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Abstract: Newton cooling-law equation in terms of a fractional non-local time Caputo derivative of order 0< α ≤ 1 is solved
analytically by the conventional Laplace transform. Smooth solutions in terms of Mittag-Leffler function show two different behaviors
when compared to the exponential decay solution from the classical integer-order model: 1) fast heat dissipation at short times, this is
characterized by transient solutions showing faster cooling asα tends to 0; 2) slow heat dissipation at medium-large times, solutions
in this regime exhibit slower cooling asα approaches 0. Moreover, forα < 1 and as time tends to infinity, the temperature decays
algebraically with time rather than exponentially. On the other hand, we used the fractional complex transform method to derive the
local fractional Newton’s law of cooling differential equation of orderα. This model defined on Cantor sets, is analytically solved via
the Laplace transform. Our staircase shaped solutions are compared with those from the model with Caputo derivative; similarities and
differences between these two approaches are pointed out. Hopefully, this generalization of Newton’s law of cooling will allow both
gaining a better insight into heat convection processes through fractal media and developing a wide variety of new applications.
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1 Introduction

Fractional calculus is an area of classical mathematics which deals with the generalization of derivatives and integrals to
arbitrary orders. Fractional calculus is an old concept that has gained importance during the last few decades in various
fields of science and engineering [1]. Recently, some researchers have been studying the fractal version of simple physical
models found in classical mechanics. These types of analyses are performed from a heuristic point of view, the idea behind
this is to replace the integer order derivatives of an ordinary differential equation for fractional derivatives. The resulting
fractional differential equation can be solved by transform methods. Some examples of this procedure can be found in the
study of projectile motion in a resisting medium [2], mechanical oscillations [3], relaxation phenomena in viscoelastic
materials [4], particle falling through a resisting medium [5,6], and so on.

In this article we study a simple thermal model for convection cooling commonly known in literature as Newton’s
law of cooling. The main purpose is to extend this cooling model by including fractal properties as power law long-term
memory observed in many natural and artificial systems. Consequently, two approaches based on fractional calculus were
developed. Typically, Newton’s law of cooling is stated in terms of a first order differential equation whose integer order
derivative was replaced by a nonlocal fractional Caputo time derivative. The resulting fractional differential equation of
orderα was solved by the traditional Laplace transform technique.In this way we obtained a variety of smooth solutions
for different values ofα in the range 0< α ≤ 1. These solutions include the typical caseα = 1 in which the cooling
process is characterize by an exponential decay. In contrast, whenα < 1 the solutions show an algebraic decay associated
with memory effects.

Furthermore, we obtained a fractal version of Newton’s law of cooling in terms of a local fractional derivative which
generalizes the usual derivative to fractional order keeping their local nature intact [7]. This local fractional operator of
orderα is introduced with the motivation of studying the local properties of fractal structures and processes. The fractal
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model with local derivative is solved by Laplace transform [7]. Our staircase shaped non-differentiable solutions closely
follow the trend of the solutions from the model with Caputo derivative especially for values ofα close to one.

In some sense, the results from the two above mentioned approaches represent a generalization of the classical
Newton’s law of cooling that hopefully can be used to describe a wide variety of thermal physical situations important
for practical applications, which until now have not been attempted by the limitations of the original integer order model.

The plan of this manuscript is as follows. In the next sectionthe traditional Newton’s law of cooling stated in terms
of an integer order differential equation is analyzed briefly. Then, the cooling law of Newton is expressed in terms of a
fractal differential equation with non-local Caputo time derivative; the solutions of this model are presented and discussed.
Likewise the cooling law model is derived in terms of a local fractional derivative; solutions and discussions of this model
are given. In Section 3, some solutions from cooling models with local and non-local derivatives are compared. Finally,
some concluding remarks are drawn in Section 4.

2 Newton’s law of cooling

“The rate at which the temperature,T(t) , changes in a cooling body at timet is proportional to the difference between
the temperature of the body,T(t) , and the temperature of the surrounding mediumTm” [ 8].

Newton’s law of cooling is usually modeled with the first-order initial-value problem

dT
dt = k(T −Tm)
T(0) = T0

}

, (1)

whereT0 is the initial temperature of the body andk is the constant of proportionality. IfTm is constant, the differential
equation (1) is separable, resulting in [9]:

T(t) = (T0−Tm)e
kt +Tm. (2)

Recall that ifk < 0 , limt→∞ekt = 0. Hence,limt→∞T(t) = Tm, the temperature of the body approaches that of its
surroundings.

2.1 Newton’s law of cooling with non-local derivative

In this section, we use the Caputo fractional derivative fora function of timef (t); this operator is defined as [10]

C
0Dα

t f (t) =
1

Γ (n−α)

t
∫

0

f (n)(τ)
(t − τ)α−n+1dτ , (3)

whereΓ (·) is the Euler Gamma function,n= 1,2, ... ∈ ℵ andn−1< α ≤ n . We consider the case whenn= 1 , i. e., in
the integrand there is only a first-order derivative. So, in this case the order of the fractional derivativeα is defined in the
interval 0< α ≤ 1. The Caputo fractional derivative fulfills the following properties:

C
0Dα

t c= 0, (4)

C
0Dα

t [ f (t)+g(t)] = C
0Dα

t f (t)+C
0Dα

t g(t). (5)

Equation (4) represents the derivative of a constantc, and equation (5) is the linearity property. It should be remarked
that the Caputo fractional derivative is defined using an integral, so it is a non-local operator. The fractional derivative in
time defined by equation (3) contains information about the function at earlier points, so it allows modeling a memory
effect [11]. As in [2,3,5], we replace the integer time derivative by the fractional operator

d
dt

→
1

σ1−α
dα

dtα
, (6)

where dα

dtα = D , and α represents the order of the fractional time derivative operator. To assure dimensional
homogeneity on both sides of the differential equation (1), σ must have dimension of seconds,[σ ] = s . The time
parameterσ1−α is associated with the fractional time components of the system [12], of course its dimensionality is
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s1−α . This non-local time is called in the literature the cosmic time [13]. Thus, we have the following fractional
differential equation of order 0< α ≤ 1

1
σ1−α

dαT
dtα

=−k(T −Tm) , (7)

subject to the initial condition

T(0) = T0. (8)

It should be recalled that the minus sign of the constantk in equation (7) is introduced to model a cooling process. In
order to reduce the number of parameters in the problem, the following dimensionless variables are introduced:

Θ =
T
[T]

, (9)

τ =
t
[t]
, (10)

whereΘ andτ represent dimensionless temperature and time, respectively; and the reference scales are set as

[T] = Tm, (11)

[t] =
1

k
1
α σ

1−α
α

. (12)

It is worthy of note that the time reference scale, equation (12), represents the fractal time constant of the system.
Indeed, forα = 1 , equation (12) reduces toτc = 1/k, which is the time constant of the ordinary case [14].

Substituting equations (11) and (12) into equations (9) and (10) and the result into equations (7) and (8), yields:

dαΘ
dτα = 1−Θ

Θ(0) = β

}

. (13)

The behavior of the system (13) only depends on the values of the dimensionless parametersβ = T0/Tm andα . It
should be noted thatβ > 1 , since the cooling process only occurs forT0 > Tm. Also important is to note that the value
of β has to be determined in function of the relative contributions of convective and radiative heat-transfer rates [15]. We
set as an upper limitβ = 4.5 which is reasonable if we consider standard conditions of temperature atTm = 20◦C. The
initial value problem represented by equations (13) is solved by applying the Laplace transform [16]. Thus, the solution
is expressed as follows:

Θ(τ) = 1+Eα (−τα) [β −1] . (14)

The analytic solution (14) contains the Mittag-Leffler functionEα(−τα), which is a generalization of the natural
exponential function and represents attenuation with strong memory effect. Figure 1 shows graphs of equation (14) for
various values ofα and for a fixed value of the initial conditionβ . The thick dashed green line represents the solution for
the ordinary case which is obtained by settingα = 1. Clearly, the steady state condition for the ordinary caseis reached at
around five time constants. However, as the order of the time derivative decreases, the solutions show an algebraic decay.
This behavior is explained by taking into account the asymptotic behavior of the Mittag-Leffler function for large values
of arguments [17]:

Eα (−τα) ≈
1

Γ (1−α)

1
tα . (15)

Furthermore, Fig. 1 shows that asα decreases the steady state solution is reached at longer times. This, of course, is a
consequence of the algebraic decay of solutions. Figure 2 shows the time constants to reach the steady state for different
values ofα. Each point of this graph was calculated by enforcing the following condition:

Eα (−τα) [β −1]≈ φ , (16)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


136 F. A. Godı́nez et. al. : Two Fractal Versions of Newton’s...

Fig. 1: Newton’s law of cooling with time Caputo derivative for different values ofα and forβ = 4. The thin dashed line represents
the steady state environmental temperature.

Fig. 2: Order of the time derivative (α ) vs. time constants (τc ) to reach the steady state. This curve was computed from Eq. (17) with
β = 4 andφ = 0.02 .

whereφ is a small positive number; according to Eq. (14), the expression (16) represents the transient response of the
fractal model. Thus, by combining Eqs. (15) and (16) is readily found

τc ≈

(

β −1
φ Γ (1−α)

)
1
α
. (17)

Note that all calculations were performed by settingφ = 0.02.
Solutions from some analogous models to our thermal system have been published in the past. Very similar curves

as those presented in Fig. 1 can be found in [4]. In this article, the fractional generalization of the first-order differential
equation governing the phenomenon of viscoelastic relaxation is treated. Another analogous system with similar solutions
as those from Fig. 1 is represented by a fractional R-C circuit (with resistanceR and capacityC ), which is used to
simulate the aging of alkaline batteries after repeated charge/discharge cycles [18]. Figure 3a depicts a zoom of Fig.
1 of the transient response of cooling law with time Caputo derivative for different values ofα and for short times.
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Fig. 3: a) Transient solutions of Newton’s law of cooling with time Caputo derivative. The valuesα andβ as well as the colors used
in curves correspond with those in Fig. 1. b) Transient solutions after the transition zone, time constants for eachα are indicated with
arrows;τc |α=1= 1 ,τc |α=0.8≈ 1.08 ,τc |α=0.6≈ 1.3 ,τc |α=0.4≈ 1.95 ,τc |α=0.2≈ 7.2.

Three regions of different behaviors are identified. The region in blue,0≤ τ ≤ 0.58 , reveals faster heat dissipation as
α decreases from 1 to 0. The no-color region, 0.58< τ ≤ 0.85 , can be seen as a transition zone where the solutions
are overlapped intersecting each other atτ = 0.72. After this overlapping zone, the model predicts an opposite behavior
than that observed in the blue region. Namely, in the domain 0.85< τ ≤ 1.5, the third region in purple is characterized by
slower heat dissipation asα decreases from 1 to 0; this of course is the expected thermal memory effect. Figure (3b) shows
transient solutions for different values ofα. When the time constant is of courseτc = 1, which physically represents the
time required for the temperatureΘ to fall 63.2 % from the initial temperatureβ to the limiting environmental temperature
Θ = 1 . The time constant for any value ofα can be found by solving numerically the following equation

Eα (−τα) ≈ 0.368. (18)

It is clearly observed that the time constantτc increases asα decreases; again, this behavior can be associated with a
memory effect.

Figure 4a shows transient solutions of cooling model with time Caputo derivative for different values ofα andβ .
Interestingly, the transition point atτ ≈ 0.72 seems to be independent of the value ofβ . On the other hand; as expected,
the exponential decay characterized byα = 1 implies reaching the steady state solution at around five time constants
independently of the value ofβ . Nevertheless, forα < 1, the stationary solutions strongly depend on the value ofβ . Each
curve from Figure 4b shows the time needed to reach the steadystate depending on the values ofα andβ ; clearly, asβ
increases, longer times to reach the stationary solutions are required. Of course, this last result is a consequence of the
algebraic decay of solutions forα < 1.
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Fig. 4: a) Transient solutions of Newton’s law of cooling with time Caputo derivative forβ = (1.5, 3 and 4.5). The values ofα as well
as the colors used in curves correspond with those used in Fig. 1. Note that for the sake of clarity, the curves forα = 0.2 andα = 0.4
were removed. b) Each of the three curves depicts the order ofthe time derivative (α ) vs. time constants (τc ) to reach the steady state
(Eq. (17) was used to compute curves).

2.2 Newton’s law of cooling with local fractional derivative

The fractal complex transform [19], expressed as:

t =
(pξ )α

Γ (1+α)
, (19)

is applied to switch the conventional differential equation of Newton’s law of cooling into local fractional differential
equation. So, substituting Eq. (19) into Eq. (1) yields:

1
pα

dαT(ξ )
dξ α =−k(T(ξ )−Tm) , (20)

with the constant parameterpα = dα t
dξ α .

Here we argue that parameterp plays the same role asσ used in equation (7); i. e., the units in equation (20) are balanced
by p.
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After renamingξ ast , equation (20) becomes

1
pα

dαT
dtα

=−k(T −Tm) . (21)

Equation (21) subject to the initial conditionT(0) = T0 represents the fractional cooling model with local derivative.
This local fractional derivative operator on Cantor sets isdefined by [7]

f (α)(x0) =
dα f (x)

dxα

∣

∣

∣

∣

x=x0

= lim
x→x0

∆ α( f (x)− f (x0))

(x− x0)
α , (22)

with ∆ α ( f (x) − f (x0)) ∼= Γ (1+ α)∆( f (x) − f (x0)). Now, the parameters in equation (21) can be reduced using
dimensionless variables as those defined by equations (9) and (10). In this case the reference scale for temperature is also
set as[T] = Tm ; however, the reference scale for time is defined as:

[t] =
1

k pα . (23)

After substituting equations (11) and (23) into equations (9) and (10) and the result into equation (21), and taking into
account the initial conditionT(0) = T0 , the dimensionless model becomes

dαΘ
dτα = 1−Θ

Θ(0) = T0
Tm

= β

}

. (24)

Now, the behavior of the initial value problem (24) only depends on two dimensionless parameters,β andα. Equation
(24) can be solved by the Laplace transform, which is defined as [7]

L̃α { f (x)}= f L̃,α
s (s) =

1
Γ (1+α)

∫ ∞

0
Eα(−sαxα ) f (x)(dx)α , 0< α ≤ 1, (25)

where f (x) is a local fractional continuous function.
Finally, after applying the Laplace transform to the initial value problem (24), the solution in terms of the Mittag-

Leffler functionEα , is:

Θ(τ) = 1−Eα (−τα)+β Eα (−τα) . (26)

The exact solution (26) forα = ln2/ln3= 0.631 is shown in Fig. (5). It is worth noticing thatα = 0.631 corresponds
to the fractal dimension of the Cantor middle-1/3 set. This nonintegrable staircase shaped curve is only plotted in the range
0≤ τ ≤ 1, sinceτα is closely related to the Cantor-Lebesgue function defined on [0, 1]. The geometrical characteristics
of this solution are not only interesting from a physical point of view, but also of great practical importance if one
wishes to exploit the fractal configurations in engineeringdevices. In relation to the first aspect and in some analogy with
quantum systems, the steps of the staircase shaped curves may be related to the energy states of a submicroscopic thermal
convection system.

Figure 6 depicts graphs of Eq. (26) for different values of the order of the derivativeα . As α approaches 1, solutions
appear smoother tending to the classical integer order solution for α = 1 (dashed curve in the figure). Ifα is very close to
unity (i. e., whenα = ln2/(ln2001− ln1000)= 0.999, see inset on Fig. 8), the curve will be continuous to the naked eye,
but when zooming in, the staircase shaped structure will emerge.

3 Comparisons between models with local and non-local derivative operators

Figure 7 shows a comparison between solutions from equations (14) and (26) corresponding to models with non-local and
local derivatives, respectively. Clearly, both curves show a similar trend; nevertheless, the staircase shaped curvefrom the
model with local derivative indicates faster heat dissipation than that shown by the smooth continuous solution from the
model with Caputo derivative. This behavior is observed forτ < 5 ; conversely, forτ > 5, the smooth solution indicates
faster heat dissipation. This interesting behavior could be of practical interest in developing thermal convection devices
using fractal configurations defined on Cantor sets. Indeed,this idea needs to mature before giving concrete examples.

As shown in Fig. 8, a comparison between solutions (14) and (26) for different values ofα is shown. The approach
with local fractional derivative predicts higher heat dissipation at short times (τ < 5 ) than that predicted with Caputo
derivative; conversely, forτ > 5 the heat dissipation from model with local derivative is less than that predicted from the
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Fig. 5: The plot of nondifferentiable solution (26) with the parameterα = ln2/ln3= 0.631. The initial condition in this case was set to
β = 4.

Fig. 6: The plot of nondifferentiable solution (26) for different values ofα. α = ln2/ln3 = 0.631 for a Cantor middle-1/3 set;α =
ln2/(ln13− ln6) = 0.896 for a Cantor middle-1/13 set; andα = ln2/(ln101− ln50) = 0.986 for a Cantor middle-1/101 set [20].
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Fig. 7: Comparison between the exact solutions (14) and (26) of Newton’s law of cooling with non-local and local fractional derivatives.
Both curves were computed forα = ln2/ln3= 0.631 , which corresponds with the fractal dimension of the Cantor middle-1/3 set.

Fig. 8: Comparison between the exact solutions (14) and (26) of Newton’s law of cooling with nonlocal and local fractional derivatives
for different values ofα.

model with Caputo derivative. Although this behavior is observed for three different values ofα, it becomes less visible
asα tends to unity. The inset in Figure 8 shows graphs of solutions (14) (dashed line) and (26) (solid orange line) for a
Cantor middle-1/2001 set; clearly, it is not observed any difference between both solutions.
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4 Conclusions

Two fractal versions of Newton’s law of cooling were developed. One of them is expressed in terms of non-local Caputo
time derivative. The behavior of the smooth curve solutionsfrom this approach strongly depend on two parameters:
the order of the fractal derivativeα and the initial conditionβ . Our solutions in terms of Mittag-Leffler function show
two different behaviors when compared to the exponential decay solution from the classical integer-order model (this is
observed forβ > 1 ): 1) Fast heat dissipationat short times, this regime is characterized by transient responses showing
faster cooling asα tends to 0. 2)Slow heat dissipationat medium-large times, solutions in this regime exhibit slower
cooling asα approaches 0. Asα decreases (from 1 to 0) the stationary solutions of the thermal system are reached at longer
times, this is true forβ > 1. In other words, forα < 1 and as time tends to infinity, the temperature decays algebraically
with time rather than exponentially. Even this behavior is accentuated when increasing the initial temperature, i. e.,the
time to reach the steady state increases withβ . In few words the approach using Caputo derivative quite well incorporates
and describes long term memory effects which are related to an algebraic decay clearly seen in the solutions. In the other
approach we replaced the integer order derivative by a localfractional derivative defined on Cantor sets. Curves from this
model show a peculiar staircase shape and are similar in trend with those obtained from the model with Caputo derivative.
In particular, when the Cantor middle-1/3 set is considered, the staircase shaped curve from model with local derivative
indicates faster heat dissipation than that shown by the smooth continuous solution from model with Caputo derivative.
Although this behavior is observed for three different values ofα, it becomes less visible asα tends to unity. It is important
to point out that the classical solution of Newton’s law of cooling is recovered from the two above-mentioned approaches
when α = 1. So, in this sense, the two fractal versions of the thermal convection model developed here represent a
generalization of Newton’s law of cooling. Hopefully, these new results will allow to understand better the convection
cooling processes through fractal media, to extend the range of applicability of Newton’s law of cooling model and to
develop novel practical engineering technologies based onconvection cooling.
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[2] J.J. Rosales, M. Guı́a, J.F. Gómez, F. Aguilar and J. Martı́nez, Two dimensional fractional projectile motion in a resisting medium,

Centr. Eur. J. Phys.12, 517-520 (2014).
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