; and cp we get surprisingly,

p(c1) = p(ca) = 3, forany a > 2,a® — 8a — 8 > 0.

So
22 =c/d=V3

is the limit for a > 2,a% — 8a — 8 > 0, with the property that trajectories can cross y=0
only for x < z2.

Case 2. If a®> — 8a — 8 < 0 then c1,2 are not real anymore and ¢4 < 1 < c3 for
any a + 1 > 0. So the minimum in this case is ¢ = c¢3 and one can show that the minimum
of 22 = ¢/d is also v/3.

Case 3. Ifa+1 > 0,a < 2and a® — 8a + 8 > 0 then c1,2 are real again but
c1,2 < 1. Wekeepstill ¢4 < 1 < ¢g forany a + 1 > 0 and again ¢ = c3 is the minimum.
With these constraints of a, 2 = ¢/d is decreasing with respect to a, raging from +oo0 to
V/3. So these two last cases do not offer a better option for x2. 0

Remark 2.1. The above Propositions 2.1-2.2 say that, the separatrix W7 crosses the plane
y = 0inapoint K (2,0, z,) with 1 < x,, < +/3 if a is large enough (in fact for a — 8a —
8 > 0anda > 2).

3 Tracing the Stable W Manifold

As the positive part of the Oz axis, denoted d*, belongs to W, we express W§ in
a small neighborhood of some parts of d* in the form y = —f(t)x,z = zpe~t,t > 0.
Denote T'W* | 4 the tangent space to W at the point A. In [7] we proved the following
assertions.

Proposition 3.1. a) There exists a sequence

2

a
205 R1y+veyRkyen-s Zk+1>Zk, ZO>1+W
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such that the tangent space
TWS |Ak = {($7y7 Z) : y = 0}7

where k = 0,1,2,...and Ay, = (0,0, zi).
b) For z < 2o we express TW*® |a = {(z,y,2) : y = —fo(t)x, 2 = z0e~t,t > 0}, where
A =1(0,0,2) and fo(t) is a solution of the Riccati equation (generally unsolvable)

/() = f2(t) —af(t) — (a+1)(1 — zpe™), (3.1
which is bounded for t > 0, f,(0) = 0 and such that

1
§(a +v(@+2)?2 4@+ l)zoe*t) <fot)<at+lt>tg>0, (32
where " 0
L a+ 1)z
t() :=In 7(0, T 2)2 > 0.

This result implies that in the neighborhood of the integral line d* : {z =y = 0,2 >
0}, the two-dimensional manifold W* for z < z, can be expressed as

{y=—fo(t)z,z = 20e~",t > 0}.
So for 0 < € <« 1 we can find a curve
C’:WSﬁ{w2+y2:52, 0<z<z2}.

Proposition 3.2. Consider the region in R3, Ry = {—(a + 1)z < y < 0} where y = 0
andy = —(a+1)x are seen as surfaces in R3. Then the curve C C Ry for ¢ small enough.
In addition, for decreasing t, each trajectory starting on C up to its intersection with the

plane y = 0, remains in the region Ry and will cross this plane only for z > 1.

Proof. 1t is clear that the curve C' lies in Ry because z > 0, fo(t) > 0, > 0 so
y < 0and from fo(t) < a+ 1,t > 0 we get y + (a + 1)x > 0. Recall that TW3 =
{(z,y,2) :y+2(a+1) =0,z € R}. We have also % (y+ (a+1)z) ’y:,(aﬂ)w =
—(a + 1)zz # for all xz # 0. Hence, the surface y + (a + 1)z = 0 is a surface without
contact for trajectories of the system and the trajectories, for ¢ decreasing, cross the surface
on the side y 4 (a + 1)z < 0 forany 2z > 0. From 4y |,—o = (a + 1)(1 — 2)z < 0 if
x > 0,z > 1, we have that, for ¢ decreasing, trajectories can cross y = 0 on the side y < 0
onlyifz >0,z > 1. O

Consider in the following a surface in R? given by y = bx? — cz,b > 0,¢ > a+ 1 with
z > 0. As bz? — cz < —(a+ 1)z for z small enough, this surface is below W for = small
enough. Evaluate,
d
%(y — b2+ cx) |y:bxz,cm =—x (z —a—ac+ az + abx — 3bex + & + 2b%2? — 1)
<0 3.3)
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as long as z > 0 and
2022 +b(a — 3c)x + 2 —a—ac+az+c* —1>0. 3.4)
Relation (3.4) holds true if and only if
b* (8a — 8z + 2ac — 8az + a® + > +8) < 0,

that is, if 2z > (8a+2ac+a®+c®>+8)/(8+8a). As the minimum of

(8a+2ac+a®>+c?+8)/(8+8a) for ¢ > a + 1 > 0 is attained at ¢ = —a,
if -1 < a < —1/2 we can choose ¢ = —a > a + 1 > 0. This leads to
z > 1. Soif -1 < a < —1/2, there exists ¢ = —a > a + 1 such that

%(y — ba? + cx) ‘y:bxz,w < 0 forany z > 0,z > 1 and for any b > 0. There-
fore, the surface in R3, y = bx% +az, b >0, —1 <a < —1/2withz >0, z# 1,2 >0
is a surface without contact for trajectories of the system and the trajectories for ¢ decreas-
ing cross this surface for z > 1 on the side y < bz + ax. As the curve C contains points
below z = 1, some trajectories starting on it may cross the surface y = bx? + ax before
meeting z = 1, so for such trajectories we have no boundary. But, take b = —a > 0. The
nonzero intersection of the curve y = —ax? + az with the Oz axis is © = 1. Make now
the following assumption:

2

Assumption A. Assume that a trajectory lying in z > x, starting on C and re-

maining in z < 1 before to cross the surface y = —ax? + ax (if enters z > 1, it can not

cross the surface anymore), will cross first the surface z = x2.

With this assumption at hand, such a trajectory after crossing the surface z = x2, gives
z(t) decreasing and z(t) increasing (¢ > 0, & < 0), that is, the trajectory remains in z < 1
and it can not cross y = 0 (see Prop. 3.2) so it may escape on the surface z = 0.

As the trajectories starting in y > —ax? + ax, = > 0 (in particular those starting on
C) can not cross y = —ax? + ax for any x > 0,z > 1 they will cross y = 0 in a point
(z,0,2) such that z < 1,z > 1. A trajectory, for ¢ decreasing, starting on C at a point
such that z > 1 increases in y(t) because ¢y < 0. Also it increases in x(¢) and in z(t)
as & < 0,% < 0 so it will cross surely the plane y = 0. It would decrease in z(t) after
crossing the plane z = x2 which is not possible because the surface z = x2, 2 € (0,1) is
below the surface z = 1,2 € (0,1). If —1/2 < a < 0, we can not find anymore ¢ and b
such that %(y —bx? + cx) ‘y:sz—cz < 0, so we only can infer that the curve C' lies in
z > 1 in this case. Summarizing, we have the following useful intuitive conjecture. We
can not give it as a result since the trajectory may hit the surface y = —ax? + ax first and

then z = z2.

Conjecture 1. Consider —1 < a < 0. Then for t decreasing and —1 < a < —1/2, the
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trace of W§ through the flow of the system on the plane y = 0 is a curve lying completely
inx <1, z>1landfor —1/2 < a <0lyinginz > 1.

The evolution of the curve C' through the flow of the system for ¢ > 0 is summarized
in the following result.

Theorem 3.1. If a > 0 the trace of the curve C through the flow of the system on the plane
y = 0, is a curve T'y joining Ay(0,0,29) with a point By(z,0,x?), lying on the curve
z = x?, and a point By(x,0,1), x > \/zq lying on z = 1.

Proof. Asa > 0 we have zy > 1. For t decreases, trajectories starting on C for z > x2 and
for S := (a+1)(1—z)z—ay < 0 will increase in all three directionsas & < 0,y < 0,2 < 0
and some of them will cross the plane y = 0 and others could meet the surface z = 2.
Considering z > 0 arbitrarily fixed, the surface S is generated by the lines y = ma with
the slope m = (a + 1)(1 — z)/a, see Fig. 3.1. On the other hand, if S > 0 then they will
decrease in y(¢), and if not meet S = 0 they will cross the surface z = x2. So we obtained a
curve I" joining the points Ay, By and O which belongs also to ;. The part of the curve I
which does not lie in y = 0 and which is above the plane z = 1 is further translated through
the flow of the system in a curve I'; on the plane y = 0. Recall that from Proposition 3.2
trajectories can cross the plane y = 0 only for z > 1. The curve I'; endsiny = 0,z =1
because at Ba(z,0, 1) the trajectory is tangent to the plane y = 0 as ¢ |y=0,,=1 = 0 and
after the tangency it returns to the region where y < 0 if z > 1 or crosses the plane y = 0
if x < 1. If £ = 1 it remains there as (1,0, 1) is an equilibrium point. A similar argument

is used in [1] where also is proved that the point B; is unique. O

-20 0

Figure 3.1: Crossing the surface S givenby y = (a+1)(1—2z)z/a, the flow of the system approaches
or departs the plane y = 0.

Let us now describe the scenario leading to a homoclinic orbit considering the above
Conjecture 1 is valid. Denotes in the following by D, the region on the plane y = 0
defined by the curve I'; and the lines z = 1, 2 = 29, = 0 and by D_ the remaining
region in the strip 1 < z < zp, « > 0.
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Define the function g(a) = min, , d(z,,I'1) - i(C), where z,, is the Ox-coordinate
of the point P(x,,0, z,) where W} crosses the plane y = 0, i(C) is +1 if the point P
lies in D and —1 otherwise and d(z,y) is the Euclidian distance in the plane. From
Conjecture 1 and Theorem 3.1 we have that the function g(a) is continuous with respect to
the parameter a for @ + 1 > 0 and from Conjecture 1 and from Proposition 2.1 we have
in addition g(a) < 0 fora € (—=1,—1/2). Fora > 2, a®? — 8a — 8 > 0 and again from
Theorem 3.1 we get that the intersection of the curve I'; with the region on y = 0, given by
22 > 2,z > 1is a curve entirely contained in z > V3 because & > /Zp > /1 + ﬁ
while from Proposition 2.2 we have that P satisfies z,, < v/3so P € D4 and g(a) > 0.
Therefore, there exists a number ag € (—1/2, 8.9) such that g(ag) = 0.

Summarizing, we have the range of the parameter a where the system can have a

homoclinic loop.

Conjecture 2. There exists a value ag € (—1/2,8.9) of intersection of the curve
'y with W such that, the system (2.1) corresponding to this value, has a homoclinic loop
to the saddle point O(0,0,0).

Numerical investigations reveal indeed a unique point ay ~ 1.718 such that the system
possesses a homoclinic orbit. In Fig. 3.2 is presented a single homoclinic orbit lying
inz > 0,y > 0,z > 0 while Fig. 3.3 displays two symmetrical homoclinic orbits to
0(0,0,0) corresponding to ag.

2 2
y z
1 15
0 1
-1 05
-2 X 0 X
0 1 2 0 1 2

Figure 3.2: One homoclinic orbit of the system for ag.

2 3
y 251 2
1
2
0 15
1
-1
0.5
-2 X X
%2 0 2 -2 0 2

Figure 3.3: Two homoclinic orbits of the system for ag.
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2

-2 0 2

Figure 3.5: Orbits of the system for a = 1.1 (left) and a = 0.5 (right).

4 Conclusions

Finding out closed orbits in a multidimensional dynamical system is a challenging prob-
lem. Of this type of orbits, homoclinic and heteroclinic ones play an important role in un-
derstanding the behavior of the system. Under some conditions, homoclinic or heteroclinic
bifurcations lead to periodic orbits or chaos in a system. We pointed out here details on
a method of detecting homoclinic orbits in a three-dimensional dynamical system. The
method is applicable for higher-order dynamical systems. Tracing the separatrices and
their intersections with a given surface, we showed that there are conditions for them to
meet one to another. Their intersections imply the existence of a homoclinic orbit. While
in this paper we registered some analytical results, others we had to left as conjectures.
Nevertheless, numerical results offer a good basis for these conjectures. In [7] we started

to improve these results.
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