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Abstract: In this present work, the modified simplest equation method is used to construct exact solutions of (2+1)-dimensional
nonlinear Schrödinger equation, the Schrödinger-Hirota equation and the perturbed nonlinear Schrödinger equation (NLSE) with
Kerr law nonlinearity. The modified simplest equation method is powerful method for obtaining exact solutions of nonlinear partial
differential equations.
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1 Introduction

Research on solutions of nonlinear partial differential
equations is popular. So, the powerful and efficient
methods to find analytic solutions and numerical
solutions of nonlinear equations have drawn a lot of
interest by a diverse group of scientists. Many efficient
methods have been presented so far. Recently, seeking the
exact solutions of nonlinear equations has getting more
and more popular. Many approaches have been presented
so far such as Bcklund transformation method [1], Hirotas
direct method [2,3] tanh-sech method [4,5], extended
tanh method [6,7], sine-cosine method [8], homogeneous
balance method [9], G′

G -expansion method [10] and so on.
In this paper, we proposed a modified simplest

equation method, and present applications for this method
to nonlinear partial differential equations. The rest of the
paper is organized as follows. In section 2, we describe
the modified simplest equation method for finding
traveling wave solutions of nonlinear partial differential
equations, and give the main steps of the method. In the
subsequent sections, we will apply the method to find
exact traveling wave solutions of the nonlinear
(2+1)-dimensional nonlinear Schrödinger equation, the
Schrödinger-Hirota equation and the perturbed nonlinear

Schrödinger equation (NLSE) with Kerr law nonlinearity.
In the last section, some conclusions are presented.

2 Description of the modified simplest
equation method

The modified simplest equation method is based on the
assumption that the exact solutions can be expressed by a
polynomial in F ′

F , such thatF = F(ξ ) is an unknown
linear ordinary equation to be determined later. This
method consists of the following steps:

Step 1.Consider a general form of nonlinear partial
differential equation (PDE)

P(u,ux,ut ,uxx,utx, . . .) = 0. (1)

Assume that the solution is given byu(x, t) =U(ξ ) where
ξ = x+ ct. Hence, we use the following changes:

∂
∂ t

(.) = c
∂

∂ξ
(.),

∂
∂x

(.) =
∂

∂ξ
(.), (2)

∂ 2

∂x2 (.) =
∂ 2

∂ξ 2 (.).
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and so on for other derivatives. Using (2) changes the PDE
(1) to an ODE

Q(U,U ′
,U ′′

, . . .) = 0. (3)

where U = U(ξ ) is an unknown function,Q is a
polynomial in the variableU and its derivatives.

Step 2. We suppose that Eq. (3) has the following
formal solution:

U(ξ ) =
N

∑
i=0

Ai(
F ′

F
)i
, (4)

where Ai are arbitrary constants to be determined such
that AN 6= 0, while F(ξ ) is an unknown function to be
determined later.

Step 3.We determine the positive integerN in (4) by
balancing the highest order derivatives and the nonlinear
terms in Eq.(3).

Step 4.We substitute (4) into (3), we calculate all the
necessary derivativesU,U ′,U ′′, . . . and then we account
the functionF(ξ ). As a result of this substitution, we get a

polynomial ofF ′(ξ )
F(ξ ) and its derivatives. In this polynomial,

we equate with zero all the coefficients of it. This operation
yields a system of equations which can be solved to find
Ai andF(ξ ). Consequently, we can get the exact solution
of Eq.(1).

3 Application the modified simplest equation
method

In this section, we study the (2+1)-dimensional nonlinear
Schrödinger equation, the Schrödinger-Hirota equation
and NLSE with Kerr law nonlinearity using the modified
simplest equation method.

3.1 The modified simplest equation method to
the (2+1)-dimensional nonlinear Schrödinger
equation

Let us first the (2+1)-dimensional nonlinear Schrödinger
equation that [11] that reads:

iut +auxx−buyy+ c|u|2u= 0 (5)

where a,b and c are nonzero constants. Firstly, we
introduce the transformations

u(x,y, t) = exp(i(αx+ωy+δ t))φ(ξ ), ξ = k(x+ ly−λ t) (6)

whereα,ω ,δ ,k, l , andλ are real constants. Substituting
(6) into Eq. (5) we obtain theλ = 2(αa−bω l) andφ(ξ )
satisfy into ODE:

−(δ +aα2−bω2)φ(ξ )+(a−bl2)k2φ ′′(ξ )+cφ3(ξ ) = 0 (7)

Rewrite this second-order ordinary differential equationas
follows:

φ ′′(ξ )+ k1φ(ξ )+ k3φ3(ξ ) = 0 (8)

Wherek1 =− (δ+aα2−bω2)
(a−bl2)k2 andk3 =

c
(a−bl2)k2 .

By balancing the highest order derivative termφ ′′ with
the nonlinear termφ3 in (8), we obtainN = 1 in (4). So we
assume that Eq. (4) has solution in the form

φ(ξ ) = A0+A1(
F ′

F
), A1 6= 0. (9)

Using (9), we obtain

φ3 = A3
0+3A2

0A1(
F ′

F
)+3A0A

2
1(

F ′

F
)2+A3

1(
F ′

F
)3 (10)

φ ′′ = A1(
F ′′′

F
− F ′F ′′

F2 +2(
F ′

F
)3). (11)

Substituting (9) to (11) into Eq. (8) and setting the
coefficients ofF j( j = 0,−1,−2) to zero, we obtain

k1A0+ k3A3
0 = 0, (12)

A1F ′′′+ k1A1F ′+3k3A
2
0A1F ′ = 0, (13)

−3A1F
′F ′′+3k3A0A2

1F ′2 = 0, (14)

2A1F ′3+ k3A
3
1F ′3 = 0. (15)

Eqs. (12) and (15) directly imply following solutions:

A0 =±
√

−k1

k3
, A1 =±

√

−2
k3

, k1 > 0, k3 < 0.

Thus, Eqs. (13) and (14) become

F ′′′−2k1F
′ = 0, (16)

−F ′′+
√

2k1F ′ = 0. (17)

By substituting Eq. (17) into Eq. (16) we get

−
√

2k1F ′′+F ′′′ = 0. (18)

The general solution of Eq. (18) is

F(ξ ) = a0+a1ξ +a2exp(
√

2k1ξ )

whereai(i = 0,1,2) are arbitrary constants.
Thus, we have

φ(ξ ) =±
√

−k1

k3
±
√

− 2
k3
(

a1+
√

2k1a2exp(
√

2k1ξ )
a0+a1ξ +a2exp(

√
2k1ξ )

)

Now, the exact solution of Eq.(5) have the form

u(x,y, t) = ±
√

− k1

k3
±
√

− 2
k3

(
a1+

√
2k1a2 exp(

√
2k1(k(x+ ly−λ t)))

a0+a1(k(x+ ly−λ t))+a2exp(
√

2k1(k(x+ ly−λ t)))
)

×exp(i(αx+ωy+δ t))

3.2 The modified simplest equation method to
the Schr̈odinger-Hirota equation

Let us consider the nonlinear the Schrödinger-Hirota equation
which governs the propagation of optical solitons in a dispersive
optical fiber:

iut +
1
2

uxx+ |u|2u+ iλuxxx= 0 (19)
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This equation studied [12] by the ansatz method for bright and
dark 1-soliton solution. The power law nonlinearity was
assumed. Introduce the transformations

u(x, t) = exp(i(αx+β t))φ(ξ ), ξ = k(x−2αt) (20)

whereα,β andk are real constants. Substituting (20) into Eq.(19)
we obtain thatα = −1

3λ andφ(ξ ) satisfy into the ODE:

−(
5

54λ 2 +β )φ(ξ )+
3
2

k2φ ′′(ξ )+φ3(ξ ) = 0 (21)

Then we can write the following equation:

φ ′′(ξ )+k1φ(ξ )+k3φ3(ξ ) = 0 (22)

Wherek1 =− ( 5
54λ2 +β )

3
2 k2 andk3 =

1
3
2k2 .

By balancing the highest order derivative termφ ′′ with the
nonlinear termφ3 in (22), we obtainN = 1 in (4). So we assume
that Eq. (4) has solution in the form

φ(ξ ) = A0+A1(
F ′

F
), A1 6= 0. (23)

Using (23), we obtain

φ3 = A3
0+3A2

0A1(
F ′

F
)+3A0A2

1(
F ′

F
)2+A3

1(
F ′

F
)3 (24)

φ ′′ = A1(
F ′′′

F
− F ′F ′′

F2 +2(
F ′

F
)3). (25)

Substituting (23) to (25) into Eq. (22) and setting the coefficients
of F j( j = 0,−1,−2) to zero, we obtain

k1A0+k3A3
0 = 0, (26)

A1F ′′′+k1A1F ′+3k3A2
0A1F ′ = 0, (27)

−3A1F ′F ′′+3k3A0A2
1F ′2 = 0, (28)

2A1F ′3+k3A3
1F ′3 = 0. (29)

Eqs. (26) and (29) directly imply following solutions:

A0 =±
√

−k1

k3
, A1 =±

√

−2
k3

, k1 > 0, k3 < 0.

Thus, Eqs. (27) and (28) become

F ′′′−2k1F ′ = 0, (30)

−F ′′+
√

2k1F ′ = 0. (31)

By substituting Eq. (31) into Eq. (30) we get

−
√

2k1F ′′+F ′′′ = 0. (32)

The general solution of Eq. (19) is

F(ξ ) = a0+a1ξ +a2 exp(
√

2k1ξ )

whereai(i = 0,1,2) are arbitrary constants.
Thus, we have

φ(ξ ) =±
√

−k1

k3
±
√

− 2
k3

(
a1+

√
2k1a2exp(

√
2k1ξ )

a0+a1ξ +a2 exp(
√

2k1ξ )
)

Now, the exact solution of Eq.(19) have the form

u(x, t) = ±
√

− k1

k3
±
√

− 2
k3

(
a1+

√
2k1a2 exp(

√
2k1(k(x−2αt)))

a0+a1(k(x−2αt)))+a2exp(
√

2k1(k(x−2αt)))
)

×exp(i(αx+β t))

3.3 The modified simplest equation method to
the NLSE with Kerr law nonlinearity equation

In this section we consider the NLSE with Kerr law
nonlinearity equation

iut +uxx+α|u|2u+ i[γ1uxxx+ γ2|u|2ux+ γ3(|u|2)xu] = 0,(33)

where γ1 is third order dispersion,γ2 is the nonlinear
dispersion, whileγ3 is a also a version of nonlinear
dispersion [13,14]. Eq.(33) describes the propagation of
optical solitons in nonlinear optical fibers that exhibits a
Kerr law nonlinearity. Eq. (33) has important application
in various fields, such as semiconductor materials, optical
fiber communications, plasma physics, fluid and solid
mechanics. More details are presented [13,14,15] .

We seek its traveling wave solution of the form

u(x, t) = φ(ξ )exp(i(kx−Ω t)), ξ = x− ct (34)

Substituting equation (34) into equation (33), we have

i(γ1φ ′′′−3γ1k2φ ′+ γ2φ2φ ′+2γ3φ2φ ′−cφ ′+2kφ ′)

+(Ωφ +φ ′′−k2φ +αφ3+3γ1kφ ′′+ γ1k3φ − γ2kφ3) = 0,(35)

whereγi(i = 1,2,3),α are positive constants and prime
meaning differentiation with respect toξ . Then we have
[16]:

Aφ ′′(ξ )+Bφ(ξ )+Cφ3(ξ ) = 0.

WhereA = γ2γ1,B = 2k− c−3γ1k2,C = 1
3γ2+

2
3γ3. This

equation can be also be written in more simplified form as

φ ′′(ξ )+ k1φ(ξ )+ k3φ3(ξ ) = 0. (36)

wherek1 =
2k−c−3γ1k2

γ2γ1
andk3 =

1
3γ2+

2
3γ3

γ2γ1
.

By balancing the highest order derivative termφ ′′ with
the nonlinear termφ3 in (36), we obtainN = 1 in (4). So
we assume that Eq. (4) has solution in the form

φ(ξ ) = A0+A1(
F ′

F
), A1 6= 0. (37)

Using (37), we obtain

φ3 = A3
0+3A2

0A1(
F ′

F
)+3A0A

2
1(

F ′

F
)2+A3

1(
F ′

F
)3 (38)

φ ′′ = A1(
F ′′′

F
− F ′F ′′

F2 +2(
F ′

F
)3). (39)

Substituting (37) to (39) into Eq. (36) and setting the
coefficients ofF j( j = 0,−1,−2) to zero, we obtain

k1A0+ k3A3
0 = 0, (40)

A1F ′′′+ k1A1F ′+3k3A
2
0A1F ′ = 0, (41)

−3A1F
′F ′′+3k3A0A2

1F ′2 = 0, (42)

2A1F ′3+ k3A
3
1F ′3 = 0. (43)

Eqs. (40) and (43) directly imply following solutions:

A0 =±
√

−k1

k3
, A1 =±

√

−2
k3

, k1 > 0, k3 < 0.
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Thus, Eqs. (41) and (42) become

F ′′′−2k1F
′ = 0, (44)

−F ′′+
√

2k1F ′ = 0. (45)

By substituting Eq. (45) into Eq. (44) we get

−
√

2k1F ′′+F ′′′ = 0. (46)

The general solution of Eq. (46) is

F(ξ ) = a0+a1ξ +a2exp(
√

2k1ξ )

whereai(i = 0,1,2) are arbitrary constants.
Thus, we have

φ(ξ ) =±
√

−k1

k3
±
√

− 2
k3
(

a1+
√

2k1a2exp(
√

2k1ξ )
a0+a1ξ +a2exp(

√
2k1ξ )

)

Now, the exact solution of Eq.(19) have the form

u(x, t) = ±
√

− k1

k3
±
√

− 2
k3

(
a1+

√
2k1a2 exp(

√
2k1(x−ct))

a0+a1(x−ct)+a2 exp(
√

2k1(x−ct))
)

×exp(i(kx−Ω t))

4 Conclusion

In this work, we apply the modified simplest equation
method to obtain exact solutions of the nonlinear
(2+1)-dimensional nonlinear Schrödinger equation, the
Schrödinger-Hirota equation and the perturbed nonlinear
Schrödinger equation (NLSE) with Kerr law nonlinearity.
The results have proven that modified simplest equation
method is reliable and efficient in handling nonlinear
problems. Considering the utility of these equations in
semiconductor materials, optical fiber communications,
plasma, fluid and solid mechanics and other branches of
physics, these solutions may find practical applications.
This method can be applied to solve other nonlinear
partial differential equations.
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