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1 Introduction

The theory of multiple-valued functions in the sense of Almgren [1] has several applications in the framework of geometric
measure theory. It gives a very useful tool to approximate some abstract objects arising from geometric measure theory.
For example, Almgren [1] used multiple-valued functions to approximate mass minimizing rectifiable currents, and hence
successfully obtained their partial interior regularity.Solomon [2] succeeded in giving proofs of the closure theorem
without using the structure theorem. His proofs rely on various facts about multiple-valued functions. There are also other
objects similar to these functions, such as the union of graphs of Sobolev’s functions introduced by Ambrosio, Gobbino
and Pallara (see [3]).

In complex function theory one often speaks of the two-valued function f (z) =
√

z. This can be considered as a
function fromC → A2(C). Almgren [4] introducedAQ(R

n)-valued functions to address the problem of estimating the
size of the singular set of mass-minimizing integral currents (see [1] for a summary). Almgren’s multiple-valued functions
are a fundamental tool for understanding geometric variational problems in codimension higher than 1. The success of
Almgren’s regularity theory raises the need for further studying multiple-valued functions. For additional information
concerning multiple-valued functions, we suggest the references [5,6,7,8,9,10].

Differential equations of fractional order recently have proved to be valuable tools in the modeling of many physical
phenomena [11,12,13,14,15,16,17,18]. There have also been significant theoretical developments in fractional
differential equations in recent years; see the monographsof Kilbas et al. [19], Miller and Ross [20], Oustaloup [21],
Podlubny [22], and Samkoet al. [23]. For details on geometric and physical interpretations offractional derivatives of
the Riemann-Liouville type, see [22].

In this paper we consider the problem










Dα
0+y(t) ∈ { f1(t, t1−αy), . . . , fk(t, t1−αy)}, t ∈ (0,b],

lim
t→0+

t1−αy(t) = c,
(1)

where eachfi : [0,b]×Rn → Rn is a single-valued function, andDα
0+ denotes the usual Riemann-Liouville fractional

derivative of orderα ∈ (0,1].
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For some existence results for differential inclusions andfractional differential inclusions in the sense of Almgren,
see Goblet [7]. For the existence and structure of the solution sets of some classes of differential inclusions and fractional
differential equations and inclusions in the usual sense, we suggest [24,25,26,27,28,29] and the references therein.

The goal of this note is to provide an existence result for solution sets of fractional differential inclusions in the sense
of Almgren.

2 Preliminaries

In this section, we recall from the literature some notations, definitions, and auxiliary results that will be used throughout
this paper.

Notation: We denote by[[pi ]] the Dirac mass inpi ∈ Rn.

Definition 1. For every T1,T2 ∈ Ak(R
n), with T1 = ∑

i
[[pi ]] and T2 = ∑

i
[[si ]], we define dA (T1,T2) by either

dA (T1,T2) := min
σ∈Pk

√

√

√

√

k

∑
i=1

|pi − sσ(i)|2,

dA (T1,T2) := min
σ∈Pk

k

∑
i=1

|pi − sσ(i)|,

or
dA (T1,T2) := min

σ∈Pk

{max|pi − sσ(i)| : i = 1, . . . ,k},

wherePk denotes the group of permutations of{1, . . . ,k}.

Remark. In the above definition, we designated each expression with the same symbol because the results in this paper
are independent of the form ofdA used.

Definition 2. A multiple-valued function in the sense of Almgren is a map T: Ω → Ak(R
n), whereΩ ⊂ Rn and

Ak(R
n) =

{

k

∑
i=1

[[pi ]] : pi ∈ R
n for every i= 1, . . . ,k

}

equipped with the metric dA .

Next, we define what we mean by a selection function and give some of their useful properties.

Definition 3. Let Ω ⊂ Rm and f : Ω → Ak(R
n) be a k−valued function. If there exist single-valued maps gi : Ω →

Rm, i = 1, . . . ,k, such that

f (x) =
k

∑
i=1

[[gi(x)]] for each x∈ R
m
,

then we say that the vector(g1, . . . ,gk) is a selection for f .

Theorem 1. ([4,5]) Let f : [0,b]→Ak(R
n) be a continuous multiple-valued function. Then there are continuous functions

f1, . . . , fk : [0,b]→ Rn such that

f =
k

∑
i=1

fi .

Remark.If for eachi ∈ {1, . . . ,k}, fi is continuous, thenf has a continuous selection.

Lemma 1. ([7]) Let f : R→ Ak(R
n) be a continuous multiple-valued function and g: R→Rn be a continuous function.

If h : [0,b]×R→ Ak−1(R
n) satisfies

f = [[g]]+h,

then h is a continuous function.
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Remark.An Ak(R
n)-valued function is essentially a rule assigningk unordered and not necessarily distinct elements of

Rn to each element of its domain.

Lemma 2. ([7]) Let ( fi) : [0,b]→ Ak(R
n) be a sequence of multiple-valued functions converging pointwise to f , and let

(gi) : [0,b]→Rn be a sequence of functions converging pointwise to g such that gi is a selection of fi for each i∈N. Then
g is a selection of f .

Theorem 2. ([4]) Suppose f1, . . . , fk : [0,b] → Rn are continuous functions and f= ∑k
i=1[[ fi ]] : [0,b]→ Ak(R

n). Then
there exists a constant Cn,k > 0, depending only on n and k, such that

ω fi ≤Cn,kω f , for each i= 1, . . . ,k,

whereω f is the modulus of continuity of f, i.e.,

ω f (δ ) = sup{dA ( f (s1), f (s2)) : s1,s2 ∈ [0,b] and|s1− s2| ≤ δ},

and
ω fi (δ ) = sup{| fi(s1)− fi(s2)| : s1,s2 ∈ [0,b] and|s1− s2| ≤ δ}.

3 Fractional calculus

According to the Riemann-Liouville approach to fractionalcalculus, the notation of fractional integral of orderα > 0 is a
natural consequence of the well known formula (usually attributed to Cauchy), that reduces the calculation of then−fold
primitive of a functionf (t) to a single integral of convolution type. The Cauchy formulais

In f (t) :=
1

(n−1)!

∫ t

0
(t − s)n−1 f (s)ds, t > 0, n∈N.

Recall that Euler’s Gamma function is defined by

Γ (α) =

∫ ∞

0
tα−1e−tdt, α > 0.

Definition 4. The fractional integral of orderα > 0 of a function f∈ L1([a,b],R) is defined by

Iα
a+ f (t) =

∫ t

a

(t − s)α−1

Γ (α)
f (s)ds.

If a = 0, we write Iα f (t) = f (t)∗φα(t) with φα(t) : R→R defined by

φα (t) =

{

tα−1

Γ (α)
, if t > 0,

0, if t ≤ 0,

andφα (t)→ δ (t) asα → 0, whereδ is the delta function.

Remark.For consistency, we takeI0 to be the identity operator, i.e.,I0 f (t) = f (t). Furthermore, byIα f (0+) we mean the
limit (if it exists) of Iα f (t) ast → 0+ (this limit may be infinite).

After the notion of fractional integral, that of fractionalderivative of orderα > 0 becomes a natural requirement. It is
tempting to replaceα with −α in the above formulas, however, this generalization needs some care in order to guarantee
the convergence of the integral and preserve the well known properties of the ordinary derivative of integer order. Denoting
by Dn, with n∈ N, the derivative operator, we first note that

DnIn = I0
, InDn 6= I0

, n∈ N,

i.e.,Dn is the left-inverse (and not the right-inverse) of the corresponding integral operatorIn. It is easily proved that

InDn f (t) = f (t)−
n−1

∑
k=0

f (k)(a+)
(t −a)k

k!
, t > 0.

As a consequence, we expect thatDα is defined as the left-inverse toIα . For this purpose, introducing the positive integer
n such thatn−1< α ≤ n, we define the fractional derivative of orderα > 0 as follows.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


96 M. Arbaoui et. al. : Fractional Differential Inclusions...

Definition 5. For a function f given on interval[a,b], the α-th Riemann-Liouville fractional order derivative of f is
defined by

Dα
a+ f (t) =

1
Γ (n−α)

(

d
dt

)n∫ t

a
(t − s)n−α−1 f (s)ds,

where n= [α]+1 and[α] is the integer part ofα.

We also need the following generalization of Gronwall’s lemma for singular kernels; its proof can be found in [30,
Lemma 7.1.1].

Lemma 3. Let v: [0,b]→ [0,∞) be a real function, w: [0,b]→ [0,∞) be a locally integrable function on[0,b], and assume
that there are constants a> 0 and0< α < 1 such that

v(t)≤ w(t)+a
∫ t

0

v(s)
(t − s)α ds.

Then, there exists a constant K= K(α) such that

v(t)≤ w(t)+Ka
∫ t

0

w(s)
(t − s)α ds,

for every t∈ [0,b].

4 Main results

We consider the Banach space of continuous functions

C∗([0,b],Rn) = {y∈C((0,b],Rn) : lim
t→0+

t1−αy(t) exists}

with the norm
‖y‖∗ = sup{|t1−αy(t)| : t ∈ (0,b]}.

For a subsetA of the spaceC∗([0,b],R), defineAα by

Aα = {yα : y∈ A },

where

yα(t) =

{

t1−αy(t), t ∈ (0,b],
lim

t→0+
t1−αy(t), t = 0.

The following theorem is a simple variant of the classical Arzelà-Ascoli theorem.

Theorem 3. ([31]) Let A be a bounded set in C∗([0,b],R). Assume thatAα is equicontinuous on[0,b]. ThenA is
relatively compact in C∗([0,b],R).

Now, we present our main results.

Theorem 4. Let fi : R×Rn → Rn, i = 1, . . . ,k, be single-valued functions such that the associated multiple-valued
function in the sense of Almgren

f =
k

∑
i=1

[[ fi ]] : [0,b]×R→ Ak(R
n)

is continuous. Assume that there exists M> 0 such that

dA ( f (t,x),k[[0]]) ≤ M, for all x ∈R and t∈ (0,b]. (2)

Then the problem (1) has at least one solution. Moreover, the solution set of problem (1) is compact in C∗([0,b],Rn).
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Proof. First we construct a solution on the interval(0,b]. We form two sequences{yi}i=∞
i=1 and{gi}i=∞

i=1 in the spaces
C∗ ([0,b],Rn) andC([0,b],Rn), respectively, as follows. Let

y1
α(t) = lim

s→t+
s1−αy1(s) = c, t ∈ [0,b],

where
y1(t) = ctα−1

, t ∈ (0,b].

Let

y2
α(t) =

{

c, t ∈ [0, b
2],

t1−αy2(t), t ∈ (b
2,b],

where

y2(t) =







y1(t), t ∈ (0, b
2],

ctα−1+ 1
Γ (α)

∫ t− b
2

0
(t − s)α−1g2,1(s)ds, t ∈ (b

2,b],

andg2,1 : [0, b
2] → Rn is a continuous selection off (·,y2

α (·)) : [0, b
2]×Rn → Ak(R

n). From Theorem1, we can find a
continuous selectiong2 : [0,b]→ Rn of f (·,y2

α (·)) : [0,b]×Rn → Ak(R
n) such thatg2(·) = g2,1(·) on [0, b

2]. We define

y3
α(t) =

{

c, t ∈ [0, b
3],

t1−αy3(t), t ∈ (b
3,b],

where

y3(t) =























y2(t), t ∈ (0, b
3],

ctα−1+ 1
Γ (α)

∫ t− b
3

0
(t − s)α−1g3,1(s)ds, t ∈ (b

3,
2b
3 ],

ctα−1+ 1
Γ (α)

∫ t− 2b
3

0
(t − s)α−1g3,2(s)ds, t ∈ (2b

3 ,b],

g3,1 : [0, b
3]→Rn is a continuous selection off (·,y3

α (·)) : [0, b
3]→Ak(R

n), andg3,2 : [0, 2b
3 ]→Rn is a continuous selection

of f (·,y2
α (·)) : [0, 2b

3 ]→ Ak(R
n) such thatg3,1(·) = g3,2(·) on [0, b

3]. By Theorem1, we can choose a continuous selection
g3 : [0,b]→R

n of f (·,y3
α (·)) : [0,b]×R

n → Ak(R
n) such thatg3(·) = g3,2(·) on [0, 2b

3 ]. By induction, for j ∈N,

y j
α(t) =

{

c, t ∈ [0, b
j ],

t1−αy j(t), t ∈ (b
j ,b],

where

y j(t) =



















































y j−1(t), t ∈ (0, b
j ],

ctα−1+ 1
Γ (α)

∫ t− b
j

0
(t − s)α−1g j ,1(s)ds, t ∈ (b

j ,
2b
j ],

ctα−1+ 1
Γ (α)

∫ t− 2b
j

0
(t − s)α−1g j ,2(s)ds, t ∈ (2b

j ,
3b
j ],

. . . . . . . . .

ctα−1+ 1
Γ (α)

∫ t− ( j−1)b
j

0
(t − s)α−1g j , j−1(s)ds, t ∈ ( ( j−1)b

j ,b],

g j ,1 : [0, b
j ]→Rn is a continuous selection off (·,y j

α (·)) : [0, b
j ]→Ak(R

n), andg j ,2 : [0, 2b
j ]→Rn is a continuous selection

of f (·,y j
α (·)) : [0, 2b

j ]→ Ak(R
n) such thatg j ,1(·) = g j ,2(·) on [0, b

j ], . . . , g j , j−2 : [0, ( j−2)b
j ]→R

n is a continuous selection

of f (·,y j
α (·)) : [0, ( j−2)b

j ] → Ak(R
n), andg j , j−1 : [0, ( j−1)b

j ] → R
n is a continuous selection off (·,y j

α (·)) : [0, ( j−1)b
j ] →

Ak(R
n) such thatg j , j−2(·) = g j , j−1(·) on [0, ( j−2)b

j ]. By Theorem1, we can choose a continuous selectiong j : [0,b]→R
n

of f (·,y j
α (·)) : [0,b]×Rn → Ak(R

n) such thatg j(·) = g j−1, j−2(·) on [0, ( j−2)b
j ].

We have{g j} ∈C([0,b],Rn). Also, there exists a constantM > 0 such that

|g j(t)| ≤ M, t ∈ [0,b].
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We observe that ifτ1, τ2 ∈ (0, b
j ], then

|y j
α(τ2)− y j

α(τ1)|= 0.

If J is an integer with 0≤ J < j and if 0≤ τ1 ≤ Jb
j ≤ τ2 ≤ b, then

|yJ
α(τ2)− yJ

α(τ1)| ≤
τ1−α

2

Γ (α)

∫ τ2− Jb
j

0
|(τ2− s)α−1g j(s)|ds

≤ τ1−α
2

Γ (α)

∫ τ2−τ1

0
(τ2− s)α−1|g j(s)|ds

≤ Mτ1−α
2

Γ (α +1)
(τα

2 − τα
1 ),

and if Jb
j < τ1 < τ2 < b,

|yJ
α(τ2)− yJ

α(τ1)| ≤
|τ1−α

2 − τ1−α
1 |

Γ (α)

∫ τ1

0
(τ2− s)α−1|g j(s)|ds+

τ1−α
1

Γ (α)

∫ τ1

0
[(τ1− s)α−1− (τ2− s)α−1]|g j(s)|ds

+
τ1−α

2

Γ (α)

∫ τ2− Jb
j

τ1− Jb
j

(τ2− s)α−1|g j(s)|ds

≤ M|τ1−α
2 − τ1−α

1 |
Γ (α)

∫ τ1

0
(τ2− s)α−1ds+

Mτ1−α
1

Γ (α)

∫ τ1

0
[(τ1− s)α−1− (τ2− s)α−1]ds

+
Mτ1−α

2

Γ (α)

∫ τ2− Jb
j

τ1− Jb
j

(

τ2− s− Jb
j

τ2− s

)1−α
(

τ2− s− Jb
j

)α−1

ds

≤ M|τ1−α
2 − τ1−α

1 |
Γ (α)

∫ τ1

0
(τ2− s)α−1ds+

Mτ1−α
1

Γ (α)

∫ τ1

0
[(τ1− s)α−1− (τ2− s)α−1]ds

+
Mτ1−α

2

Γ (α)

∫ τ2− Jb
j

τ1− Jb
j

(

τ2− s− Jb
j

)α−1

ds

≤ M|τ1−α
2 − τ1−α

1 |
Γ (α +1)

τα
2 +

Mτ1−α
1

Γ (α +1)
|τ2− τ1|α +

Mτ1−α
1

Γ (α +1)
[τα

1 − τα
2 ]+

Mτ1−α
2

Γ (α +1)
|τ2− τ1|α−1

≤ M|τ1−α
2 − τ1−α

1 |
Γ (α +1)

τα
2 +

Mτ1−α
1

Γ (α +1)
|τ2− τ1|α +

Mτ1−α
2

Γ (α +1)
|τ2− τ1|α−1

.

As τ2 → τ1 the right-hand side of the above inequality tends to zero. Consequently the sequence{yi
α} is equicontinous.

Next, note that

|t1−αyi(t)| ≤ |c|+ t1−α

Γ (α)

∫ t− b
j

0
(t − s)α−1|g j(s)|ds

≤ |c|+ b1−α

Γ (α)

∫ t− b
j

0
(t − s)α−1|g j(s)|ds

≤ |c|+ Mb1−α

Γ (α)

[

−
(

b
j

)α
+ tα

]

≤ |c|+ Mb
Γ (α +1)

:= M∗.

Hence, the sequence{y j
α} is uniformly bounded and equicontinuous. By the Arzelá-Ascoli theorem, there exists a

subsequence, still denoted as{y j
α} j=∞

j=1 , converging uniformly to some functiony in C∗(([0,b],Rn).
Let K = [0,b]×B(c,M), and

ω | f |K (δ ) = sup{dA ( f (τ2,y2), f (τ1,y1)) : |(τ2,y2)− (τ1,y1)| ≤ δ
where(τ1,y1), (τ2,y2) ∈ K}
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be a modulus of continuity off restricted toK. For eachε > 0 there existsδ1 > 0 such that for every|τ2− τ1| ≤ δ1,

M|τ1−α
2 − τ1−α

1 |
Γ (α +1)

τα−1
2 +

M
(

τ1−α
1 + τ1−α

2

)

Γ (α +1)
|τ2− τ1|α ≤ ε,

and
Mτ1−α

2

Γ (α +1)
(τα

2 − τα
1 )≤ ε.

Hence, for eachj ∈ N, we have

|τ1−α
2 y j(τ2)− τ1−α

1 y j(τ1)| ≤ ε, for all τ1,τ2 ∈ [0,b] and|τ2− τ1| ≤ δ1.

This implies

ω |
f (·,yj

α (·))
(δ2) = sup

{

dA ( f (τ2,y
j
α(τ2)), f (τ1,y

j
α(τ1))) : |τ2− τ1| ≤ δ1, andτ1,τ2 ∈ [0,b]

}

≤ sup{dA ( f (τ2,y1), f (τ1,y2)) : |τ2− τ1| ≤ δ2, |y1− y2| ≤ δ2, and(τ2,y2), (τ1,y1) ∈ K}
≤ ω | fK (δ2),

whereδ2 = max(δ1,ε). It clear thatf (·,y j
α (·))− [[g j(.)]] : [0,b]→ Ak−1(R

n) is a continuous multiple-valued function, so
there exist continuous functionsh j

1, . . . ,h
j
k−1 : [0,b]→ Rn such that

f (·,y j
α (·)) = [[gi(·)]]+

k−1

∑
i=1

[[h j
i (·)]].

Then,
|gi | ≤ M for each n∈N

and
ω |gi ≤ ω | fK (δ2) for every n∈ N.

Consequently,{gi}i=∞
i=1 is bounded and equicontinuous. From the Arzelá-Ascoli theorem (Theorem3), we can conclude

that {gi}i=∞
i=1 is compact inC([0,b],Rn). Hence, there exists a subsequence, again denoted by{gi}i=∞

i=1 , converging
uniformly tog.

Now set

z(t) = ctα−1+
1

Γ (α)

∫ t

0
(t − s)α−1g(s)ds:= y(t), t ∈ (0,b].

Then we see that

|t1−αy j(t)− t1−αz(t)| ≤ t1−α

Γ (α)

∫ t

0
(t − s)α−1|g j(s)−g(s)|ds

≤ t
Γ (α +1)

‖g j −g‖∞

≤ b
Γ (α +1)

‖g j −g‖∞ → 0 as j → ∞,

and so{y j(t)}→ z(t).
Set

yα(t) =

{

c, t = 0,
t1−αy(t), t ∈ (0,b].

By Lemma2, we conclude thatg is a continuous selection off (·,yα (·)) on [0,b].
Next, we want to show that the set

S= {y∈C∗([0,b],Rn) | y is a solution of(1)}

is compact. Let{yi}i=∞
i=1 be a sequence inS. Then,

yi(t) = ctα−1+
1

Γ (α)

∫ t

0
(t − s)α−1gi(s)ds, t ∈ [0,b],

c© 2015 NSP
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wheregi(·) is a continuous selection off (·,yi(·)). As in the first part of the proof, we conclude there exists a subsequence,
still denoted as{yi}i=∞

i=1 , that converges to a continuous functiony : [0,b]→Rn. It clear thatf (·,yi
α (·))− [[gi(·)]] : [0,b]→

Ak−1(R
n) is a continuous multiple-valued function. Then, there exist continuous functionsh j

1, . . . ,h
j
k−1 : [0,b]→Rn such

that

f (·,y j
α (·)) = [[gi(·)]]+

k−1

∑
i=1

[[h j
i (·)]].

Again as in the first part of the proof, we can show that{gi} is bounded and equicontinuous. Then from the Arzelá-Ascoli
theorem, Theorem3, we have that{gi : i ∈ N} is compact inC∗([0,b],Rn), and so there is a subsequence, again denoted
by {gi}i∈N, converging uniformly tog. Setting

z(t) = ctα−1+
1

Γ (α)

∫ t

0
(t − s)α−1g(s)ds:= y(t), t ∈ (0,b],

we have

‖yi − z‖∗ ≤
b

Γ (α +1)
‖gi −g‖∗ → 0 asi → ∞.

By Lemma2, we conclude thatg is a continuous selection off (·,yα (·)) on [0,b]. This completes the proof of the theorem.

Remark.We can replace the condition (2) by

dA ( f (t,x),k[[0]]) ≤ M1|x|+M2, for all x∈ R, t ∈ [0,b] (3)

and problem (1) still has at least one solution.

Proof.Let {y j} be a sequence defined as in the proof of Theorem4, i.e., for eachj ∈ N we have

y j(t) =







ctα−1, t ∈ (0, b
j ],

ctα−1+ 1
Γ (α)

∫ t− b
j

0
(t − s)α−1g j(s)ds, t ∈ (b

j ,b],

whereg j : [0,b]→ Rn is a continuous selection off (·,y j
α (·)) : [0,b]×R → Ak(R

n). We have{g j} ∈ C([0,b],Rn), and
from (3),

|g j(t)| ≤ M1t
1−α |y(t)|+M2 for eachj ∈ N.

Then,

|t1−αyi(t)| ≤ |c|+ t1−α

Γ (α)

∫ t

0
(t − s)α−1|gi(s)|ds

≤ |a|+ b1−α

Γ (α)

∫ t

0
(t − s)α−1(M1s1−α |yi(s)|+M2)ds,

and from Gronwall’s Lemma3, there existsM > 0 such that

‖yi‖∗ ≤ M for eachj ∈ N.

Finally, as in Theorem4, we can prove that{yi
α} converges to a solution of problem (1). This proves the remark.

We conclude this paper by proving a Peano type existence result for (1).

Theorem 5. Let Ω ⊂ R×R
n be an open set, f: Ω → Ak(R

n) be a continuous function, and(0,c) ∈ Ω . Then there exist
h> 0, η > 0, and y: (0,h]→ Rn such that

t1−αy(t) ∈ B(c,η), for all t ∈ [0,h],

and y is a solution of problem (1).
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Proof.Let ε > 0 be given by the continuity off , if there existsη > 0 such that

|t| ≤ η and ‖y− c‖ ≤ η

then
dA ( f (t,y), f (0,c)) ≤ ε.

Since the setG= [−η ,η ]×B(c,η)⊂ Ω is compact, the continuity of f implies there exists a constant M1 > 0 such that

dA ( f (t,x),k[[0]]) < M1, for all (t,x) ∈ G.

Consider the Cauchy problem

{

Dα
0+y(t) ∈ { f1(t, t1−αy), . . . fk(t, t1−αy)}, t ∈ [0,h],

lim
t→0+

t1−αy(t) = c, (4)

whereh≤ min

(

η ,
(

ηΓ (α+1)
M1

)
1
α
)

. By the same method used in the proof of Theorem4, we define the sequences

yi(t) =







ctα−1, t ∈ (0, h
i ],

ctα−1+ 1
Γ (α)

∫ t− h
i

0
(t − s)α−1gi(s)ds, t ∈ (

h
i
,h],

wherei ∈ N andgi : [0,h]→Rn is a continuous selection off (·,yi
α (·)) : [0,h]×R→ Ak(R

n). Then,

|t1−αyi(t)− c| ≤ t1−α

Γ (α)

∫ t

0
(t − s)α−1|gi(s)|ds≤ M1hα

Γ (α +1)
≤ η ,

so
t1−αyi(t) ∈ B(c,η), for all t ∈ [0,h].

As in the proof of Theorem4, we can show that{yi} and {gi} are relatively compact inC∗([0,h],B(c,η)) and
C([0,h],B(c,η)), respectively. Thus, there exist subsequences of{yi} and {gi} converging uniformly toy and g,
respectively, and from Lemma2 we conclude that

y(t) = ctα−1+
1

Γ (α)

∫ t− h
i

0
(t − s)α−1g(s)ds, for t ∈ (0,h],

whereg a continuous selection off (·,yα (·)) andy is a solution of problem (1).
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