Appl. Math. Inf. Sci.9, No. 2, 851-864 (2015) %N =¥\ 851

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090234

Complete Solutions for a Combinatorial Puzzle in Linear
Time and Its Computer Implementation

Daxin Zhu?, Yingjie W&*, Lei Wang and Xiaodong Wanlgf-*

1 Faculty of Mathematics & Computer Science, Quanzhou Notsmalersity, 362000 Quanzhou, China
2 3chool of Mathematics and Computer Science, Fuzhou UriiyeB50002 Fuzhou, China
3 Microsoft AdCenter, Bellevue, WA 98004, USA

Received: 5 Jun. 2014, Revised: 3 Sep. 2014, Accepted: 228&p.
Published online: 1 Mar. 2015

Abstract: Inthis paper we study a single player game consistingtdéck checkers anahwhite checkers, called shifting the checkers.
We have proved that the minimum number of steps needed tdhptayame for generalandmis nm+ n+m. We have also presented
an optimal algorithm to generate an optimal move sequendkeoflame consisting af black checkers anch white checkers, and
finally, we present an explicit solution for the general game
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Combinatorial games often lead to interesting, clean

problems in algorithms and complexity theory. Many L2 Sl o ekl e,
classic games are known to be computationally |O|O|' . I‘ i |O| |.|.|' : |' : |.|
intractable. Solving a puzzle is often a challenge task like

solving a research problem. You must have a right Fig. 1: Shifting checkers

cleverness to see the problem from a right angle, and then
apply that idea carefully until a solution is found.

In this paper we study a single player game called
shifting the checkers. The game is similar to the Moving  There are only two permissible types of moves. A
Coins puzzle2,3,7], which is played by re-arranging one move of the game consists of sliding one checker into the
configuration of unit disks in the plane into another current vacant position, or jumping over the adjacent
configuration by a sequence of moves, each repositioninghecker into the current vacant position. The goal of the
a coin in an empty position that touches at least two othelgame is to make a small number of moves to reach the
coins. In our shifting checkers game, there arblack final state of the game.
checkers andn white checkers put on a table from left to We are interested in algorithms which, given integers
right in a row. Then+m+ 1 positions of the row are n andm, generate the corresponding move sequences to
numbered 1 -- ,n+m+ 1. Initially, the n black checkers reach the final state of the game with the smallest number
are put in the position,1--,n, and them white checkers of steps. In this paper we present an optimal algorithm to
are put in the positiom+2,--- ,n+m+ 1. The position  generate all of the optimal move sequences of the game
n+ 1 is initially vacant. In the final state of the game, the consisting o black checkers anch white checkers.
left mostm positions numbered,1.- ;m are occupied by This paper is structured as follows.
white checkers, and the right masipositions numbered In the following 4 sections we describe the algorithms
m+2,---,m+n+ 1 are occupied by black checkers, and our computing experience with the algorithms for
leaving the positiom+ 1 vacant, as shown in Fig. 1. generating optimal move sequence of the general game
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consisting ofn black checkers ancth white checkers. In  consists of only the classes of moves numbered from 1 to 4
Section 2 we describe a new variant tree search baseih Table 1.

algorithm for generating all optimal solutions for the ) . . . .

shifting checkers games of the small size. A linear timeProof. We first notice that in an optimal solution, when
recursive construction algorithm is proposed in Section 3JUmping, a checker may only jump a single checker of the
Based on the recursive algorithm proposed in Section 30PPOsite color. If a checkers jump over the adjacent
an explicit solution for the optimal move sequence of the €hecker of the same color into the vacant position, then
general game is presented in Section 4. we discuss th&/€ will arrive an unfavorable status. For example, if a

number of optimal solutions of the game in Section 5. Step of jump(b,b,r) is applied, then the white checkers

unless a step oflide(b,l) is applied immediately. But
these two steps can be substituted by only one step
; ; slide(b,r). The other cases can be analyzed similarly.
2 A Backtracking Algorithm Therefore, we know that the classes of moves numbered
from 9 to 12 in Table 1 will not appear in an optimal

In a row of checkers of the game, if two checkers have . . S
solution with the minimum number of moves.

different colors and the black checker is on the left of the We have known that from the initial state of the game
white checker, then the two checkers are called AN the final state of the game. there are totalrr%ﬁ
inversion pair. For example, in the initial state of the game; \ersions andn + m vacar?t invérsions to be reduced
consisting ofn black checkers andn white checkers, From Table 1 we see that for each step of movés
since all of then black checkers are on the left of all the bered f 1108 in. at (1] ep "
white checkers, there is totaim inversion pairs. On the numoered from 1 1o © In, al Most - Inversion or vacan

other hand, in the final state of the game, since all ofthe inversion can be reduced. Therefore it requires at least
black checkers are on the right of all them white nm-+ N+ m steps to play the game consistingroblack

checkers, there are no inversion pairs in this case. ﬁ?ﬁil:]efm ?Sng r|T(;\,\,\,/3vrhgce,uncdh1(?0Crkse(;?\}inlnthgthgnewIonrc’zi’e
Similarly, for the vacant position, if a black checker g g ’

is on the left of the vacant position, or a white checker isnext section, we will present an optimal solution for the

on the right of the vacant position, then the checker anoggmg (I:rg)rft);?:g?r?]—;trt]a—ksn(])fstr?g\?éslfnins’lgls:leodnf:gygeto 8
the vacant position are called a vacant inversion pair. Foﬁgn Table 1, then thgse s?e s will increase the inversions or
example, in the initial state of the game, since all ofthe ' P

black checkers are on the left of the vacant position, anathe vacant inversions of the checkerboard, and thus the

all of the m white checkers are on the right of the vacant humber of steps tohplay the gamle must be rr‘]o less than
position, there are total + m vacant inversion pairs. On nm- N -+ m-+ 2. T er?for, a so utgm Lo; ¢ esganéel
the other hand, in the final state of the game, since all o on'ltalnlng any steps o .m0\1es InL!m e][eh rom 5 to 8 in
then black checkers are on the right of the vacant position, able 1 cannot be an optimal solution of the game.

and all of themwhite checkers are on the left of the vacant of sﬁﬁmmllghgeugﬁ:cnkg?stl:/nvﬁLsrzli%tilr?]Tj:r?rnﬂfnyll)r;? g?en?:\/meg
position, there are no vacant inversion pairs in this case. 9

Of the two types of checker moves, we can further list consists of only the steps of moves numbered from 1 to 4

g . -in Table 1.00
12 different cases of the moves into a table, as shown in From Lemmai, we can conclude that the following

Table 1. Sliding a black checker right into the current theorem holds

vacant position is denoted atide(b,r). The other three '

movesslide(b, 1), slide(w,r), andslide(w,l) are defined  Theorem 1For the general game of shifting the checkers

similarly. Jumping a black checker right over the adjacentconsisting of n black checkers and m white checkers, it

white checker into the current vacant position is denotedheeds at least nm n+ m steps to reach the final state of

as jump(b,wr). The other 7 movesjump(b,w,l),  the game from its initial state.

jump(w,b,r), jump(w,b,1), jump(b,b,r), jump(b,b,1), . . .

jumpw,w,r), and jumpw,w,1) are defined similarly. According to Theorem'l, if we can find a move

These 12 cases of moves are numbered from 1 to 12. ~ Sequence to reach the final state of the game with
The columninversionsof Table 1 denote the inversion NM-+n-+m steps, then the sequence will be an optimal

increment of the checker row when the correspondingMove sequence, since no move sequence can reach the

case of moves applied. Similarly, the coluiviinversions ~ final state of the game in less tham+n+m steps. In

of Table 1 denotes the vacant inversion increment of theorder to study the structures of the optimal solutions for

checker row when the corresponding case of movedhe general game of shifting the checkers, we first present

applied. a backtracking algorithml[5,6] to generate all optimal
It is not difficult to verify the following facts on the ~Solutions of the games with small size. N
0p'[|ma| solutions to p|ay the game. In the algorlthm described above, the parametBr

the current number of steps and the parametés the
Lemma 1.Any optimal solution for playing the game of currently vacant position. The current solution is stored i
shifting the checkers with minimum number of movesarrayx. Fori =1,2,--- nm+n+m, the move of stepis
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Table 1: All cases of checker moves

No. Move Change Inversions | V-Inversions
1 slide(b,r) e —~J® 0 -1
2 slide(w, 1) O0—-00 0 -1
3 | jumpbwr) @ OO—-@O -1 0
4 jumpbw!) | 1@O—~-0 @0 -1 0
5 | jumpwbr) [O@ O~ LU @O0 1 0
6 [ jumpwb) [JO® @00 1 0
7 slide(b,I) Je— e 0 1
8 slide(w,r) oOgo—-O0o0 0 1
9 | jumpwwr) | OOO—-000 0 2
10 jump(b,b,1) B X =X X JN 0 2
11 | jumpwwl) | DO O—-000 0 -2
12 | jumpbbr) | @@ —- 1O @ 0 -2

stored inx[i — 1]. This means that we move the checker 3 A Linear Time Construction Algorithm
located at positiong[i — 1] to the current vacant position
and leaving the positiongi — 1] the new vacant position. The packtracking algorithm described in the previous

A recursive function call BCKTRACK(1,n+1) will  gection can produce all optimal solutions for the game
generate all optimal solutions which move checkers fromyith fixed size. It generally works only for small size. In
initial state to a final state inm+-n+ msteps. this section, we will present a linear time construction

It is not difficult to generate all optimal solutions of algorithm which can produce all optimal solutions in
the game with small size by the backtracking algorithmlinear time for very large sizen 4+ m. The
described above. Decrease-and-Conquer stratedy for algorithm design
is exploited to design our new algorithm.

Without loss of generality, we assunme> m in the
following discussion. Since there are only 4 possible
moves slidew,l), slide(b,r), jump(b,w]l), and
comment: Generate all optimal solutions jump(b,w,r), we can simplify our notation for these 4
moves toslide(l), slide(r), jump(l), and jump(r) in the
following discussion.

Algorithm 2.1: BACKTRACK(i, €)

ifi>nm+n+m
if e=m+ 1 and final state reached

then then output current solution

if e>2and jump(b,w,r) feasible )
X[i—1] « e—2 3.1 A special case of the problem
then J Move checker at positiom— 2 to vacant
BACKTRACK (i +1,e—2) We first focus on the special caserof= m. If we denote a
move checker at positiomto vacant black checker by, a white checker by, and the vacant
if e<n+mand jump(b,w,l) feasible position by O, then any status of the checker board can
X[i—1]+e+2 be specified by a sequence consisting of charattevs
then J Move checker at positioe+ 2 to vacant andO. The special case of our problem is then equivalent
BACKTRACK (i+1,e+2) m m
dse J . move checker at positioato vacant to transforming the initial sequende--bOW---W to the
if e> 1and slide(b,r) feasible m m
Xi—1]«e-1 3 sequenc@---WOb- - - b in the minimum number of steps.
then 4 Move checker at positiog—1tovacant  \ye have noticed that a key status of the checker board
BACKTRACK (i +1,e—1) can be reached from the initial status with minimum
move checker at positiomto vacant number of steps.
if e< n+m+ land slide(w,l) feasible
Xi—1] e+l y Lemma2.The initial status of the checker board
then J Move checker at positiog+ 1 to vacant ~ m m
BACKTRACK(i +1,e+1) b---bOW---W can be transformed to one of the status of
move checker at positiomto vacant om om
h —_—— —_— m(mD)
e checker board ©w---bw or bw---bwO in ===
steps.
(© 2015 NSP
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2
Proof. We can design a recursive algorithm to solve this  The key status of the checkerboabsy---bwO or
problem as follows. 2m
—
Obw:---bw can be transformed to another key status of
Algorithm 3.1: MOVEL(t) 2m 2m
—— —— .
T the checkerboar@®wb- --wb or wb---wb O readily bym
e = jumps. Any of these two status of the checkerboard can
then MmOVEL(t — 1) m m
Tt—1 ~=
corr?ment. t=1jumps then be transformed to the final stafuis -WOb- - - b. This
fori< 1ltot—-1 problem is exactly the inverse problem of Lemma 2.
do Jump(dir)
comment: 1 slide 2m
—
SLIDE(dir) Lemma 3.The key status of the checkerboarevl - - wb
} . o 2
comment: change moving direction m .
CHANGE(dir) or wh---wbO can be transformed to the final status

m m
~ =
@--WOb---b in ™ML steps.

In the algorithm described above, the paramétesr  proof.
the recursion depth, or the number of black checkers to be We can design a recursive a|gorithm to solve this
treated. The variabldir is used to determine the current problem, which is exactly a reversed algorithm of the
moving direction. Its valué indicates the checker should a|gorithmmove1().
be moved left, otherwise the checker should be moved
right. The initial value ofdir can be set td or r, which  A|gorithm 3.3: MOVEA4(t)
will lead to different moving sequences. The current
direction dir can be changed iO(1) time by the comment: change moving direction
algorithmcHANGE(dir) as follows. CHANGE(dr)

comment: 1 slide
Algorithm 3.2: cHANGE(dir)

SLIDE(dir)
if dir =r comment: t—1jumps
then dir + | fori<1ltot—1
esedir < r do Jump(dir)
comment: recursive call
ift>1

Based on the algorithm above, the Lemma can be then MOVE4(t—1)
proved by induction. The moving steps generated by the
algorithmmove1() for the first two easy cases of=1
andm= 2 are shown in Table 2 and Table 3. The number  |n the algorithm described above, the parametisr
of steps for these two cases are 1 and 3 respectively. Thghe recursion depth, or the number of black checkers to be
lemma is correct for the base cases. treated. The variabldir is used to determine the current
Assume that, the Lemma is true far < t. For the  moving direction. Its initial value is retained from preuvio
case ofm=t, the algorithmvovEel(t — 1) is applied first  computation.
and the status of the checkerboard is transformed to Based on the algorithm above, the Lemma can be
,_Zt,i ,_Zt,i proved by induction. The first two easy casesmof 1
bObw:- - -bww or bbw- - -bwOw depending on the initial andm= 2 are similar to the cases of Table 2 and Table 3.
value ofdir. Then,t — 1 jumps followed by 1 slide of the The number of steps for these two cases are 1 and 3
algorithm movel() will transform the status of the respectively. The lemmais correct for the base cases.
2 2 Assume that, the Lemma is true fior< t. In the case
checkerboard tbw- --bwOor Obw: --bw. The algorithm ~ of m=t, the algorithmmove4(t) implement 1 slide and
MOVEL(t — 1) needs(t — 1)t/2 steps by the induction t—1 jumps first. The 2 key status of the checkerboard

hypothesis, so the number of steps used by the algorithm __2™ 2m
MOVEL() is Owb---wb or wb---wb O can then be trgmszformed to the
me
——
t—Dt/2+t—-1+1=(t-1t/2+t=t(t+1)/2 status2 2of the checkerboardwwb---wbOb or
m—
The proof is completed.] wOwb---wbb respectively. Then a recursive call
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Table 2: Movel for the easy case of=1

Direction | Step| Move Status
0 @10
dir=1 1 slide(l) | @ O O
0 @10
dir=-1 1 |slider) | O @O

Table 3: Movel for the easy case of= 2
Direction | Step| Move Status
0

[
[ ]
O
O

slide(l)
JUmp(r)
slide(r)

slide(r)
jump(l)
slide(l)

dir=1

WIN| P Ol W N~

dir=-1

000 10|0[0|0

o000 00
OooUeeLe®
900 000

MOVE4(t — 1) is applied to transform the checkerboard to
m

m
~ =
the final statu$v---WOb- - -b.
The algorithmmoVvE4(t — 1) needgt — 1)t/2 steps by

the induction hypothesis, so the number of steps used b

the algorithmmovE4(t) is
1+t—14+(t—-Dt/2=t+(t—-1t/2=t(t+1)/2

The proof is completed.]

AN
b---bbw---bwO in D7D

m. From this point, we can also claim that the algorithms
MoVE1() andmovE4() presented in the proofs of Lemma
2 and Lemma 3 are also optimal. Otherwise, there must
be an algorithm to solve the problem in less than+ 2m
steps and this is impossible.

3.2 The algorithm for the general case of the
problem

We have discussed the special casenct m. In this
subsection, we will discuss the general casesm of the
problem. In these general cases; m> 0.

We can first use the algorithmovel() to transform
n—m 2m

~ = ——
the chezckerboard to the status---bObw---bw or
n—m m

steps. Thenm jumps are

applied to transform the checkerboard to the status
n—-m 2m n—m 2m

~ N —— A
b---bOwb---wborb---bwb---wbO.

At this point, we have to try to move the leftmast
m black checkers to the rightmost— m positions. It is
not difficult to do this by a simple algorithm similar to the
algorithmmovel().

{emma 4The key status of the checkerboard
n—-m 2m n—-m 2m
~ N — A=
b---bOwb---wb orb---bwb---wbO can be transformed
2m n—-m 2m n—m

—— —N—
to the statuswb---wbOb---b or Owb---wbb---b in

The 3 stages of the algorithms can now be combinedy, _ ) (m+- 1) steps.

into a new algorithm to solve our problem for the special

case ofn = mas follows.
Algorithm 3.4; MmovE(m,d)

comment: initial moving direction

dir «+d

comment: first stage
MOVE1(m)
comment: mjumps

fori+< 1tom
do Jump(dir)
comment: last stage

MOVE4(m)

The algorithm requires
m(m+1)/2+m+m(m-+1)/2= n? +2m

steps. It has been known tha® 4 2m is a lower bound
to solve the game consisting of black checkers anth
white checkers by Theorerh Therefore, our algorithm
is optimal to solve the game for the special casen ef

Proof.
We can design a recursive algorithm to solve this
problem as follows.

Algorithm 3.5: MOVES3(t)

comment: 1 slide to right

SLIDE(r)
comment: change jumping direction

CHANGE(dir)
comment: mjumps

fori<1tom
do Jump(dir)
comment: recursive call

ift>1
then MOVE3(t — 1)

In the algorithm described above, the parameétisr
the recursion depth, or the number of black checkers to be
moved to the right most positions. The variallleis used
to determine the current jumping direction. Its initialweal
is retained from previous computation.
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Based on the algorithm above, the Lemma can bealgorithmmove3() is also optimal. Otherwise, there must
proved by induction om—m. Whenn—m= 1, we have  be an algorithm to solve the problemin less tham+ n-+
to move the leftmost black checker to rightmost. We first m steps and this is impossible.
make a slide right, them jumps followed as described by

the algorithmmove3(). The status of the checkerboard Theorem 2The  algorithm move(n,m,d)  requires
2m 2m nm+n+ m steps to solve the general moving checkers

game consisting of n black checkers and m white

. —— ——
will be changed towb---wbObor Owb---wbh. It costs . . ;
Fheckers, and the algorithm is optimal.

m+ 1 steps. The lemma is correct for the base case o
n—m=1.

Assume that, the Lemma is true o m < t. For the )
case ofn—m=t, the algorithmmove3(t) implement 1 3.3 Remove recursions

slide and m jumps first. The 2 key status of the
t 2m t 2m The algorithmavovel(), MOVE3() andMovE4() are all

checkerboarmom or mmo can ecursive algorithms. The recursions of these algorithms
then be transformed to the status of the checkerboar§®" be easny removgd by.only ofmr'loop. .
t-1 2m t-1 2m The equivalent iterative algorithm for solving the
B Db . wbOb or b bOWD.-. - Whb respectively general moving checkers game consisting roblack
Then a recursive callMOvE3(t — 1) is applied fo checkers andm white checkers can be described as
follows.
2m t

——
transforzm the ctheckerboard to the statds --wbOb---b  Algorithm 3.7: ITERATIVE_MOVE(n, m,d)
m

orOwb---wbb---b. comment: initial moving direction
The algorithmMoVvE3(t — 1) needst —1)(m+1) steps  dir « d
by the induction hypothesis, so the number of steps usedcomment: stage 1

by the algorithrmovE3(t) i
y the algorithnmovEe3(t) is for i < 1tom

m+21+(t—21)(m+1)=t(m+1) for j«1toi—1
d do Jump(dir)
The proof is completed] 0 SLIDE(dir)

The 4 stages of the algorithms can now be combined CHANGE(dir)
into a new algorithm to solve our problem for the general comment: stage 2

cases ofi > mas follows. fori < 1tom

do Jump(dir)

Algorithm 3.6: MOVE(n,m,d) comment: stage 3

comment: initial moving direction fori< 1ton—m
dir +d SLIDE(r)
comment: first stage d CHANGE(dir)

for j« 1tom
do Jump(dir)
comment: stage 4

for i + mdownto 1
CHANGE(dir)

MOVEL(m)
comment: second stage

fori«< 1tom
do Jump(dir)
comment: third stage

do SLIDE(dir)
ifn—m>0 for j«1toi—1
then MOVE3(n—m) do Jump(dir)
comment: last stage
MOVE4(m)

By Lemma 2, Lemma 3 and Lemma 4 we know that 4 The Explicit Solutionsto the Problem
the algorithm requiresim+1)/2+m+ (n—m)(m+1) +
m(m-+ 1)/2 = nm+ n-+ msteps. It has been known from The optimal solution found by the algorithmove() or
Theorem 1 thahm+ n+ mis a lower bound to solve the ITERATIVE_MOVE() can be presented by a vectarFor
game consisting af black checkers anthwhite checkers. i =1,2,---,nm+n-+m, the stepi of the optimal move
Therefore, our algorithm is optimal to solve the game for sequence is given by;. This means that the checker
the general cases @f > m. We can also claim that the located at position; will be moved in step to the current
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vacant positions and leaving the positionsthe new a; = zt“llaﬂ,J =1,---,m, then it is not difficult to see
vacant positions. This can also be viewed thais a  thatforeach =1,---.m
function of i, which is called a move function. In this

section we will discuss the explicit expression of function a = (—1)1'*_l t=1 3)
X. J 2(-1) t>1
If we denotexp =n+1 and andfor 1<k < j+1,
di=X_1—%,1<i<nm+n+m (1)
. . . Zau J(2k-3) (4)
then the vectod will be a move direction function of

the corresponding move sequence.
A related functiont can then be defined as
ti=3j_1d;, 1 <i <nm+n+m.

Thereforeaj = (—1)!(2j — 1),j = 1,---,m. Thesem
sums form an alternating sequence

Since _1737_57"' 3(_1)m(2m_1)
i i
:Z Z Xj1—X)=X—X=n+1-x For each K k < m, we have,
= =t K K o ;
we have aj= > (-D'2j-1)=(-D' (5)
=1 =1
X=n+1—t,1<i<nm+n+m 2) The steps in each section must be
Therefore, our task is equivalent to compute the 1 2 m
functiont efficiently. 1,2,3.4,5, -, (m=1)(m+2)/2+1,---,m(m+3)/2

In this section, the functions andt will be divided
into three parts. The first part is corresponding to the first  If we denote thg + 1 steps of the sectiopashyj,1 <
two stages of the algorithmERATIVE_MOVE() presented t < J+1 and the boundary of sectigrasbj =bj 1), ] =
in the last section. The second part is corresponding to the. ... 'm, then it is not difficult to see that for eagh=
stage 3 of the algorithnTERATIVE_MOVE() and the third  1,... ,m,
part is corresponding to the stage 4.

{bj:jb(j+3)/21<j<m (6)

, . j=bj_1+t 1<t<j+11<j<m

4.1 The first part of the solution By =bj-1+ stsg+bi=ls

For any integer K i < by, the corresponding integer
Similar to the initial value oflir which can be settbor  k such that the integer falls into the sectiork can be
r, the first move directionl; can be setto 1 or -1. If we computed by a functiofy (x) as follows.

setd; = 1, then from the algorithmTERATIVE_MOVE()

presented in the last section, the move direction sequenceemma5.Let f(x) — Y11 For any integerl < i <

for the stage 1 and 2 must be bm, it must be a step number in the sectioa kf1(i)].
X Proof.
1,-2,-1,2,2,1,--, (=)™ 2(—)M ... 2(—1)™ It can be seen readily that functida(x) is a strictly

increasing function of0, +). For each sectiok, 1 <k <
This move direction sequence can be divided into m, its first step numberib_1+1= (k—1)(k+2)/2+1

sections as and it satisfies
m+1 k—1)(k+2 4(k—1)(k+2)+9-1 2k+1)2—1
2 3 fl(( )2(+)_|_1): ( )(2 ) _ ( 2) —k

—~N
1 _Za _17 27 Za Tty (_1)m_1a 2(_1)ma e 72(_1)m

)

Therefore, for each integéin the sectiork, we havek <

The sectionj consists of 1 slide an@ljumps and thus ~ f1(i) <k-+1. This meansfy(i)| = k.
has a size of + 1. The proof is completed.]

The total length of the sequence is therefore From Lemmab and formula (4) and (5), we can now
st=3M,(j+1) = m(m+3)/2. Our task is now to find ~COMPUte =55, dj,1<i < s as follows.
ti = ¥_;d;j quickly for each 1< i <'s;. Leta = Lifl(')J’ then,

If we denote thej + 1 elements of the sectiop as o= Yjad = Y laj + ZJ by 1419l =
aj,1 <t < j+1, and the sum of section as (—1)% Y(a—1)+(—1)%(2(i —bg_1)—3).
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It follows that for each K i <s,,
ti=(-1)%2 -

where,a = | Y81,

It follows from formula (2) thatforeach £i < s,

(-1)%2i —a(a+2)) (8)

If we setd; = —1, a similar result will be obtained. In
this case, we have,

a(a+2)) @)

X=n+1—

Xi=n+1+(-1)%2 —a(a+2) 9)
Combine these two cases, we conclude that,
Xi=n+1—di(-1)%2i —a(a+2) (10)

4.2 The second part of the solution

If we set dp = 1, then according to the algorithm

ITERATIVE_MOVE() presented in the last section, the

bj = bmiy)j, i = 1,---,n—m, then it is not difficult to

see that foreach=1,--- ,n—m,
bj=jm+1)1<j<n-m (16)
bj=Dbj_1+t1<t<m+11<j<n-m

For any integer K j < by, the corresponding integer
k such that the integey falls into the sectiork can be
computed by a functioffip(x) as follows.

Lemmae6.Let fo(x) = X0, For any integerl < j < bp, it
must be a step number |n the section kfa(j)].

Proof.

It can be seen readily that functida(x) is a strictly
increasing function of0, +). For each sectiok, 1 <k <
n—m, its first step numberilg,_1+1=(k—1)(m+1)+1
and it satisfies

(k=D)(m+D)+214m _ k(m+1) Kk

fo(k—=1)(m+1)+1)= T ="mT =

move direction sequence for the stage 3 must be in the Therefore, for each integgrin the sectiork, we have,

form of (11).

k< fa(j) < k+ 1. Thismeansfa(j)| =k.

This move direction sequence can be divided naturally  The proof is completeda

into n — m sections. The sectiopconsists of 1 slide and
m jumps and thus has a size wf+ 1. The total length of
the sequence is therefose = (n— m)(m+ 1). Our task
for this part is now to find; = zljzldj quickly for each
ss+1l<i<si+s.

If we denote them+ 1 elements of the sectiop as
&j,1 <t <m+1, and the sum of sectiorj as

aj = y™laj,j =1,---,n—m, then it is not difficult to
see that foreach=1,--- ,n—m,
1 t=1
&= {2(—1)m+i t>1 (12)
and for 1< k<m+1,
Zat, =1+ (—1)™(2k-2) (13)
Therefore,aj = 1+ 2m(—1)™J j = 1,--- .n—m.
Thesen — msums form an alternating sequence
1+2m(—1)™1 14 2m(—1)™2 ... 1+ 2m(—1)"

For each K k< m, we have,

1™ = k4 m(—1)™*— m(—1)™

k k
2 =kt 2m
= =

(14)

If we setj =i — si, then the steps in each section must

be in the form of (15).
If we denote them+ 1 steps of the sectiorj as
bj,1 <t <m-+1, and the boundary of section as

From Lemméb and formula (13) and (14), we can now

computej = 21 1dj,s1+1<i<s +s as follows.
Letr=i—s1, B =|f2(r)],andp=r— (B —1)(m+1)
i “1
thenti = 3i_,dj =ty + 35 aj+ 3P ayp.
Therefore

=B—-1+m(-1)™P- I _m—1)™+14(-1)™F(2p-2)
=B+ (~=1)™F(2p—2) - m((—1)™P 4 (—1)™%F)
=B+ (-1)™P(2p—2-m(1+(-1)F))

It follows that foreachs; + 1 <i < s+ 5,

ti=ts +B+(-)™P(2p-2-m(1+(-1)F)) (17
where, = | =2 andp=i—s — (8 —1)(m+1).
It follows from formula (2) that for eack; +1 <i <

S1+ S,

—B—(-1)™P(2p—2—m(1+(-1)F))
(18)
If we setd; = —1, a similar result will be obtained. In
this case, we have,

Xi=n+1-tg

X=n+1—ts—B+(-1)™P2p-2-m(1+(-1)P))
(19)
Combine these two cases, we conclude that,
X =X —B—di(—1)™P(2p—2—m(1+ (-1)F)) (20)
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m m m
——
L2(=1)™ - 2(=1)™ L 2(-) ™2 2(-) ™R 12(-)", - 2(-1)" (11)
m+1 mi1 m1
- m+1m+2---.2m+2,--- . (n—m—-1)(m+1)+1,--- ,(n—m)(m+1) (15)

4.3 The third part of the solution

According to the algorithnmrerRATIVE _MOVE() presented

in the last section, ifd; = 1, then the move direction

sequence for the stage 4 must be
m-1 m-—2

— —_—
(—1)n+1(1,2,... 2, —-1,-2,-- =2, 7(_1)m—1).

This move direction sequence can be divided naturally

into msections. The sectiopconsists of 1 slide anch— |
jumps and thus has a size wi— j + 1. The total length
of the sequence is therefosg = m(m+ 1)/2. Our task
for this part is now to find; = 21 1d;j quickly for each
S+ +1<i<s+S+S3=nm+n+m.

If we denote them— j + 1 elements of the sectiop

asatj,l <t <m-j+1, and the sum of sectiopasa; =
—j+1

Zt 1 &j,J=1,---,m, thenitis not difficulty to see that
foreachj=1,---,m,
)M t=1
&j = {é(_i)nﬂ t>1 (21)
and for 1< k<m-—j+1,
Za” ““ (2k—1) (22)
Thereforeaj = (1) (2(m—j)+1),j =1,---,m.
Thesem sums form an alternating sequence
(_1)n+1((2m_ 1)3 _(Zm_ 3)3 T (_1)m_1)
For each K k< m, we have,
S g =3 (-)™I(2m—(2j - 1))
= (=1"@m((-1)*-1)/2) - (1))
Therefore,
a k
> aj=(=D"((-1)*(m—k) —m) (23)
=1
If we setj =i—s; — S, then the step numbers in each

sections must be
m m-1 1

,2m—1--- m(m+1)/2

——
17...’m’m_|_1’...

If we denote them— j + 1 steps of the sectiof as
bj,1 <t <m-j+1, and the boundary of sectignas

bj =By =1,
that foreachj =1,--- 'm

,m, then it is not difficulty to see

{bj =jm+1)—j(j+1)/21<j<m
b[ijj,1+t 1<t<m—j+1,1<j<m
(24)
For any integer K | < by, the corresponding integer
k such that the integey falls into the sectiork can be
computed by a functiofig(x) as follows.

Lemma7.Let f3(X) = m—/m(m+1) — 2x+9/4+3/2.
For any integerl < j < by, it must be a step number in the
section k= | f3(j)].

Proof.

It can be seen readily that functida(x) is a strictly
increasing function orf0,m(m+ 1)/2]. For each section
k,1<k<m,itsfirst step numberis,_;+1= (k—1)(m+
1) —k(k—1)/2+ 1 and it satisfies

fa((k—1)(m+1) —k(k—1)/2+1) = m+3/2
—y/m(m+1) —2(k—1)(m+ 1)+ k(k—1) —2+9/4

—m+3/2— /k-m- 322 =k

Therefore, for each integgfin the sectiork, we have,
k < f3(j) < k+ 1. Thismeangfs(j)| = k.

The proof is completed.]

From Lemma7 and formula (21) and (22), we can
now computd; = z'jzldj,sl+82+1§ i <nm+4-n+mas
follows.

Letr=i—s1—s,y=|f3(r)],andg=r— (y—1)(m+
1)+ y(y—1)/2 then,

i = ZJ 14 —t32+2

Therefore

a‘J+2J 18jy

ti—ts,
=(-1"((~1)" Hm-y+1) -

((~ m) + (=1)"¥(29-1)
=(=)"V(y+29-m-2)— "

m(-1)

It follows that for eacts; + s, + 1 <i < nm+n+m,

ti=ts, +(—1)"Y(y+29—m—2) —m(-1)"
where,y = [m— /m(m+1)—2(i—s;,— ) +9/4+
3/2],andq=i—s1—s— (y—1)(m+1)+y(y—1)/2.

(25)
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It follows from formula (2) that for eack; + s, +1 <
i <nm+n+m,

X =n+1-t;, — (=)™ (y+20-m—2)+m(-1)" (26)

If we setd; = —1, a similar result will be obtained. In
this case, we have,

X =n+1-ty+ (=1 (y+20-m-2)-m(-1)" (27)

Combine these two cases, we conclude that,
X =X, —d1((—=1)"™Y(y+29—m—-2)—m(-1)") (28) Fig. 2: A state space graph of the easy case efm=1

Summing up, the explicit optimal solutions for solving
the general game of shifting the checkers consisting of
black checkers angh white checkers can be given in three may reach a dead end state from where it cannot proceed
parts as shown in the following Theorem. further. In such a situation the program may "backtrack”,

h h | f shifti he check i.e. undo its last move and try an alternative successor to
Theorem 3in the general game of shifting the checkers i previous state. A path from the initial state to the goal

consisting of n black checkers and m white checkers, itgate constitutes a solution. An optimal solution of the

optimal move stepsid < i < nm+n+m, can be ohiem corresponds to a shortest path from the initial

expressed e>§pI|C|tIy|nformuIa§ (29.) and (30). state to the goal state in the state space graph of the
where, d is the first move direction. problem. Our task in this section is to count the number of

It requiresO(1) time to computé— 1)k for any positive different optimal solutions of the problem, which is

integerk, since equivalent to count the number of different shortest paths
from the initial state to the goal state in the state space
K —1if k odd graph of the problem. For example, in the easy case of
(-1 = { 1if k even n=m=1, we have two different optimal solutions of the
, problem, as shown in Fig. 2.
Therefore, for each X i < nm+n+m, x can be In any optimal solutions, the following 4 special states

computed inO(1) time by using the formula (27), and 4, especially important:
then the optimal move sequence of the general game

consisting ofn black checkers anth white checkers can n m

be easily computed in optim@(nm-+ n+ m) time. &= mm
- - m n

5 The Number of Optimal Solutions Eg:mog’_ D

In this section we will use the state space graph of a game n .

as a tool to discuss the number of optimal solutions of our &= b bWOVTW

problem. A state refers to the status of a game at a given

moment. In our problem it must be the positions of the n-1 m

checkers on the checkerboard. In solving a problem one & —b.. PO

starts from some initial state and tries to reach a goal state

by passing through a series of intermediate states. In  The statefy is the initial state, andg is the goal state
game playing, each move on the game board is af the game. From Lemma 1 we know that in any optimal
transition from one state to another. If we think of each move sequence, only the classes of moves numbered from
state being connected to those states which can followl to 4 in Table 1 are possible. With this restriction, our
from it, we have a graph. Such a collection of first move from the initial state must be a slide in one
interconnected states is called a state space graph. Fdirection. If the first move islide(l), then the initial state
example the initial state and the goal state in our problemé, will be changed tcf;. Otherwise, the first move must

” beslide(r), and the initial stat€p will be changed tc».
areb-- bm andW-- WOb -b. A state space graph In other words, the shortest paths from the initial séte
of the easy case of= m= 1 is shown in Fig. 2. to the goal stat€g must be in the formsgg, &1,P1, &g or

In state based search, a computer program may stado, {2, P, &g, whereéy,P1, &g is a shortest path fror; to
from an initial state, then look at one of its successor orthe goal statéyg andé;, P,, & is a shortest path fror, to
children states and so on until it reaches a goal state. Ithe goal stateéq. If we have made a first move, the
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n+1—(-1)%d(2i —a(a+2)) 1<i<sg
=1 %, —B—(-)™Pd(2p-2-m(1+(-1F)) s +1<i<s+% (29)
X, —d((=1)"Y(y+29g-m—-2)—m(-1)") s+ +1<i<nm+n+m
sy =m(m+3)/2
S2=(n—m)(m+1)
o= L'\/BI;];lJ
B= i) (30)
y=|m—+/mm+1)—2(i—s; — ) +9/4+3/2]
p=i—s1—(B-1)(m+1)
q=i—-s1——(y-1)(m+1)+y(y—1)/2

following pathsP; or P, can be determined by the moving
rules of Lemma 1.
There are two cases to be distinguished.

5.1 The general case ofbam> 1

Without loss of generality, let the first move sade(l),
and the initial statég be changed t@;. We now consider
the shortest pathP;. We have noticed in the proof of

together, which is forbidden. Following this move, two
jump(l) are forced for the same reason. At this point, the
stateA, is reached, and the shortest path frago A, is
unigue.

Suppose the claim is true for< t. In the case of
i =t < m, we have to move from the stadeto Ay, 1. If t

n—t 2t m—t

is even, then\; = b---bwb---wb OW--W. Itis clear that
from the stateh;, the movesjump(l) and jump(r) will
make two pieces of the same color come together. If a

Lemma 1 that in any optimal move sequence no two orslide(r) is applied first, then no jumps are possible in the
more pieces of the same color can come together, unlesgllowing moves. The game will reach a dead end to this
the two ends of the sequence. From this point of view, wecase. Therefore, the only choice for the first move is

can prove the following facts by induction.

Lemma 8.The following special statels, A, - - - , Ay must
be in the path B and for all i such thatl <i < m-—1, the
shortest paths between the stadggnd ;1 are unique.

n—-1 m—1

~ =
AL =b---bowlv - W
n-2 m-2
~
Ao =b---bwbwb@W- W

n—t 2t

m—t
AN
b-.-bwb---wbOW-- W t even

n—t 2t m—t

b---bOwb---wb®---W todd

A=

n—m 2m

AN
b---bwb---wbO meven
n—m 2m

~ —
b---bOwb---wb modd

)\m:

Proof.

It is clear that the only way to move optimally from
the statef; is a move ofjump(r), which changes the state
&1 to A1. Similarly, from the state\;, the unique choice
among the 4 possible moves is a move hide(r),
otherwise two pieces of the same color will come

slide(l). Following this movet + 1 jump(r) are forced
for the same reason, and then we reached the 3tate
The shortest path from to Ai.1 is clearly unique. The
claim is therefore true by induction. 1fis odd, the proof
is similar.

The proof is completed.]

Lemma 9.The following special stategy, 2, , Un—m
must be in the path ;P and for all i such that
1<i < n—m-1, the shortest paths between the states
and 1 are unique.

n-m-1 2m

~ = ——
b---bOwb---wbb meven

n—m-1 2m

AN
b---bwb---wbhOb modd

H1=

n—-m-2 2m

N
b---bwb---wbObb meven
n—m-2 2m

~ = ——
b---bOwb-.--wbbb modd

Hz =

n—m-t 2m t

AN
b---bwb---wbOb---b m+teven

n—m-t 2m t

N
b---bOwb---wbb---b m+t odd

He =
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2m n—m
——
) wb---wbOb---b neven
Hn-m= om nem 2(m-2)  n-my2
Owb---wbb---b nodd Vo wwwb---wbOb---b neven
2= 2(m-2) n—m4-2
——
Proof. N wwOwb---wbb---b nodd
i AN —N— .
If mis even,thedyn=Db---bwb---wbQ. Itis clear that
from the state\n,, only two movesjump(r) andslide(r) :
are possible. If gump(r) is applied first, then no slides t Am-H o n-mit
are possible in the following moves. The game will reach W Wwb---wbOb---b n+t even
a dead end to this case. Therefore, the only choice for the WVt = . 2m-t) n-mit
first move isslide(r). Following this movem jumgr) are ~ =
forced for the same reason, and then we reached the state W---WOwWb---wbb---b n-todd
U1. The shortest path fromy to py is clearly unique. In
the case ofm odd, the analysis is similar. :
Suppose the claim is true fok t. For the case of= m n
t < n—m, we have to move from the statg to i 1. V=@ TWOb. . b

n—m—t 2m t

. AN —— .
If m+tis odd, thenuy = b---bOwb---wbb---b. Itis  Proof.

clear that from the statd;, the movesjump(l) will go The claim of this lemma is symmetric to Lemma 8, and
back and thus not optimal. If fump(r) is applied first, ~ therefore the proof is also symmetfit.
then the game will reach a dead end Combining Lemma 8,9 and 10, we conclude that in

n—m-t  2m t the shortest patldo, &1, Py, &g from the initial stateép to
Omm for this case. If aslidegl) is the 90‘?" statdyg, the shortgst patﬁl'must .be gnique. The
applied first, then the next move must bejemp(r), analysis for the case of first moedde(r) is similar, and

nem—t—1 om—2 t we can conclude also that in the shortest [#tl2, P, &g

which will lead to the statem omqu. from the initial statep to the goal staty, the shortest

! g path P, must be unique. Finally we conclude that in the
In this state, the two black pieces come together, and theljeneral case of > m> 1, there are only two different
are not at the right end singa > 1. This is impossible. N :

. . » shortest paths from the initial stafg to the goal statéy.
Therefore, the only choice for the first movesBde(r).  Therefore, in this case, the number of optimal solutions of

Following this movem juml) are forced for the same yho game is 2. The two different optimal solutions of the

reason, and then we reached the sjatg. The shortest o5 me can be computed by the formug)(of Theorem3
path from i to L1 is clearly unique. The claim is iqjinear time.

therefore true by induction.
n—m-—t 2m t

clear that from the staté;, the movesjump(l) and -

jump(r) will go back and thus not optimal. Ifslide(l) is | this special case, Lemma 8 and 10 are also true.
naf’nl?l'ted zfr'anL tr:en the game will reach a dead endyphgrefore, the shortest paths from the initial stéeto
PN N the stateA;, and the shortest path from the state ; to
b---bwb---wbb---bO for this case. Therefore, the only the statev; = & are still unique. The special states of
choice for the first move islide(r). Following this move, Lemma 9 become complicated in the casenef 1, since

m jumgl) are forced for the same reason, and then wethe shortest paths between any two consecutive states of
reached the statg ;. The shortest path fromy to 1,1 these special states are no longer unique. In this special
is clearly unique. The claim is therefore true by induction. case, we will expand the special statgsgio, - - - , n_m Of

The proof is completed. Lemma9 further to 1;,0 <i <n-11<j<2 as
follows.
Lemma 10.The following special stateys,vs,---,vn n—1
must be in the path ;P and for all i such that Ho1=b---bwbO
1<i <m-1, the shortest paths between the statesnd n-1
Vi1 are unique. o2 —mOWb
2(m-1) n-mt1 n—2
—— ~ =
. wOwb---wbb---b neven p11=Db---bwbOb
1= 2(m-1)  n-m+l n-2

—— ~=
wwb---wbOb---b nodd U2 =b---bOwbb
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: Therefore, in this case, the number of different
nt—1 t shoEtest) patrgs frg)m the initial stafg to the goal stat€g
~ = ~ = isp(0,1)+ p(0,2) = Fny+ Frr1 = Frsa.
M =b---bwbOb---b Summing up, the number of optimal solutions for

n—t—1 t K e
PNy — solving the general game of shifting the checkers
Hz =Db---bOwbb---b consisting ofn black checkers anth white checkers can
be given in the following Theorem.
Theorem 4For the general game of shifting the checkers
nl consisting of n black checkers and m white checkers, let
H(n-1y1 =wbOb---b ¢ (n,m) be the number of optimal solutions for solving the
n—1 game, therg (n,m) can be expressed explicitly as follows.

~N
Un—12 = Owbb---b
. Lz ; . 1 (1+_ﬁ)“+2_(1—_f5)“+2 n>m=1
The claim of Lemma9 will modified to the following p(nm)=<{ V5 2 2 =

Lemmall 2 n>m>1

Lemma 11.The special stategjj,1 <i<n-1,1<j<2 (33)

must be in the path;Por P,. For each i such thad <i <

n— 2, there is only one shortest path from the state .

to the statey;, 1),; there are two shortest paths from the 6 Concluding Remarks

statepiz, one to the statgi; 1)1, and the other to the state _ »

i+ 1)2- We have studied the general shifting the checkers game
consisting ofn black checkers andh white checkers. It

Proof. has been proved in the section 2 that the minimum

It is clear thatpor = ¢1 and Loz = &2. Two moves  pymper of steps needed to play the game for general
slide(r) and jump(r) change the statgo; t0 p12. WO andmis nm+ n+m. All of the optimal solutions for the
movesslide(r) and jump(l) change the statgo2 t0 11, moving checkers game of small size can be found by a
and another two moveslide(l) and jump(r) change the  packiracking algorithm presented in section 2. In the
statepioz to pla2. . section 3, a linear time recursive construction algorithm

_ For the general case of Oi <n—m-—1, two moves  hjch can produce an optimal solution in linear time for
slide(r) and jump(r) change the statgi1 to [i11)2; WO very large sizen andm is presented. The time cost of the
movesslide(r) andjump(l) change the staf@2to ti 1)1,  new algorithm isO(nm) and O(n -+ m) space is used. In
and another two moveslide(l) and jJump(r) change the Section 4, an extremely simple explicit solution for the
statepiz to [jt1)2- optimal moving sequences of the general game is given.

Notice that the length of the shortest paths from The formula gives for each individual stépits optimal
Ho1 = &1 and Hoz = &2 10 [n_1y1 and iy _1y2 is 2(n— 1) move in O(1) time. Finally, in Section 5 we give the
by Lemma 4, we concﬁude that The special statescomplete optimal solutions for the game in general cases.
Hij,1<i<n—-1,1<j <2 mustbeinthe patR; or Ps. Another similar game is to reverse thmecheckers
The proof is completed.] numbered 1.--,n by two permissible types of moves
Denote the number of different shortest paths from theslide and jump. It is not clear whether our methods
state yjj to the statequ_1)1 or Uin-1)2 @sp(i,j), then  presented in this paper can be applied to this game. We

from Lemmallwe have, will investigate the problem further.

p(i,1)=p(i+1,2 _

,@E'rf)zzﬁiﬁl’ D+pi+1,2) (31)  Acknowledgment

p(n—2,2)=2 . .
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