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Abstract: In this paper, we provide Bayesian estimation for the parameters of the Pareto distribution based on simple random sample
(SRS) and ranked set sampling (RSS) in two cases, one cycle and m-cycle. Posterior risk of the derived estimators are also obtained
by using squared error loss (SEL). Two-sample Bayesian prediction for future observations are obtained by using SRS andRSS in two
cases, one cycle andm-cycle. A simulation data for SRS and RSS for one cycle and twocycle are used to illustrate the results.
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1 Introduction

Sampling methods play an important role in all kinds of disciplines, such as medical sciences, engineering, education,and
industrial processes. RSS has been suggested by Mclntyre [12] as a useful technique for improving estimates of the mean
and variance of population and he found that the estimator based on RSS is more efficient than SRS. The RSS method can
be described as follows: randomly selectn2 units from the target population and put inn sets each of them are a SRS of
sizen and then then units of each set are ranked visually in ascending order withrespect to the variable of interest as the
following: X11,X21, . . . ,Xn1,X12,X22, . . . ,Xn2, . . . ,X1m,X2m, . . . ,Xnm. From the first set ofn units, the smallest ranked unit
is measured, the second smallest ranked unit is measured from the second set ofn units. The process is continued until
then-th largest ranked unit is measured from the last set. If we repeat this methodm times, we get a RSS of sizemn.
Assume that the variable of interestX has Pareto distribution which was suggested by Pareto [17] with a probability
density function (pdf) is given by

f (x;α,β ) =
α
β

(
β
x

)α+1

, x > β , β ,α > 0, (1)

and cumulative distribution function (cdf) is given by

F(x;α,β ) = 1−

(
β
x

)α
. (2)

Al-Hadhrami and Al-Omari [1] introduced Bayesian inference of the variance of the normal distribution by using
moving extremes ranked set sampling. Al-Omari and Jaber[3] used double RSS method for estimating the population
mean. Al-Omari et al. [4] used extreme RSS method to find estimators of the populationmean. Al-Saleh and Samuh [2]
suggested multistage RSS. Chacko and Thomas [6] derived different estimators of Morgenstern type bivariate logistic
distribution by using RSS. Efron and Morris [7] used risk Bayesian problem of estimating the mean of a normal
distribution when the mean itself has a normal prior. Ghafoori et al. [8] discussed two-sample Bayesian prediction by
using progressively Type-II censored data. Ibrahim and Syam [9] applied stratified median RSS method for estimating
the population mean. Islam et al. [10] described the modified maximum likelihood estimator of location and scale
parameters based on selected RSS for normal, uniform and two-parameter exponential distributions. Mohammadi and
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Pazira. [13] showed Bayesian estimations of the parameters of the generalized exponential distribution by using censored
data. Mohie El-Din et al. [14] studied two-sample Bayesian prediction intervals for order statistics based on the class of
the inverse exponential-type distributions using a right censored sample. Mohie El-Din et al. [15] used multiply type-II
censored data to find two-sample Bayesian prediction intervals. Panaitescu et al. [16] used Bayesian and non-Bayesian
estimators using record statistics of the modified-inverseWeibull distribution. Sadek et al. [19] used the asymmetric loss
function to derive the Bayesian estimate of the parameter ofthe exponential distribution based on RSS. Soliman et
al. [20] made a comparison of estimates using record statistics from Weibull model by using Bayesian and non-Bayesian
approaches. Zellner [21] introduced Bayesian estimation by using asymmetric loss function.
In the current investigation, Bayesian estimators under SEL function for the parameters of Pareto distribution are
obtained based on SRS and RSS in two cases, one cycle RSS andm-cycle RSS in Section 2. Two-sample Bayesian
prediction scheme by using SRS and RSS when both parameters are unknown is presented in Section 3. Simulation
result is presented in Section 4. Finally, we make some concluding remarks in Section 5.

2 Bayes Estimation

In this section, Bayesian estimators under SEL function forthe parameters of Pareto distribution are derived based on
SRS and RSS.

2.1 Bayes estimation based on SRS

Suppose thatX11,X21, . . . ,Xn1,X12,X22, . . . ,Xn2, . . . ,X1m,X2m, . . . ,Xnm bem sets of order statistics each of sizen, then the
joint density in the case of dependence ofxiℓ, i = 1,2, . . . ,n, ℓ= 1,2, . . . ,m is given by

f (x|α,β ) = (n!)m
m

∏
ℓ=1

n

∏
i=1

f (xiℓ,α,β )

∝ αnm exp

(
−α

m

∑
ℓ=1

n

∑
i=1

ln

(
xiℓ

β

))
. (3)

To obtain the joint posterior density ofα andβ , we will use the prior density, suggested by Lwin [11] and generalized by
Arnold and Press [18] of α andβ which is given by

π(α,β ;δ ) = π1(α)π2(β |α) ∝
αη

β
exp

(
−α

(
ρ + a ln

(
b
β

)))
, (4)

where δ = (a,b,η ,ρ), π1(α) is a gamma distribution with parametersη and ρ and π2(β |α) is a power function
distribution with parametersαa andb.
From Eq.(3) and (4), the posterior density function based on SRS can be writtenas

π∗(α,β |x) = A−1 αc

β
exp

(
−α

(
ρ + a ln

(
b
β

)
+

m

∑
ℓ=1

n

∑
i=1

ln

(
xiℓ

β

)))
, 0< β < L (5)

wherex = (x11,x21, . . . ,xn1,x12,x22, . . . ,xn2, . . . ,x1m,x2m, . . . ,xnm), c = nm+η ,

A = Γ (c)
nm+a

(
ρ + a ln

(
b
L

)
+∑m

ℓ=1 ∑n
i=1 ln

( xiℓ
L

))−c
andL = min(x1ℓ,b).

Hence, Bayesian estimators ofα andβ under a SEL function are

α̂BS = E(α|x)

=

∫ L

0

∫ ∞

0
απ∗(α,β |x)dαdβ

= c

(
ρ + a ln

(
b
L

)
+

m

∑
ℓ=1

n

∑
i=1

ln
(xiℓ

L

))−1

, (6)

E(α2|x) = c(c+1)

(
ρ + a ln

(
b
L

)
+

m

∑
ℓ=1

n

∑
i=1

ln
(xiℓ

L

))−2

, (7)

c© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.4, No. 2, 211-221 (2015) /www.naturalspublishing.com/Journals.asp 213

β̂BS = A−1Γ (c+1)
∫ L

0

(
ρ + a ln

(
b
β

)
+

m

∑
ℓ=1

n

∑
i=1

ln

(
xiℓ

β

))−(c+1)

dβ

= A−1Γ (c+1)
e

κ
υ

υ
(κ −υ ln(L))−cΨ

(
1+ c,

κ
υ
− ln(L)

)
, (8)

and

E(β 2|x) = A−1Γ (c+1)
e

2κ
υ

υ
(κ −υ ln(L))−cΨ

(
1+ c,

2κ
υ

−2ln(L)

)
, (9)

whereΨ(·) be Exp. Integral function,κ = ρ + a ln(b)+∑m
ℓ=1 ∑n

i=1 ln(xiℓ) andυ = nm+ a.
The posterior risk (minimum posterior expected loss (MPEL)) of θ is the posterior variance. The posterior model

is essentially an updated version of our prior knowledge about θ in light of knowledge of the sample data. So the risk
function ofθ = (α,β ) under a SEL function is given by

θ̂Risk = E(θ 2|x)− (E(θ |x))2. (10)

2.2 Bayes estimation based on RSS

In this subsection, we introduce Bayesian estimators underSEL function for the parameters based on RSS in two cases,
one cycle RSS andm-cycle RSS.
ConsiderY1,Y2, . . . ,Yn be a one cycle RSS from a Pareto distribution obtained from a complete sample of SRS, then the
joint pdf of the independentY1,Y2, . . . ,Yn is given by

f (y1,y2, . . . ,yn) =
n

∏
j=1

g(y j), (11)

where

g(y j) = j

(
n
j

)
(F(y j))

j−1(F(y j))
n− j f (y j), (12)

is the pdf for thej-th order statistic for a SRS of sizen (see Arnold et al. [5]).

2.2.1 Bayes estimates based on one cycle RSS

From Eq.(12), the density function of thej-th order statisticYj can be written as

g(y j|α,β ) = j

(
n
j

)
α
y j

j−1

∑
k=0

(
j−1

k

)
(−1)k exp

(
−α(n− j+ k+1) ln

(
y j

β

))
. (13)

Then from Eq.(11) the joint density function of the RSS in the case of the independence ofy j is given by

f (y|α,β ) =
0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j ( j)

](
n

∏
j=1

1
y j

)
αn

× exp

(
−α

n

∑
j=1

(n− j+ i j +1) ln

(
y j

β

))
, (14)

whereci j( j) = j

(
j−1

i j

)(
n
j

)
(−1)i j .

Using Eq.(4) and (14), the posterior density function can be derived as

π∗(α,β |y) = R−1
0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j ( j)

]
αc1

β

× exp

(
−α

(
ρ + a ln

(
b
β

)
+

n

∑
j=1

(n− j+ i j +1) ln

(
y j

β

)))
, (15)
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where

R =
0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j ( j)

]
Γ (c1)

(a+∑n
j=1(n− j+ i j +1))

×

(
ρ + a ln

(
b
L

)
+

n

∑
j=1

(n− j+ i j +1) ln
(y j

L

))−c1

. (16)

Hence, Bayesian estimation ofα andβ under a SEL function is

α̂BS = R−1
0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j ( j)

]
Γ (c1+1)

(a+∑n
j=1(n− j+ i j +1))

×

(
ρ + a ln

(
b
L

)
+

n

∑
j=1

(n− j+ i j +1) ln
(y j

L

))−(c1+1)

, (17)

E(α2|y) = R−1
0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j( j)

]
Γ (c1+2)

(∑n
j=1(n− j+ i j +1)+ a)

×

(
ρ + a ln

(
b
L

)
+

n

∑
j=1

(n− j+ i j +1) ln
(y j

L

))−(c1+2)

, (18)

β̂BS = R−1
0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j ( j)

]
Γ (c1+1)

e
κ1
υ1

υ1
(κ1−υ1 ln(L))−c1

× Ψ
(

1+ c1,
κ1

υ1
− ln(L)

)
, (19)

and

E(β 2|y) = R−1
0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j ( j)

]
Γ (c1+1)

e
2κ1
υ1

υ1
(κ1−υ1 ln(L))−c1

× Ψ
(

1+ c1,
2κ1

υ1
−2ln(L)

)
, (20)

whereκ1 = ρ + a ln(b)+∑n
j=1(n− j+ i j +1) ln(y j), υ1 = a+∑n

j=1(n− j+ i j +1) andc1 = n+η .

2.2.2 Bayes estimates based onm-cycle RSS

Let y jl , j = 1,2, . . . ,n, ℓ = 1,2, . . . ,m bem-cycle RSS from Pareto distribution. The joint density function in this case is
given by

f (y|α,β ) =
m

∏
ℓ=1

n

∏
j=1

f (y jℓ|α,β )

=
m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

Kℓ
i j

(
m

∏
ℓ=1

n

∏
j=1

1
y jℓ

)
αnm

× exp

(
−α

m

∑
ℓ=1

n

∑
j=1

(n− j+ iℓj +1) ln

(
y jℓ

β

))
, (21)

whereKℓ
i j
=
[
∏m

ℓ=1∏n
j=1 ciℓj

( j)
]
.
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Using Eq.(4) and (21), the posterior density function can be derived as

π∗(α,β |y) = D−1
m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

Kℓ
i j

αc2

β

× exp

(
−α

(
ρ + a ln

(
b
β

)
+

m

∑
ℓ=1

n

∑
j=1

(n− j+ iℓj +1) ln

(
y jℓ

β

)))
, (22)

where

D =
m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

Kℓ
i j

Γ (c2)

(a+∑m
ℓ=1 ∑n

j=1(n− j+ iℓj +1))

×

(
ρ + a ln

(
b
L

)
+

m

∑
ℓ=1

n

∑
j=1

(n− j+ iℓj +1) ln
(y jℓ

L

))−c2

. (23)

Hence, Bayesian estimation ofα andβ under a SEL function is

α̂BS = D−1
m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

Kℓ
i j

Γ (c2+1)
(a+∑m

l=1 ∑n
j=1(n− j+ i j +1))

×

(
ρ + a ln

(
b
L

)
+

m

∑
ℓ=1

n

∑
j=1

(n− j+ iℓj +1) ln
(y jℓ

L

))−(c2+1)

, (24)

E(α2|y) = D−1
m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

Kℓ
i j

Γ (c2+2)
(a+∑m

l=1 ∑n
j=1(n− j+ i j +1))

×

(
ρ + a ln

(
b
L

)
+

m

∑
ℓ=1

n

∑
j=1

(n− j+ iℓj +1) ln
(y jℓ

L

))−(c2+2)

, (25)

β̂BS = D−1Γ (c2+1)
m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

Kℓ
i j

e
κ2
υ2

υ2
(κ2−υ2 ln(L))−c2

× Ψ
(

1+ c2,
κ2

υ2
− ln(L)

)
, (26)

and

E(β 2|y) = D−1Γ (c2+1)
m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

Kℓ
i j

e
2κ2
υ2

υ2
(κ2−υ2 ln(L))−c2

× Ψ
(

1+ c2,
2κ2

υ2
−2ln(L)

)
, (27)

whereκ2 = ρ + a ln(b)+∑m
ℓ=1 ∑n

j=1(n− j+ iℓj +1) ln(y jℓ), υ2 = a+∑n
j=1(n− j+ i j +1) andc2 = nm+η .

3 Bayes Prediction

This section provides two-sample Bayesian prediction scheme by using SRS and RSS when both parameters are unknown.
Suppose thatw1,w2, . . . ,wn1 be a second independent sample of sizen1. To predict the future samplews, s = 1,2, ...,n1
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based on a complete sample of SRS and RSS, then the density function ofws is given by

g(ws|α,β ) = s

(
n1
s

)
(F(ws))

s−1(F(ws))
n1−s f (ws)

= s

(
n1
s

)
α
ws

s−1

∑
k=0

(
s−1

k

)
(−1)k

× exp

(
−α(n1− s+ k+1) ln

(
ws

β

))
. (28)

3.1 Two sample Bayesian prediction intervals based on SRS

By using Eq.(5) and (28), the predictive density function ofws is given by

f (ws|x) =
∫ L

0

∫ ∞

0
g(ws|α,β )π∗(α,β |x)dαdβ

= A−1s

(
n1
s

)
1

ws

s−1

∑
k=0

(
s−1

k

)
(−1)k Γ (c+1)

(nm+(n1− s+ k+1)+ a)

×

(
ρ + a ln

(
b
L

)
+(n1− s+ k+1) ln

(ws

L

)
+

m

∑
ℓ=1

n

∑
i=1

ln
(xiℓ

L

))−(c+1)

. (29)

Hence, the predictive survival function is given by

P[ws > ν|x] =
∫ ∞

ν
f (ws|x)dws

= A−1s

(
n1
s

) s−1

∑
k=0

(
s−1

k

)
(−1)k

×
Γ (c)

(nm+(n1− s+ k+1)+ a)(n1− s+ k+1)

×

(
ρ + a ln

(
b
L

)
+(n1− s+ k+1) ln

(ν
L

)
+

m

∑
ℓ=1

n

∑
i=1

ln
(xiℓ

L

))−c

. (30)

So the lower and upper 100τ% prediction bounds[L(x),U(x)] for ws are obtained by equating Eq.(30) to (1+ τ)/2 and
(1− τ)/2, respectively.
From Eq.(29), the predictive estimator ofws, s = 1,2, ...,n1 can be obtained as

ŵs = E(ws|x) =
∫ ∞

β
ws f (ws|x)dws

= A−1s

(
n1
s

) s−1

∑
k=0

(
s−1

k

)
(−1)k Γ (c+1)

(nm+(n1− s+ k+1)+ a)

×

∫ ∞

β
(ρ + a ln

(
b
L

)
+(n1− s+ k+1) ln

(ws

L

)

+
m

∑
ℓ=1

n

∑
i=1

ln
(xiℓ

L

)
)−(c+1)dws. (31)
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3.2 Two sample Bayesian prediction intervals based on one cycle RSS

By using Eq.(15) and (28), the predictive density function ofws is given by

f (ws|y) = R−1s

(
n1
s

)
1

ws

s−1

∑
k=0

(
s−1

k

)
(−1)k

0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j( j)

]

×
Γ (c1+1)(

∑n
j=1(n− j+ i j +1)+ (n1− s+ k+1)+ a

)

× (ρ +(n1− s+ k+1) ln
(ws

L

)

+ a ln

(
b
L

)
+

n

∑
j=1

(n− j+ i j +1) ln
(y j

L

)
)−(c1+1)). (32)

Hence, the predictive survival function is given by

P[ws > ν|y] = R−1s

(
n1
s

) s−1

∑
k=0

(
s−1

k

)
(−1)k

(n1− s+ k+1)

0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j ( j)

]

×
Γ (c1)(

∑n
j=1(n− j+ i j +1)+ (n1− s+ k+1)+ a

)

× (ρ +(n1− s+ k+1) ln
(ν

L

)

+ a ln

(
b
L

)
+

n

∑
j=1

(n− j+ i j +1) ln
(y j

L

)
)−c1). (33)

So the lower and upper 100τ% prediction bounds[L(x),U(x)] for ws are obtained by equating Eq.(33) to (1+ τ)/2 and
(1− τ)/2, respectively.
From Eq.(32), the predictive estimator ofws, s = 1,2, ...,n1 can be obtained as

ŵs = R−1s

(
n1
s

) s−1

∑
k=0

(
s−1

k

)
(−1)k

0

∑
i1=0

1

∑
i2=0

. . .
n−1

∑
in=0

[
n

∏
j=1

ci j( j)

]

×
Γ (c1+1)(

∑n
j=1(n− j+ i j +1)+ (n1− s+ k+1)+ a

)

×

∫ ∞

β
(ρ +(n1− s+ k+1) ln

(ws

L

)

+ a ln

(
b
L

)
+

n

∑
j=1

(n− j+ i j +1) ln
(y j

L

)
)−(c1+1))dws. (34)

3.3 Two sample Bayesian prediction intervals based on m-cycle RSS

By using Eq.(22) and (28), the predictive density function ofws is given by

f (ws|y) = D−1s

(
n1
s

)
1

ws

s−1

∑
k=0

(
s−1

k

)
(−1)k

m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

Kℓ
i j

×
Γ (c2+1)(

∑m
ℓ=1∑n

j=1(n− j+ iℓj +1)+1)+ (n1− s+ k+1)+ a
)

× (ρ +(n1− s+ k+1) ln
(ws

L

)

+ a ln

(
b
L

)
+

m

∑
ℓ=1

n

∑
j=1

(n− j+ iℓj +1) ln
(y jℓ

L

)
)−(c2+1)). (35)
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Hence, the predictive survival function is given by

P[ws > ν|y] = D−1s

(
n1
s

) s−1

∑
k=0

(
s−1

k

)
(−1)k

(n1− s+ k+1)

m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

×
Γ (c2)(

∑m
ℓ=1 ∑n

j=1(n− j+ iℓj +1)+ (n1− s+ k+1)+ a
)

× (ρ +(n1− s+ k+1) ln
(ν

L

)

+ a ln

(
b
L

)
+

m

∑
ℓ=1

n

∑
j=1

(n− j+ iℓj +1) ln
(y jℓ

L

)
)−c2). (36)

So the lower and upper 100τ% prediction bounds[L(x),U(x)] for ws are obtained by equating Eq.(36) to (1+ τ)/2 and
(1− τ)/2, respectively.
From Eq.(35), the predictive estimator ofws, s = 1,2, ...,n1 can be obtained as

ŵs = D−1s

(
n1
s

) s−1

∑
k=0

(
s−1

k

)
(−1)k

m

∏
ℓ=1

0

∑
iℓ1=0

ℓ

∑
iℓ2=0

. . .
n−1

∑
iℓn=0

Kℓ
i j

×
Γ (c2+1)(

∑m
ℓ=1 ∑n

j=1(n− j+ iℓj +1)+1)+ (n1− s+ k+1)+ a
)

×

∫ ∞

β
(ρ +(n1− s+ k+1) ln

(ws

L

)

+ a ln

(
b
L

)
+

m

∑
ℓ=1

n

∑
j=1

(n− j+ iℓj +1) ln
(y jℓ

L

)
)−(c2+1))dws. (37)

4 Illustrative example

In this section, we present a simulation study to illustrateour previous theoretical results for Pareto distribution when both
parameters are unknown.

4.1 Simulation Study

To illustrate Bayesian estimation and two-sample Bayesianprediction intervals results for the Pareto distribution based
on SRS and RSS, we perform a simulation study using differentsample sizes according to the following steps:

1.To compute Bayesian estimation, we choose the parameter values(a,b,η ,ρ) = (1,1,2,3) and then generateα =
0.7497 fromπ1(α) andβ = 0.6660 fromπ2(β |α).

2.By using the transformationXi = β (1−Ui)
−1
α whereUi from U(0,1), the generated sample of sizen = 4,6,8 from

Pareto distribution can be obtained for RSS of one cycle(m = 1) and two cycle(m = 2) and SRS whenm = 1 and
m = 2.

3.Compute Bayesian estimates which derived in the previoussections by using the generated samples of SRS of size
n = 4,6,8 when (m = 1) and (m = 2) and RSS of sizen = 4,6,8 for one cycle and two cycle.

4.By using Eq.(10), posterior risk can be obtained and then we replicate the steps 2−3 for 1000 times to compute the
average of posterior risk. The results are displayed in Table 1.

Table 1: Posterior risk of the Bayesian estimates based on
SRS and RSS in two cases (m = 1) and (m = 2).

m = 1 m = 2
n Par. SRS RSS SRS RSS
4 α 1.9412 0.1903 0.3065 0.1163

β 0.0171 0.0099 0.0081 0.0060
6 α 0.2742 0.0565 0.1262 0.0454

β 0.0120 0.0051 0.0052 0.0035
8 α 0.1392 0.0261 0.0760 0.0254

β 0.0087 0.0030 0.0038 0.0022
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5.To compute two-sample Baysian prediction ofws, s = 1,2,3, we choose the parameter values(a,b,η ,ρ) = (1,1,2,1)
to generateα = 2.0002 from π1(α) and β = 0.2499 from π2(β |α) and then by using the transformation

Xi = β (1−Ui)
−1
α whereUi fromU(0,1), we generate SRS and RSS of sizen = 4,6,8 in two cases when (m = 1) and

(m = 2). The results are displayed in Table 2 and 3, respectively.

Table 2: The generate SRS of sizen = 4,6,8.
m n
1 4 0.4075 0.5028 1.0191 1.8870

6 0.25017 0.2578 0.2672 0.3784 0.5256 1.2568
8 0.2510 0.2716 0.2834 0.3035 0.3854 0.4091 0.6121 0.6360

2 4 0.3445 0.4346 0.7466 0.7716 0.2959 0.8054 0.8512 1.2061
6 0.2778 0.2866 0.3143 0.3745 0.5006 1.5104 0.2666 0.3044

0.3632 0.4121 0.4260 0.4765
8 0.2634 0.2993 0.3013 0.3430 0.3758 0.9270 0.1833 1.2689

0.2569 0.2785 0.2794 0.2830 0.2953 0.3433 0.4485 0.5120

Table 3: The generate RSS of sizen = 4,6,8.
m n
1 4 0.4075 0.4302 0.4691 0.5194

6 0.2598 0.3269 0.3287 0.4293 0.6185 0.7071
8 0.2522 0.2697 0.2864 0.2986 0.3289 0.3728 0.3825 0.3957

2 4 0.2506 0.3065 0.3513 0.3102 0.3065 0.3102 0.7563 0.3581
6 0.2536 0.2620 0.3109 0.2601 0.4774 0.2799 0.2621 0.2601

0.2799 0.3293 0.8306 0.5316
8 0.2512 0.2573 0.2711 0.2664 0.3509 0.2575 0.5182 0.2859

0.2572 0.2664 0.2575 0.2859 0.2805 0.4007 0.5025 0.9134

6.By using the generated SRS of sizen = 4,6,8 when (m = 1) and (m = 2), a 95% two-sample Baysian prediction
intervals ofws, s = 1,2,3 are obtained from Eq.(30) and then we can find the predictive estimator ofws, s = 1,2,3 by
using Eq.(31). The results are displayed in Tables 4 and 5.

7.By using the generated RSS samples of sizen = 4,6,8 for one cycle and two cycle, a 95% two-sample Baysian
prediction intervals ofws, s = 1,2,3 are obtained from Eq.(33) and Eq.(36), respectively. In this case we can find the
predictive estimator ofws, s = 1,2,3 by using Eq.(34) and Eq.(37), respectively. The results are displayed in Tables 4
and 5.

Table 4: The Bayesian prediction bounds forws ands = 1,2,3
based on SRS and RSS form = 1.
SRS RSS

n s Lower Upper Width ŵs Lower Upper Width ŵs
4 1 0.3807 0.7484 0.3677 0.4473 0.2697 0.4464 0.1767 0.3056

2 0.3829 1.5584 1.1755 0.6553 0.2701 0.7478 0.4777 0.3869
3 0.4116 3.4369 3.0253 2.0389 0.2988 2.2376 1.9388 0.7648

6 1 0.2399 0.4062 0.1663 0.2830 0.2472 0.3801 0.1329 0.2773
2 0.2411 0.7032 0.4621 0.3496 0.2499 0.5790 0.3291 0.3359
3 0.2627 2.2549 1.9922 0.6655 0.2738 1.4175 1.1437 0.5265

8 1 0.2438 0.3812 0.1374 0.2804 0.2500 0.3436 0.0936 0.2724
2 0.2400 0.6004 0.3594 0.3328 0.2620 0.4674 0.2054 0.3126
3 0.2702 1.5728 1.3026 0.5583 0.2879 0.8973 0.6094 0.4228
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Table 5: The Bayesian prediction bounds forws ands = 1,2,3
based on SRS and RSS form = 2.
SRS RSS

n s Lower Upper Width ŵs Lower Upper Width ŵs

4 1 0.2815 0.6202 0.3387 0.3497 0.2446 0.3565 0.1119 0.2690
2 0.3100 1.3824 1.0724 0.5320 0.3000 0.5159 0.2159 0.3188
3 0.3295 2.9199 2.5904 1.8839 0.2944 1.1370 0.8426 0.4677

6 1 0.2627 0.3596 0.0969 0.2749 0.2453 0.3391 0.0938 0.2599
2 0.3031 0.4910 0.1879 0.3257 0.3116 0.4757 0.1641 0.3038
3 0.2818 1.0000 0.7182 0.4396 0.3315 1.0131 0.6816 0.4314

8 1 0.2540 0.3497 0.0957 0.2700 0.2447 0.3304 0.0857 0.2551
2 0.3000 0.4775 0.1775 0.3169 0.3011 0.4427 0.1416 0.2948
3 0.2758 0.9242 0.6484 0.4294 0.3255 0.8489 0.5234 0.3975

5 Conclusion

We present Bayesian estimation and two-sample Bayesian prediction scheme based on SRS and RSS. Pareto distribution
is used as application example to illustrate our results. Wecompute posterior risk of the derived Bayesian estimates and
then make a comparison between SRS and RSS. Our observationsabout the results are stated in the following points:

1.From Table 1, posterior risk of the Bayes estimates under SEL function decrease with increasingn based on SRS and
RSS in two cases (m = 1) and (m = 2).

2.Posterior risk of two cycle RSS is better than posterior risk of one cycle RSS and we notice that posterior risk of SRS
in case ofm = 2 is better than posterior risk of SRS in case ofm = 1.

3.Posterior risk of the Bayes estimates based on RSS for one cycle and two cycle are better than posterior risk based on
SRS in two cases (m = 1) and (m = 2), respectively.

4.From Tables 4 and 5, we notice that the lengths of the prediction intervals are increasing with increasings and decrease
with increasingn for SRS and RSS in two cases (m = 1) and (m = 2).

5.It is evident from Tables 4 and 5 that the predictive estimator are increasing with increasings and decrease with
increasingn for SRS and RSS in two cases (m = 1) and (m = 2).

6.It is clear that the lengths of the prediction intervals based on two cycle RSS are better than the lengths of the prediction
intervals based on one cycle RSS and lengths of the prediction intervals based on SRS form = 1 are better than the
lengths of the prediction intervals based on SRS form = 2.

7.We obtain better results of lengths of the prediction intervals based on RSS than the lengths of the prediction intervals
based on SRS.
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