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1 Introduction

The theory of multiple-valued functions in the sense of Aterg[1] has several applications in the framework of geometric
measure theory. It gives a very useful tool to approximateesabstract objects arising from geometric measure theory.
For example, Aimgrend]] used multiple-valued functions to approximate mass mimiimg rectifiable currents, and hence
successfully obtained their partial interior regular®plomon P] succeeded in giving proofs of the closure theorem
without using the structure theorem. His proofs rely onmasifacts about multiple-valued functions. There are atlsero
objects similar to these functions, such as the union oftftgg&h Sobolev’s functions introduced by Ambrosio, Gobbino
and Pallara (se€]).

In complex function theory one often speaks of the two-vélfienction f(z) = \/z. This can be considered as a
function fromC — o#>(C). Almgren ] introduced«/g(R")-valued functions to address the problem of estimating the
size of the singular set of mass-minimizing integral cuts¢see 1] for a summary). Alimgren’s multiple-valued functions
are a fundamental tool for understanding geometric variali problems in codimension higher than 1. The success of
Almgren’s regularity theory raises the need for furtherdging multiple-valued functions. For additional inforrat
concerning multiple-valued functions, we suggest theregfees 5,6,7,8,9,10].

Differential equations of fractional order recently haveyed to be valuable tools in the modeling of many physical
phenomena 11,12,13,14,15,16,17,18]. There have also been significant theoretical developsnémtfractional
differential equations in recent years; see the monograpKdlbas et al. [19], Miller and Ross 20], Oustaloup 21,
Podlubny R2], and Samkeet al. [23]. For details on geometric and physical interpretationfaétional derivatives of
the Riemann-Liouville type, se@Z)].

In this paper we consider the problem

DS y(t) € {fa(t,t'y),.... f(t,t1y)}, te(0b],
1)
lim 2 %(t) =,

t—0t

where eachfi: [0,b] x R" — R" is a single-valued function, andf, denotes the usual Riemann-Liouville fractional
derivative of ordenr € (0,1].
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For some existence results for differential inclusions &adtional differential inclusions in the sense of Almgren
see GobletT]. For the existence and structure of the solution sets ofsdasses of differential inclusions and fractional
differential equations and inclusions in the usual senseswggestq4,25,26,27,28,29] and the references therein.

The goal of this note is to provide an existence result foutsmh sets of fractional differential inclusions in the sen
of Almgren.

2 Preliminaries
In this section, we recall from the literature some notatjatefinitions, and auxiliary results that will be used tigioout
this paper.

Notation: We denote by[pi]] the Dirac mass im; € R".

Definition 1. For every T, T, € #4(R"), with T =  [[pi]] and & = ) [[s]], we define ¢/(Ts, T2) by either
|

dg{(Tl,Tz) = min

oc Py

k
i;H)i _So(i)|27

k
d(W(TlaTZ) = Grgiﬁgk 21|p| _SU(i)|7
FKiE

or
do/ (T, T2) := min {max|p _Sa‘(i)| ti=1...k},
oc Py

where & denotes the group of permutations{df ... k}.

Remark. In the above definition, we designated each expression Wilsame symbol because the results in this paper
are independent of the form df, used.

Definition 2. A multiple-valued function in the sense of Aimgren is a magT— #(R"), whereQ C R" and

H(R") = {i[[pi]] : pi € R" for every i= 1,...,k}

equipped with the metric gd.
Next, we define what we mean by a selection function and gireesaf their useful properties.

Definition 3. LetQ c R™and f: Q — @ (R") be a k-valued function. If there exist single-valued maps @ —
R™ i=1,...,k, such that
k

f(x) = _Zl[[gi (x)]] for each xe R™,

then we say that the vect@gs,...,gx) is a selection for f.

Theorem 1. ([4,5]) Let f: [0,b] — 24 (R") be a continuous multiple-valued function. Then there argiooous functions
f1,..., fc : [0,b] — R" such that
k
f=Y f.
2

Remark.If for eachi € {1,...,k}, fj is continuous, therfi has a continuous selection.

Lemma 1. ([7]) Let f: R — «4(R") be a continuous multiple-valued function andiy— R" be a continuous function.
Ifh:[0,b] x R — <4_1(R") satisfies
f =gl +h,

then h is a continuous function.
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Remark. An 4 (R")-valued function is essentially a rule assignkngnordered and not necessarily distinct elements of
R" to each element of its domain.

Lemma 2. ([7]) Let(f;) : [0,b] — «4(R") be a sequence of multiple-valued functions convergingtpise to f, and let
(gi) : [0,b] — R" be a sequence of functions converging pointwise to g sutlytisa selection of;ffor each ie N. Then
g is a selection of f.

Theorem 2. ([4]) Suppose ..., fg : [0,b] — R" are continuous functions and=£ SX ,[[i]] : [0,b] — <%(R"). Then
there exists a constanté > 0, depending only on n and kuch that

wy; < Chywr, foreachi=1,... Kk,
wherews is the modulus of continuity of f.e.,
wr (8) = sup{dy(f(s1), f(s2)) 151,52 € [0,b] and (s, — 5| < 6},

and
ws, (8) = sup{|fi(s1) — fi(s2)| : 51,82 € [0,b] and|s; — sp| < 6}

3 Fractional calculus

According to the Riemann-Liouville approach to fractionalculus, the notation of fractional integral of orader> 0 is a
natural consequence of the well known formula (usuallytatted to Cauchy), that reduces the calculation ofrthéold
primitive of a functionf (t) to a single integral of convolution type. The Cauchy formala

I"f(t) := (n_ill)!/ot(t—s)”lf(s)da t>0,neN.

Recall that Euler's Gamma function is defined by
r(a) :/ t9tetdt, a > 0.
0
Definition 4. The fractional integral of ordea > 0 of a function fe L*([a,b],R) is defined by
t (t _ S)or—l
19, £(t) = / 29
at () a I—(a) (S)ds
Ifa=0, we write " f(t) = f(t)x @ (t) with @y (t) : R — R defined by
tor—l .
=, Ift>0
ty=/{ )’ : ’
% (t) {O, ift <0,

andg, (t) — o(t) asa — 0, whered is the delta function.

Remark.For consistency, we také to be the identity operator, i.d2f (t) = f(t). Furthermore, by? f (0+) we mean the
limit (if it exists) of 19 f(t) ast — O™ (this limit may be infinite).

After the notion of fractional integral, that of fractiordgrivative of order > 0 becomes a natural requirement. It is
tempting to replace with —a in the above formulas, however, this generalization need&scare in order to guarantee
the convergence of the integral and preserve the well knoopapties of the ordinary derivative of integer order. Dimgp
by D", with n € N, the derivative operator, we first note that

D"I"=1° I"D"£1°, neN,
i.e.,D"is the left-inverse (and not the right-inverse) of the cepanding integral operatdf. It is easily proved that
_ a)k
k!

"D (t) = f(t)—n§f<k>(a+)(t t>0.
k=0

As a consequence, we expect thétis defined as the left-inverse k8. For this purpose, introducing the positive integer
nsuch thah— 1 < a < n, we define the fractional derivative of order> 0 as follows.
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Definition 5. For a function f given on intervala, b], the a-th Riemann-Liouville fractional order derivative of f is
defined by

ZJG)=FUé;5(%>i£G—$““J*@ds

where n= [a] + 1 and[a] is the integer part ofr.

We also need the following generalization of Gronwall’s feenfor singular kernels; its proof can be found 80]
Lemma 7.1.1].

Lemma 3. Letv: [0,b] — [0, ) be a real function, w[0,b] — [0, ) be a locally integrable function o}, b], and assume
that there are constants:a 0 and0 < a < 1 such that

wn<wm+§£@%20

Then, there exists a constantKK(a) such that

v(t) <w(t) + Ka/ot (tvi(z))a

for every te [0,b].

4 Main results
We consider the Banach space of continuous functions

C.([0,b],R™) = {y € C((0,b],R"™) :tlir&tl"’y(t) exists

with the norm
[l = sup{[t*~“y(t)| : t € (0,b]}.
For a subsety of the spac€.([0,b],R), defineey by

g ={Ya Y€ A},

where
th=ay(t), t € (0,b],
Yal) =19 jim t-ayt), t—o.
t—0*

The following theorem is a simple variant of the classicat&a-Ascoli theorem.

Theorem 3. ([31]) Let & be a bounded set in.{0,b],R). Assume that#, is equicontinuous off0,b]. Then.« is
relatively compact in [0, b],R).

Now, we present our main results.
Theorem 4. Let fi: RxR" — R", i =1,...,k, be single-valued functions such that the associated niedtialued

function in the sense of Almgren
k

f= Zl[[fi]] :[0,b] x R — 4(R")
i=
is continuous. Assume that there exists>N such that
do (f(t,X),K[[0]]) <M, forall xeR and te (0,b]. (2)

Then the probleml] has at least one solution. Moreover, the solution set oblaim (1) is compact in C([0, b], R™).
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Proof. First we construct a solution on the intern@l b]. We form two sequencegy; }j‘f and {g }z‘f in the spaces
C. ([0,b],R") andC (][0, b],R"), respectively, as follows. Let

Ya(t) = lim s™Cyi(g) =c, te[0,b],

where
ya(t) =ct® % te(0,b].
Let
c te[0,3]
t) — N 2D
Yalt) {tla)’z(t), te (3,0,
where
l0), b te @3l
ya(t) = R -
ct"*“rﬁ/o “(t—9 Tgu(sds te (8.b],

andgzs : [0, g] — R" is a continuous selection df(-,y2(-)) : [0, g] x R" — o4 (R"). From Theoreml, we can find a
continuous selectiogy : [0,b] — R" of f(-,y2(+)) : [0,b] x R" — a4(R") such thaty(-) = g21(-) on [0, g]. We define

e, te[O ]
yg(‘)‘{t”ysax te (b

where
ya(t), te (0,2

t-3
ya(t) = Ctafl+ﬁ/o (t—9)% 'gz1(s)ds te (3,2,

(2

3
ot [T -9 gaa(eds e (Z0)

g31: [0, %] — R"is a continuous selection 6f-,y3 (+)) : [0, g] — (R"), andgz 2 : [0, %’] — R"is a continuous selection
of f(-,y2(-)):[0,2 ] — MK(R”) suchthags1(-) = gs2(-) on |0, b] By Theoreml, we can choose a continuous selection
g3:[0,b] — R" of f Y2 (+)) 1 [0,b] x R" — 24 (R") such thags(-) = gs2(+) on [0, 2—3?]. By induction, forj € N,

. c telo 9]
J t _ Y b) J b)
ya( ) {tlayj (t), te (Tbab]v
where b
yjfl(t)7 te (07 T]a
_b
otk [ gages te(8,2]
t— 2D
MO = e s [ -9  tgag0s e (2,3,
......... i .
Cta_lJrﬁ/o (t=97 g j-a(s)ds e (U522.h)
g1 [0,%’] — R"is a continuous selection ¢f-,y () : [0, ﬁ—-’] — 4(R"), andg; 2 : [0, 5 2] — R"is a continuous selection
of f(-y, {,( ) 1[0, ]—>.;sz(R”) such thagj 1(-) = gj 2(-) on [0, ‘J)] 2 0jj—2: [0, (i=2b ; ) | = R"is a continuous selection
of f(,yk(-)) : [0, ) ] = #A(R"), andgjj_1 : [0, "=22] - R" is a continuous selection df(-,y4 () : [0, 1=H2] —

j ]
2(R") such thag,,y],z(-) =0j,j-1(-) on|0, (=2b 2) |. By Theoreml, we can choose a continuous selectipn[0,b] — R"
of f(-,yh(-)) 1[0,b] x R" — a4 (R") such thag,( )=gj 1 2() on[0,U=22),

We have{g;} € C([0,b],R"). Also, there exists a constalt > 0 such that

lgit) <M, te[0,b].
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We observe that ify, 1 € (0, ] then
V& (T2) —y& (1) = 0.
If JisanintegerwithXJ< jandif0< 11 < %’ <1, <h, then

]_a Jb

W)~y < s [ (-9 gy (s

<P /0 * -9 g (9)ds
Mr
= r(a+1)(T2 -t
and if%’< 1< Tp<b,
V2 (T2) ~ Vi (m)| < % =97 gy (91ds+ 1() [ lm-97— (-9 Yig(9)ds

1-a Jb

s [7 ) (97 g (s)ds
r(a) )y )

]
M|T21 - Tlia| i a—1 Mrllia i a-1 a—1
< - - — — — —
< o) /(rz s) ds+ o /O[(rl S) (T2—9s)% "|ds

"( )
+MT21_G/2_J_b S_%) o—s Ib ailds
r(a) Jo-% 2—S z j
Mty 9 -1} "|/T1 g1.. MTIe rm _ _
<—2____1 1/ (1p—9) 9% lds+ =21 / 11 -9% 1 (-9 Yds
< Fa) | (12—9) Fla) | [(i—9) (2—9)"]
Mty @ TzJTb< Jb)"l
+ Tp—S— — ds
r(a) /* 2]
M|T2170_T1 “ 79 MT:%ia a MT:%ia a MTzlia a-1
e Tt rarn T T e TR eyt
Mg - n e MO e M et
= I'(or+1) 2 /'(a+1) 21 T a +1) 2

As 1, — 11 the right-hand side of the above inequality tends to zermsequently the sequengy, } is equicontinous.
Next, note that

a tla t_— a—
VOl + gy 09 a9l
1—a _b
<l fo 9" Yay(slds

bl

—a

b a
<+ |- (3) +
Mb
< M,
sld+raep =M

Hence, the sequenc{q@,} is uniformly bounded and equicontinuous. By the Arzel@dstheorem, there exists a
subsequence, still denoted{eg,é,}J _,» converging uniformly to some functignin C, (([0,b],R").
LetK = [0,b] x B(c,M), and
W) (8) = sup{dy (f(12,y2), F(11,y1)) : [(T2,¥2) — (TL.y1)| < &
where(ty,y1), (T2,Y2) € K}
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be a modulus of continuity of restricted taK. For eache > 0 there exist®; > 0 such that for everyr, — 11| < &,

Mig ™ =17 oq M "4
ra+1 2 I(a+1)

o—11]% <,
and a
%(rﬁ’ —-1f) <e
Hence, for each € N, we have
|13~ %yj(12) — 15 %yj(11)| < €, forall 11, 12 € [0,b] and |1, — 11| < &1

This implies

w'f(‘ygx(»(éZ) = sup{d%(f(-léayg?(TZ))a f(Tlayg(Tl))) . |T2 - Tll S 617 andT17T2 € [Oa b]}

< sup{d/(f(12,y1), F(T1,¥2)) : [T2— T1| < &, |y1— Y| < &, and(12,Y2), (T1,¥1) € K}
< w| fK(62)7

whered, = max( &y, €). It clear thatf (-,y_tjg,(-)) —[[9;()]] : [0,b] = <A_1(R") is a continuous multiple-valued function, so
there exist continuous functiohs, ..., h} , : [0,b] — R" such that

. k1o
fya () = llg()]] + _;[[hf(-)]]-

Then,
lgi| <M foreachne N

and
Wlg < Wl (&) foreveryne N.

Consequently{gi }z‘f is bounded and equicontinuous. From the Arzela-Ascobitbe (Theoren8), we can conclude
that {gi}|=F is compact inC([0,b],R"). Hence, there exists a subsequence, again denotedyby s, converging
uniformly tog.

Now set

a-1 1 t a-1 .
2(t) = ct +m/0(t—s) g(9)dsi= y(t), te (0,b].

Then we see that

- - tha gt -
Py (0 2] < frgr [ -9 (s~ gls)lds
< =gl
e
< ————119j — 9l '
= r(a+1)||gl g” _>OaSJ — ®,

and so{y;(t)} — z(t).
Set 0

c, t—
Ya(t) = {tlo’y(t), t € (0,b].

By Lemma2, we conclude thag is a continuous selection df-,yq (-)) on|[0,b].
Next, we want to show that the set

S={y e C.([0,b],R") | yis a solution of(1)}

is compact. Lefy;}!=F be a sequence @& Then,

W0 = s | {(t— 97 1g(9ds t € [0.b],
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whereg;(-) is a continuous selection df-,yi(-)). As in the first part of the proof, we conclude there exists asghbence,
still denoted agy; };=7, that converges to a continuous function0, b] — R". It clear thatf (-, yg () — [[gi(-)]] : [0,b] —

o 1(R") is a continuous multiple-valued function. Then, there asmtinuous functionb‘l, - hlj(fl :[0,b] = R" such
that

) k=1
FCya () =[lgi()] + .Z[[hij(')]]'
=
Again as in the first part of the proof, we can show tf@#} is bounded and equicontinuous. Then from the Arzela-Ascol

theorem, Theorer8, we have tha{g; : i € N} is compact irC.([0,b],R"), and so there is a subsequence, again denoted
by {gi}icn, converging uniformly ta@. Setting

a-1 1 t a-1 .
2(t) = ct +m/0(t—s) g(s)dsi=y(t), te (0,b],

we have

yi — 2| < llgi— gl — 0 asi — oo.

_b
“MNa+1)
By Lemma2, we conclude thag is a continuous selection df-,y4(-)) on[0,b]. This completes the proof of the theorem.
Remark.We can replace the conditioB)(by

de (f(t,x),K[[0]]) < Mz1|x| + My, forall xe R, t < [0,b] (3)

and problemY) still has at least one solution.

Proof.Let {y;} be a sequence defined as in the proof of Theateie., for eachj € N we have

a-1 b
{Ct , te (OaT]v

yi)=94 . b B
ctd 1+ﬁ/0 "t—9)9 1gj(s)ds te (tT)’b]’
whereg; : [0,b] — R" is a continuous selection cff(-,yé,(-)) :[0,b] x R — @4 (R"). We have{g;} € C([0,b],R"), and
from (3),
g;j(t)| < Mgt*9]y(t)| 4+ M2 for eachj € N.

Then,
1-a
- on0] <lel+ or [[-9° Ha(sds
blfa t
<lal+ Frgy o =9 (Mis Iy (9)] + M)ds

and from Gronwall's Lemma&, there exist# > 0 such that
Ilvill« <M for eachj € N.
Finally, as in Theorem, we can prove thafy!, } converges to a solution of probler)( This proves the remark.
We conclude this paper by proving a Peano type existencé fes().

Theorem 5. Let Q C R x R" be an open set, 1Q — 4 (R") be a continuous function, ar{@,c) € Q. Then there exist
h>0,n >0, andy: (0,h] — R" such that

t1-%(t) € B(c,n), forallt €[0,h],

andy is a solution of problendy.
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Proof. Let € > 0 be given by the continuity of, if there exists) > 0 such that
tit<n and [y—c|<n

then
d.o/(f(tay)v f(ov C)) <Ee.

Since the seG = [—n,n] x B(c,n) C Q is compact, the continuity of f implies there exists a considy > 0 such that
do (f(t,x),K[[0]]) < M1, forall (t,x) e G.
Consider the Cauchy problem

Dg+)’(t) € {fl(tatl_ay)a s fk(tatl_ay)}7 te [Oa h]7
lim t¥%y(t) =c, (4)

t—0*

1
whereh < min (n, (%‘1”)) ") . By the same method used in the proof of Theoremwe define the sequences

-1 h
cta—+, te(0,7],

NO=9 . g h
' cte 1+%/0 (t-9"Ta(s)ds  te(5.h,

wherei € N andg; : [0,h] — R" is a continuous selection 6f-,y, (-)) : [0,h] x R — «%(R"). Then,

tl—a t a1 Mlha
— i < — <
r(a) /o (t=s"la(slds< mmgy =N

[t yi(t) —cf <

SO
t1=%(t) € B(c,n), forallt e [0,h].

As in the proof of Theorem#, we can show thafy;} and {gi} are relatively compact irC.([0,h],B(c,n)) and

C(]0,h],B(c,n)), respectively. Thus, there exist subsequencegypf and {gi} converging uniformly toy and g,
respectively, and from Lemniawe conclude that

a—1 1 ti? a-1
y(t) =ct +m/0 (t—9s)% "g(s)ds fort € (0,h],

whereg a continuous selection df(-,y(-)) andy is a solution of problem).
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