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Abstract: In this present work, the modified simplest equation mettsodsed to construct exact solutions of (2+1)-dimensional
nonlinear Schrodinger equation, the Schrodinger-Hiregquation and the perturbed nonlinear Schrodinger equdNLSE) with
Kerr law nonlinearity. The modified simplest equation meth® powerful method for obtaining exact solutions of noeén partial
differential equations.
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1 Introduction Schroddinger equation (NLSE) with Kerr law nonlinearity.
In the last section, some conclusions are presented.

Research on solutions of nonlinear partial differential
equations is popular. So, the powerful and efficient2 Description of the modified Simp|est
meth'ods to f|nq analytic ;oluuons and numerical equation method

solutions of nonlinear equations have drawn a lot of

interest by a diverse group of scientists. Many efficient - . . .
methods have been presented so far. Recently, seeking tﬁ@e modified simplest equation method is based on the

exact solutions of nonlinear equations has getting more@ssumpt!on.th?:t/ the exact solutions can be expressed by a
and more popular. Many approaches have been present@@lynomial in &=, such thatF = F(&) is an unknown -

so far such as Bcklund transformation methtjd Hirotas linear ordmayy equation to_be determined later. This
direct method 2,3] tanh-sech method4[5], extended Method consists of the following steps:

tanh method§, 7], sine-cosine methodB], homogeneous Step 1.Consider a general form of nonlinear partial

balance method], Gé-expansion methodLP] and so on. differential equation (PDE)

In this paper, we proposed a modified simplestP(u,uy, U, U, Utx,...) = 0. (1)
equation method, and present applications for this metho o
to nonlinear partial differential equations. The rest af th %\ssume that the solution |shg|ve|r|1 W?(’t) :hU(E) vyhere
paper is organized as follows. In section 2, we describe‘z =X+ ct. Hence, we use the following changes:
the modified simplest equation method for finding @ 0
traveling wave solutions of nonlinear partial differehtia E(-) = Cﬁ(-)’
equations, and give the main steps of the method. In the P P

subsequent sections, we will apply the method to find —(.) = —(.) (2)
exact traveling wave solutions of the nonlinear ox 9¢

(2+1)-dimensional nonlinear Schrodinger equation, the 92 02

Schrodinger-Hirota equation and the perturbed nonlinearzy2 '/ — 5—52(')'
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and so on for other derivatives. Using (2) changes the PDBENherek; = —% andkz = m.
(1) to an ODE By balancing the highest order derivative tegfhwith
QU,U"U",..)=0. (3)  thenonlinear terng? in (8), we obtairN = 1 in (4). So we
) ) ) assume that Eq. (4) has solution in the form
where U = U(&) is an unknown function,Q is a E
polynomial in the variabl® and its derivatives. — Ao+ A=), A £O0. 9
Step 2. We suppose that Eg. (3) has the following P(E) = Ao+ Aul F ) AF ©
formal solution: Using (9), we obtain
& F 2 F' 3 F'\3
= -zoAi(F) : @ = Ao+3AoA1( )+ 3RoAL( )? +A(E) (10)
1= F/// F F// |:/
where A are arbitrary constants to be determined suchg’ = Ay(— — — +2(= )3). (11)
that Ay # 0, while F(&) is an unknown function to be ) .F F F )
determined later. Substituting (9) to (11) into Eq. (8) and setting the
Step 3.We determine the positive integhirin (4) by  coefficients ofF!(j = 0,—1,-2) to zero, we obtain
t)eza;ﬁr;ﬁi:\gEct]hé)highest order derivatives and the nonlinear | 1A0+ keA3 =0, (12)
Step 4.We substitute (4) into (3), we calculate all the AR + ki ATF' + 3keASAIF =0, (13)
necessary derivatived,U’,U”,... and then we account  —3A;F'F” + 3ksAoATF? =0, (14)
the functlonF(E) As a result of thls substitution, we get a 2AGF"3 4+ keASF® — 0. (15)

polynomial of (E ) and its derivatives. In this polynomial,
we equate with zero all the coefficients of it. This operation
yields a system of equations which can be solved to find K

A andF(&). Consequently, we can get the exact solution Ay — + _n A=

Egs. (12) and (15) directly imply following solutions:

) —, k>0, kg<O.
of Eq.(1). ks ks ! ¥
Thus, Egs. (13) and (14) become
3 Application the modified simplest equation F" —2kF' =0, (16)
method —F"++/2kF' =0. (17)

In this section, we study the (2+1)-dimensional nonIinearBy substituting Eq. (17) into Eq. (16) we get
Schrodinger equation, the Schrodinger-Hirota equation—, /2k,F” + F” = 0. (18)
and NLSE with Kerr law nonlinearity using the modified

simplest equation method. The general solution of Eq. (18) is

F(&) = ao+aé +apexp(y/2k; )

3.1 The modified simplest equation method to  wherea(i = 0,1,2) are arbitrary constants.
the (2+1)-dimensional nonlinear Sabalinger Thus, we have

equation

a . \/j Ay + v 2zaexply 248)
Let us first the (2+1)-dimensional nonlinear Schrodinger Ple)= I<3 ap+a1é +azexp(v/2ki€)
equation that11] that reads:

Now, the exact solution of Eq.(5) have the form

iU -+ aUyx — buyy + clu[?u=0 5

t x— buyy+cful _ ®) - k1 ay + vaKap exp(vZKa (K(x + ly — At)
where a,b and ¢ are nonzero constants. Firstly, we Ut = = T G Ta ko Ty — )\t))+a2exp(\/2_k1(k(x+ly7)\t))))
introduce the transformations Xexp(, ax+wy+5t))

u(x,y,t) = expli(ax+ wy+dt))e(&), & =k(x+ly—At) (6)

wherea,w, d,k,|, andA are real constants. Substituting e ; ;
(6) into Eq. (5) we obtain tha — 2(aa - bel) andg(é) 3.2 The modified simplest equation method to

satisfy into ODE: the Schodinger-Hirota equation

—(5+aa®—bw?)p(§)+(a—bl?)kP@"(§) +c¢®(§) =0 (7)  Let us consider the nonlinear the Schrodinger-Hirota tiopa
Rewrite this second-order ordinary differential equatisn  Which governs the propagation of optical solitons in a dispe

follows: optical fiber:

. 1 .
@' (&) + k(&) + ks> (E) =0 (8) |ut+§uxx+\u\2u+|)\uxxx:0 (19)
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This equation studied [12] by the ansatz method for briglt an
dark 1-soliton solution. The power law nonlinearity was
assumed. Introduce the transformations

u(x,t) =exp(i(ax+Bt))e(&), & =k(x—2at) (20)

wherea, 3 andk are real constants. Substituting (20) into Eq.(19)
we obtain thatr = g—/\l andg(§) satisfy into the ODE:

5

320
~(ggz +B)O(E) + 5K (€) + ¢°() =0 (21)
Then we can write the following equation:
¢'(8) +kao(§) +ksp’() =0 (22)

(522 +B)
sk

_ 1
= Je

Wherek; = —

2
By balancing the highest order derivative tegph with the
nonlinear termp® in (22), we obtaiN = 1 in (4). So we assume
that Eq. (4) has solution in the form

andks

/

O(E) = Ao+ As(),

=), AL#0. (23)
Using (23), we obtain
3 3, an2a F 2 F 2 a3, F 3
() :A0+3A0A1(F)+3A0A1(F) +A1(E) (24)
F/// FIFN F/
;a0 P F 3
¢ = Al — o+ 2= (25)

Substituting (23) to (25) into Eq. (22) and setting the coifits
of F!(j =0,—1,—2) to zero, we obtain

kiAo +kgA3 =0, (26)
AR + kA + 3keASALF =0, (27)
—3A1F'F" 4 3ksAgASF'2 = 0, (28)
2AF" 1 kgAIFR = 0. (29)
Egs. (26) and (29) directly imply following solutions:
A()—:l:\/—i:::7 A]_—:I:\/;7327 ki >0, k3g<O.
Thus, Egs. (27) and (28) become
F" -2k F' =0, (30)
—F"+ /2K F' = 0. (31)
By substituting Eq. (31) into Eq. (30) we get
—V/2kF" +F" =0. (32)

The general solution of Eq. (19) is
F(§) =ao+aé +azexp(y/2 &)

whereag; (i = 0,1, 2) are arbitrary constants.

Thus, we have
_ﬁ 4 _3( a+ v ZRlagexp(\/Zle)
ks ks ‘ag+aié& +apexp(v/2k &)

Now, the exact solution of Eq.(19) have the form

)

2 a1+ v/2kag exp(v/Zke (k(x— 2at)))
ks “ag + a1 (k(x—2at))) + azexp(v/2Kki (k(x— 2at)))
x exp(i(ax+pt))

)

3.3 The modified simplest equation method to
the NLSE with Kerr law nonlinearity equation

In this section we consider the NLSE with Kerr law
nonlinearity equation

Ut + U+ 0 [U|2U+ i [yt Y2 ul?ux + ya(|ul?)xu] =@3)

where y; is third order dispersiony, is the nonlinear
dispersion, whiley; is a also a version of nonlinear
dispersion 13,14]. Eq.(33) describes the propagation of
optical solitons in nonlinear optical fibers that exhibits a
Kerr law nonlinearity. Eq. (33) has important application
in various fields, such as semiconductor materials, optical
fiber communications, plasma physics, fluid and solid
mechanics. More details are presentt8 4,15 .

We seek its traveling wave solution of the form

U(Xat) = (p(E)qul(kX_ Qt))v (34)
Substituting equation (34) into equation (33), we have

(V19" —3y1k2@ + o 0? @ +2y30° ¢ —c@f +2k¢d)
Qo+ ¢ — Ko+ ag® +3yikg’ + vk e — yokg®) = 0,35)

& =x—ct

wherey (i = 1,2,3),a are positive constants and prime
meaning differentiation with respect § Then we have

[1q:
Ag' (&) +By(&) +Ce*(&) =0.

WhereA = yoy1,B = 2k— c— 3y1k%,C = 1y + 215, This
equation can be also be written in more simplified form as

@'(&) +ki@(&) + ksp*(§) = 0. (36)

_ 2k—c-3pk2 _ in+in
wherek; = e a.ndkg =3 3% yzyf . .
By balancing the highest order derivative teghwith
the nonlinear ternp® in (36), we obtairN = 1 in (4). So
we assume that Eq. (4) has solution in the form

/

O(E) = Ao+A(), A0

Using (37), we obtain

(37)

F/ F/ F/
@7 = AG+3AGA(E ) +3RAL(E ) HAN(E)T (38)
F/// F/F// F/
)

/— S U — _
V=AMl F

Substituting (37) to (39) into Eq. (36) and setting the
coefficients of~!(j = 0,—1,—2) to zero, we obtain

+2 (39)

kiAo + ksA3 =0, (40)
ALF" + ki ArF + 3ksASAIF =0, (41)
—3A1F'F" + 3ksAgAZF2 = 0, (42)
2A1F" + keATF® = 0. (43)

Egs. (40) and (43) directly imply following solutions:

[ k [—2
Ag==* —k—;, A==+ k—3, k1 >0, k3 <O.
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Thus, Egs. (41) and (42) become [7] E. Fan, Extended tanh-function method and its appliceti
F" — 2kqF' =0, (44) tzooggnllnear equations, Phys. Lett. A, 277(45), pp. 212;218
—F"+\/2kiF' =0. (45)  [8] A.M. Wazwaz, A sine-cosine method for handling nonlinea

By substituting Eq. (45) into Eq. (44) we get \évg(\)/j equations, Math. Comput. Modelling, 40, pp. 499-508,

—V2AqF" +F" = (46) [9] M. Wang, Y. Zhou, and Z. Li, Application of‘a homogen.eous.

. balance method to exact solutions of nonlinear equations in

The general solution of Eq. (46) is mathematical physics, Physics Letters A, vol. 216, no. fp5, p

67-75, 1996. :
F(&) =ag+aé +azexp(y/2ki&) [10]M. Wang, X. Li, and J. Zhang, The%-expansion

method and travelling wave solutions of nonlinear evolutio

wherea; (i = 0,1,2) are arbitrary constants. equations in mathematical physics, Physics Letters A, vol.

Thus, we have 372, no. 4, pp. 417-423, 2008.

[11] Y. Zhou, M. Wang and T. Miao, The periodic wave solutions
k1 2 611+ V2kiagexp(v/2ki &) and solitary for a class of nonlinear partial differential

" ka _k_3 a0+ & + apexp(v/2ké) equations, Phys. Lett. A. Vol. 323, pp.77-88, 2004.
[12] A. Biswas , J.M.J. Anwar, N.M. Wayne, K.S. Amarendra,
Now, the exact solution of Eqg.(19) have the form R.K. Kaisar, Optical Soliton and complexitons of the
SchrdingerHirota equation, Optics Laser Technology,

uxt) = i\/z F &+ vazexpvRKi(x—cy) Volume 44, Issue 7, pp. 2265-2269, 2012.
ka " a0+ aa(x—ct) +azexp(v2k (x— °‘>) [13] A. Biswas, S. Konar, Introduction to Non-Kerr Law Opatic
xexp(i(kx— Qt)) Solitons, CRC Press, Boca Raton, FL, USA, 2007.

[14] A. Biswas, Quasi-stationary non-Kerr law optical smtis,
Opt. Fiber Technol., 9(4), pp. 224 259, 20083.
4 Conclusion [15] T. Ozis, A. Yildirim, Reliable analysis for obtainingact
soliton solutions of nonlinear Schrodinger (NLS) equation
In this work, we apply the modified simplest equation  Chaos Solitons Fractals, 38, pp. 209212, 2008.
method to obtain exact solutions of the nonlinear[16]Z.Y. Zhang, Z.H. Liu, X.J. Miao, Y.Z. Chen, New exact
(2+1)-dimensional nonlinear Schrodinger equation, the solutions to the perturbed nonlinear Schrodingers eguatio
Schrodinger-Hirota equation and the perturbed nonlinear With Kerr law nonlinearity, Appl. Math. Comput., 216, pp.
Schrodinger equation (NLSE) with Kerr law nonlinearity. ~ 3064-3072, 2010.
The results have proven that modified simplest equation
method is reliable and efficient in handling nonlinear
problems. Considering the utility of these equations in
semiconductor materials, optical fiber communications,
plasma, fluid and solid mechanics and other branches of
physics, these solutions may find practical applications.
This method can be applied to solve other nonlinear
partial differential equations.
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