
Appl. Math. Inf. Sci.9, No. 2, 851-864 (2015) 851

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090234

Complete Solutions for a Combinatorial Puzzle in Linear
Time and Its Computer Implementation

Daxin Zhu1, Yingjie Wu2,∗, Lei Wang3 and Xiaodong Wang1,2,∗

1 Faculty of Mathematics & Computer Science, Quanzhou NormalUniversity, 362000 Quanzhou, China
2 School of Mathematics and Computer Science, Fuzhou University, 350002 Fuzhou, China
3 Microsoft AdCenter, Bellevue, WA 98004, USA

Received: 5 Jun. 2014, Revised: 3 Sep. 2014, Accepted: 5 Sep.2014
Published online: 1 Mar. 2015

Abstract: In this paper we study a single player game consisting ofn black checkers andmwhite checkers, called shifting the checkers.
We have proved that the minimum number of steps needed to playthe game for generaln andm is nm+n+m. We have also presented
an optimal algorithm to generate an optimal move sequence ofthe game consisting ofn black checkers andm white checkers, and
finally, we present an explicit solution for the general game.

Keywords: single player game, optimal algorithm, explicit solutions

1 Introduction

Combinatorial games often lead to interesting, clean
problems in algorithms and complexity theory. Many
classic games are known to be computationally
intractable. Solving a puzzle is often a challenge task like
solving a research problem. You must have a right
cleverness to see the problem from a right angle, and then
apply that idea carefully until a solution is found.

In this paper we study a single player game called
shifting the checkers. The game is similar to the Moving
Coins puzzle [2,3,7], which is played by re-arranging one
configuration of unit disks in the plane into another
configuration by a sequence of moves, each repositioning
a coin in an empty position that touches at least two other
coins. In our shifting checkers game, there aren black
checkers andm white checkers put on a table from left to
right in a row. Then+ m+ 1 positions of the row are
numbered 1, · · · ,n+m+1. Initially, then black checkers
are put in the position 1, · · · ,n, and them white checkers
are put in the positionn+2, · · · ,n+m+1. The position
n+1 is initially vacant. In the final state of the game, the
left mostm positions numbered 1, · · · ,m are occupied by
white checkers, and the right mostn positions numbered
m+ 2, · · · ,m+ n+ 1 are occupied by black checkers,
leaving the positionm+1 vacant, as shown in Fig. 1.

Fig. 1: Shifting checkers

There are only two permissible types of moves. A
move of the game consists of sliding one checker into the
current vacant position, or jumping over the adjacent
checker into the current vacant position. The goal of the
game is to make a small number of moves to reach the
final state of the game.

We are interested in algorithms which, given integers
n andm, generate the corresponding move sequences to
reach the final state of the game with the smallest number
of steps. In this paper we present an optimal algorithm to
generate all of the optimal move sequences of the game
consisting ofn black checkers andm white checkers.

This paper is structured as follows.
In the following 4 sections we describe the algorithms

and our computing experience with the algorithms for
generating optimal move sequence of the general game

∗ Corresponding author e-mail:wangxiaodong@qztc.edu.cn; yjwu@fzu.edu.cn

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090234

852 D. Zhu et. al. : Complete Solutions for a Combinatorial Puzzle in...

consisting ofn black checkers andm white checkers. In
Section 2 we describe a new variant tree search based
algorithm for generating all optimal solutions for the
shifting checkers games of the small size. A linear time
recursive construction algorithm is proposed in Section 3.
Based on the recursive algorithm proposed in Section 3,
an explicit solution for the optimal move sequence of the
general game is presented in Section 4. we discuss the
number of optimal solutions of the game in Section 5.
Some concluding remarks are in Section 6.

2 A Backtracking Algorithm

In a row of checkers of the game, if two checkers have
different colors and the black checker is on the left of the
white checker, then the two checkers are called an
inversion pair. For example, in the initial state of the game
consisting ofn black checkers andm white checkers,
since all of then black checkers are on the left of all them
white checkers, there is totalnm inversion pairs. On the
other hand, in the final state of the game, since all of then
black checkers are on the right of all them white
checkers, there are no inversion pairs in this case.

Similarly, for the vacant position, if a black checker
is on the left of the vacant position, or a white checker is
on the right of the vacant position, then the checker and
the vacant position are called a vacant inversion pair. For
example, in the initial state of the game, since all of then
black checkers are on the left of the vacant position, and
all of the m white checkers are on the right of the vacant
position, there are totaln+m vacant inversion pairs. On
the other hand, in the final state of the game, since all of
then black checkers are on the right of the vacant position,
and all of themwhite checkers are on the left of the vacant
position, there are no vacant inversion pairs in this case.

Of the two types of checker moves, we can further list
12 different cases of the moves into a table, as shown in
Table 1. Sliding a black checker right into the current
vacant position is denoted asslide(b, r). The other three
movesslide(b, l), slide(w, r), andslide(w, l) are defined
similarly. Jumping a black checker right over the adjacent
white checker into the current vacant position is denoted
as jump(b,w, r). The other 7 moves jump(b,w, l),
jump(w,b, r), jump(w,b, l), jump(b,b, r), jump(b,b, l),
jump(w,w, r), and jump(w,w, l) are defined similarly.
These 12 cases of moves are numbered from 1 to 12.

The columnInversionsof Table 1 denote the inversion
increment of the checker row when the corresponding
case of moves applied. Similarly, the columnV-Inversions
of Table 1 denotes the vacant inversion increment of the
checker row when the corresponding case of moves
applied.

It is not difficult to verify the following facts on the
optimal solutions to play the game.

Lemma 1.Any optimal solution for playing the game of
shifting the checkers with minimum number of moves

consists of only the classes of moves numbered from 1 to 4
in Table 1.

Proof. We first notice that in an optimal solution, when
jumping, a checker may only jump a single checker of the
opposite color. If a checkers jump over the adjacent
checker of the same color into the vacant position, then
we will arrive an unfavorable status. For example, if a
step of jump(b,b, r) is applied, then the white checkers
located in the right of the vacant position will be stuck
unless a step ofslide(b, l) is applied immediately. But
these two steps can be substituted by only one step
slide(b, r). The other cases can be analyzed similarly.
Therefore, we know that the classes of moves numbered
from 9 to 12 in Table 1 will not appear in an optimal
solution with the minimum number of moves.

We have known that from the initial state of the game
to the final state of the game, there are total ofnm
inversions andn+ m vacant inversions to be reduced.
From Table 1 we see that for each step of moves
numbered from 1 to 8 in, at most 1 inversion or vacant
inversion can be reduced. Therefore it requires at least
nm+ n+m steps to play the game consisting ofn black
checkers andm white checkers. In other words,
nm+n+m is a lower bound for solving the game. In the
next section, we will present an optimal solution for the
game in exactlynm+ n+ m steps. If a solution for the
game contains any steps of moves numbered from 5 to 8
in Table 1, then these steps will increase the inversions or
the vacant inversions of the checkerboard, and thus the
number of steps to play the game must be no less than
nm+ n + m+ 2. Therefor, a solution for the game
containing any steps of moves numbered from 5 to 8 in
Table 1 cannot be an optimal solution of the game.

Summing up, an optimal solution for playing the game
of shifting the checkers with minimum number of moves
consists of only the steps of moves numbered from 1 to 4
in Table 1.�

From Lemma1, we can conclude that the following
theorem holds.

Theorem 1For the general game of shifting the checkers
consisting of n black checkers and m white checkers, it
needs at least nm+n+m steps to reach the final state of
the game from its initial state.

According to Theorem1, if we can find a move
sequence to reach the final state of the game with
nm+ n+m steps, then the sequence will be an optimal
move sequence, since no move sequence can reach the
final state of the game in less thannm+ n+m steps. In
order to study the structures of the optimal solutions for
the general game of shifting the checkers, we first present
a backtracking algorithm [1,5,6] to generate all optimal
solutions of the games with small size.

In the algorithm described above, the parameteri is
the current number of steps and the parametere is the
currently vacant position. The current solution is stored in
arrayx. For i = 1,2, · · · ,nm+n+m, the move of stepi is

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2, 851-864 (2015) /www.naturalspublishing.com/Journals.asp 853

Table 1: All cases of checker moves
No. Move Change Inversions V-Inversions
1 slide(b, r) e0→0e 0 -1
2 slide(w, l) 05→50 0 -1
3 jump(b,w, r) e50→0e5 -1 0
4 jump(b,w, l) 0e5→5e0 -1 0
5 jump(w,b, r) 5e0→0e5 1 0
6 jump(w,b, l) 05e→e50 1 0
7 slide(b, l) 0e→e0 0 1
8 slide(w, r) 50→05 0 1
9 jump(w,w, r) 550→055 0 2
10 jump(b,b, l) 0ee→ee0 0 2
11 jump(w,w, l) 055→550 0 -2
12 jump(b,b, r) ee0→0ee 0 -2

stored inx[i − 1]. This means that we move the checker
located at positionsx[i−1] to the current vacant position
and leaving the positionsx[i−1] the new vacant position.
A recursive function call BACKTRACK(1,n + 1) will
generate all optimal solutions which move checkers from
initial state to a final state innm+n+msteps.

It is not difficult to generate all optimal solutions of
the game with small size by the backtracking algorithm
described above.

Algorithm 2.1: BACKTRACK (i,e)

comment: Generate all optimal solutions

if i > nm+n+m

then
{

if e= m+1 and final state reached
then output current solution

else







if e> 2 and jump(b,w, r) feasible

then







x[i−1]← e−2
move checker at positione−2 to vacant
BACKTRACK(i +1,e−2)
move checker at positione to vacant

if e< n+mand jump(b,w, l) feasible

then







x[i−1]← e+2
move checker at positione+2 to vacant
BACKTRACK(i +1,e+2)
move checker at positione to vacant

if e> 1 and slide(b, r) feasible

then







x[i−1]← e−1
move checker at positione−1 to vacant
BACKTRACK(i +1,e−1)
move checker at positione to vacant

if e< n+m+1 and slide(w, l) feasible

then







x[i−1]← e+1
move checker at positione+1 to vacant
BACKTRACK(i +1,e+1)
move checker at positione to vacant

3 A Linear Time Construction Algorithm

The backtracking algorithm described in the previous
section can produce all optimal solutions for the game
with fixed size. It generally works only for small size. In
this section, we will present a linear time construction
algorithm which can produce all optimal solutions in
linear time for very large size n + m. The
Decrease-and-Conquer strategy [4] for algorithm design
is exploited to design our new algorithm.

Without loss of generality, we assumen ≥ m in the
following discussion. Since there are only 4 possible
moves slide(w, l), slide(b, r), jump(b,w, l), and
jump(b,w, r), we can simplify our notation for these 4
moves toslide(l), slide(r), jump(l), and jump(r) in the
following discussion.

3.1 A special case of the problem

We first focus on the special case ofn= m. If we denote a
black checker byb, a white checker byw, and the vacant
position byO, then any status of the checker board can
be specified by a sequence consisting of charactersb,w
andO. The special case of our problem is then equivalent

to transforming the initial sequence

m
︷ ︸︸ ︷

b· · ·bO
m

︷ ︸︸ ︷
w· · ·w to the

sequence
m

︷ ︸︸ ︷
w· · ·wO

m
︷ ︸︸ ︷

b· · ·b in the minimum number of steps.
We have noticed that a key status of the checker board

can be reached from the initial status with minimum
number of steps.

Lemma 2.The initial status of the checker board
m

︷ ︸︸ ︷

b· · ·bO
m

︷ ︸︸ ︷
w· · ·w can be transformed to one of the status of

the checker board O

2m
︷ ︸︸ ︷

bw· · ·bw or

2m
︷ ︸︸ ︷

bw· · ·bwO in m(m+1)
2

steps.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

854 D. Zhu et. al. : Complete Solutions for a Combinatorial Puzzle in...

Proof. We can design a recursive algorithm to solve this
problem as follows.

Algorithm 3.1: MOVE1(t)

if t > 1
then MOVE1(t−1)

comment: t−1 jumps

for i← 1 to t−1
do JUMP(dir)

comment: 1 slide

SLIDE(dir)
comment: change moving direction

CHANGE(dir)

In the algorithm described above, the parametert is
the recursion depth, or the number of black checkers to be
treated. The variabledir is used to determine the current
moving direction. Its valuel indicates the checker should
be moved left, otherwise the checker should be moved
right. The initial value ofdir can be set tol or r, which
will lead to different moving sequences. The current
direction dir can be changed inO(1) time by the
algorithmCHANGE(dir) as follows.

Algorithm 3.2: CHANGE(dir)

if dir = r
then dir ← l
else dir ← r

Based on the algorithm above, the Lemma can be
proved by induction. The moving steps generated by the
algorithmMOVE1() for the first two easy cases ofm= 1
andm= 2 are shown in Table 2 and Table 3. The number
of steps for these two cases are 1 and 3 respectively. The
lemma is correct for the base cases.

Assume that, the Lemma is true form < t. For the
case ofm= t, the algorithmMOVE1(t−1) is applied first
and the status of the checkerboard is transformed to

bO

2t−2
︷ ︸︸ ︷

bw· · ·bww or b

2t−2
︷ ︸︸ ︷

bw· · ·bwOw depending on the initial
value ofdir. Then,t−1 jumps followed by 1 slide of the
algorithm MOVE1() will transform the status of the

checkerboard to

2t
︷ ︸︸ ︷

bw· · ·bwOor O

2t
︷ ︸︸ ︷

bw· · ·bw. The algorithm
MOVE1(t − 1) needs(t − 1)t/2 steps by the induction
hypothesis, so the number of steps used by the algorithm
MOVE1(t) is

(t−1)t/2+ t−1+1= (t−1)t/2+ t = t(t +1)/2

The proof is completed.�

The key status of the checkerboard

2m
︷ ︸︸ ︷

bw· · ·bwO or

O

2m
︷ ︸︸ ︷

bw· · ·bw can be transformed to another key status of

the checkerboardO

2m
︷ ︸︸ ︷

wb· · ·wb or

2m
︷ ︸︸ ︷

wb· · ·wbO readily bym
jumps. Any of these two status of the checkerboard can

then be transformed to the final status
m

︷ ︸︸ ︷
w· · ·wO

m
︷ ︸︸ ︷

b· · ·b. This
problem is exactly the inverse problem of Lemma 2.

Lemma 3.The key status of the checkerboard O

2m
︷ ︸︸ ︷

wb· · ·wb

or

2m
︷ ︸︸ ︷

wb· · ·wbO can be transformed to the final status
m

︷ ︸︸ ︷
w· · ·wO

m
︷ ︸︸ ︷

b· · ·b in m(m+1)
2 steps.

Proof.
We can design a recursive algorithm to solve this

problem, which is exactly a reversed algorithm of the
algorithmMOVE1().

Algorithm 3.3: MOVE4(t)

comment: change moving direction

CHANGE(dir)
comment: 1 slide

SLIDE(dir)
comment: t−1 jumps

for i← 1 to t−1
do JUMP(dir)

comment: recursive call

if t > 1
then MOVE4(t−1)

In the algorithm described above, the parametert is
the recursion depth, or the number of black checkers to be
treated. The variabledir is used to determine the current
moving direction. Its initial value is retained from previous
computation.

Based on the algorithm above, the Lemma can be
proved by induction. The first two easy cases ofm= 1
andm= 2 are similar to the cases of Table 2 and Table 3.
The number of steps for these two cases are 1 and 3
respectively. The lemma is correct for the base cases.

Assume that, the Lemma is true form< t. In the case
of m= t, the algorithmMOVE4(t) implement 1 slide and
t − 1 jumps first. The 2 key status of the checkerboard

O

2m
︷ ︸︸ ︷

wb· · ·wb or

2m
︷ ︸︸ ︷

wb· · ·wbO can then be transformed to the

status of the checkerboardw

2m−2
︷ ︸︸ ︷

wb· · ·wbOb or

wO

2m−2
︷ ︸︸ ︷

wb· · ·wbb respectively. Then a recursive call

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2, 851-864 (2015) /www.naturalspublishing.com/Journals.asp 855

Table 2: Move1 for the easy case ofm= 1
Direction Step Move Status

dir = 1
0 e05
1 slide(l) e50

dir =−1
0 e05
1 slide(r) 0e5

Table 3: Move1 for the easy case ofm= 2
Direction Step Move Status

dir = 1

0 ee055
1 slide(l) ee505
2 jump(r) e05e5
3 slide(r) 0e5e5

dir =−1

0 ee055
1 slide(r) e0e55
2 jump(l) e5e05
3 slide(l) e5e50

MOVE4(t−1) is applied to transform the checkerboard to

the final status
m

︷ ︸︸ ︷
w· · ·wO

m
︷ ︸︸ ︷

b· · ·b.
The algorithmMOVE4(t−1) needs(t−1)t/2 steps by

the induction hypothesis, so the number of steps used by
the algorithmMOVE4(t) is

1+ t−1+(t−1)t/2= t +(t−1)t/2= t(t +1)/2

The proof is completed.�
The 3 stages of the algorithms can now be combined

into a new algorithm to solve our problem for the special
case ofn= m as follows.

Algorithm 3.4: MOVE(m,d)

comment: initial moving direction

dir ← d
comment: first stage

MOVE1(m)
comment: m jumps

for i← 1 to m
do JUMP(dir)

comment: last stage

MOVE4(m)

The algorithm requires

m(m+1)/2+m+m(m+1)/2= m2+2m

steps. It has been known thatm2 + 2m is a lower bound
to solve the game consisting ofm black checkers andm
white checkers by Theorem1. Therefore, our algorithm
is optimal to solve the game for the special case ofn =

m. From this point, we can also claim that the algorithms
MOVE1() andMOVE4() presented in the proofs of Lemma
2 and Lemma 3 are also optimal. Otherwise, there must
be an algorithm to solve the problem in less thanm2+2m
steps and this is impossible.

3.2 The algorithm for the general case of the
problem

We have discussed the special case ofn = m. In this
subsection, we will discuss the general casesn> m of the
problem. In these general cases,n−m> 0.

We can first use the algorithmMOVE1() to transform

the checkerboard to the status

n−m
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

bw· · ·bw or
n−m
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

bw· · ·bwO in m(m+1)
2 steps. Thenm jumps are

applied to transform the checkerboard to the status
n−m
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

wb· · ·wbor

n−m
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbO.
At this point, we have to try to move the leftmostn−

m black checkers to the rightmostn−m positions. It is
not difficult to do this by a simple algorithm similar to the
algorithmMOVE1().

Lemma 4.The key status of the checkerboard
n−m
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

wb· · ·wb or

n−m
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbO can be transformed

to the status

2m
︷ ︸︸ ︷

wb· · ·wbO

n−m
︷ ︸︸ ︷

b· · ·b or O

2m
︷ ︸︸ ︷

wb· · ·wb

n−m
︷ ︸︸ ︷

b· · ·b in
(n−m)(m+1) steps.

Proof.
We can design a recursive algorithm to solve this

problem as follows.

Algorithm 3.5: MOVE3(t)

comment: 1 slide to right

SLIDE(r)
comment: change jumping direction

CHANGE(dir)
comment: m jumps

for i← 1 to m
do JUMP(dir)

comment: recursive call

if t > 1
then MOVE3(t−1)

In the algorithm described above, the parametert is
the recursion depth, or the number of black checkers to be
moved to the right most positions. The variabledir is used
to determine the current jumping direction. Its initial value
is retained from previous computation.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

856 D. Zhu et. al. : Complete Solutions for a Combinatorial Puzzle in...

Based on the algorithm above, the Lemma can be
proved by induction onn−m. Whenn−m= 1, we have
to move the leftmost black checker to rightmost. We first
make a slide right, thenm jumps followed as described by
the algorithmMOVE3(). The status of the checkerboard

will be changed to

2m
︷ ︸︸ ︷

wb· · ·wbOb or O

2m
︷ ︸︸ ︷

wb· · ·wbb. It costs
m+ 1 steps. The lemma is correct for the base case of
n−m= 1.

Assume that, the Lemma is true forn−m< t. For the
case ofn−m= t, the algorithmMOVE3(t) implement 1
slide and m jumps first. The 2 key status of the

checkerboard

t
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

wb· · ·wb or

t
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbO can
then be transformed to the status of the checkerboard

t−1
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbOb or

t−1
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

wb· · ·wbb respectively.
Then a recursive callMOVE3(t − 1) is applied to

transform the checkerboard to the status

2m
︷ ︸︸ ︷

wb· · ·wbO

t
︷ ︸︸ ︷

b· · ·b

or O

2m
︷ ︸︸ ︷

wb· · ·wb

t
︷ ︸︸ ︷

b· · ·b.
The algorithmMOVE3(t−1) needs(t−1)(m+1) steps

by the induction hypothesis, so the number of steps used
by the algorithmMOVE3(t) is

m+1+(t−1)(m+1) = t(m+1)

The proof is completed.�
The 4 stages of the algorithms can now be combined

into a new algorithm to solve our problem for the general
cases ofn≥mas follows.

Algorithm 3.6: MOVE(n,m,d)

comment: initial moving direction

dir ← d
comment: first stage

MOVE1(m)
comment: second stage

for i← 1 to m
do JUMP(dir)

comment: third stage

if n−m> 0
then MOVE3(n−m)

comment: last stage

MOVE4(m)

By Lemma 2, Lemma 3 and Lemma 4 we know that
the algorithm requiresm(m+1)/2+m+(n−m)(m+1)+
m(m+1)/2= nm+n+m steps. It has been known from
Theorem 1 thatnm+n+m is a lower bound to solve the
game consisting ofn black checkers andmwhite checkers.
Therefore, our algorithm is optimal to solve the game for
the general cases ofn ≥ m. We can also claim that the

algorithmMOVE3() is also optimal. Otherwise, there must
be an algorithm to solve the problem in less thannm+n+
msteps and this is impossible.

Theorem 2The algorithm MOVE(n,m,d) requires
nm+ n+ m steps to solve the general moving checkers
game consisting of n black checkers and m white
checkers, and the algorithm is optimal.

3.3 Remove recursions

The algorithmsMOVE1(), MOVE3() andMOVE4() are all
recursive algorithms. The recursions of these algorithms
can be easily removed by only onefor loop.

The equivalent iterative algorithm for solving the
general moving checkers game consisting ofn black
checkers andm white checkers can be described as
follows.

Algorithm 3.7: ITERATIVE MOVE(n,m,d)

comment: initial moving direction

dir ← d
comment: stage 1

for i← 1 to m

do







for j ← 1 to i−1
do JUMP(dir)

SLIDE(dir)
CHANGE(dir)

comment: stage 2

for i← 1 to m
do JUMP(dir)

comment: stage 3

for i← 1 to n−m

do







SLIDE(r)
CHANGE(dir)
for j ← 1 to m

do JUMP(dir)
comment: stage 4

for i←m downto 1

do







CHANGE(dir)
SLIDE(dir)
for j ← 1 to i−1

do JUMP(dir)

4 The Explicit Solutions to the Problem

The optimal solution found by the algorithmMOVE() or
ITERATIVE MOVE() can be presented by a vectorx. For
i = 1,2, · · · ,nm+ n+m, the stepi of the optimal move
sequence is given byxi . This means that the checker
located at positionxi will be moved in stepi to the current

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2, 851-864 (2015) /www.naturalspublishing.com/Journals.asp 857

vacant positions and leaving the positionsxi the new
vacant positions. This can also be viewed thatx is a
function of i, which is called a move function. In this
section we will discuss the explicit expression of function
x.

If we denotex0 = n+1 and

di = xi−1− xi,1≤ i ≤ nm+n+m (1)

then the vectord will be a move direction function of
the corresponding move sequence.

A related function t can then be defined as
ti = ∑i

j=1d j ,1≤ i ≤ nm+n+m.
Since

ti =
i

∑
j=1

d j =
i

∑
j=1

(x j−1− x j) = x0− xi = n+1− xi

we have

xi = n+1− ti,1≤ i ≤ nm+n+m (2)

Therefore, our task is equivalent to compute the
functiont efficiently.

In this section, the functionsx and t will be divided
into three parts. The first part is corresponding to the first
two stages of the algorithmITERATIVE MOVE() presented
in the last section. The second part is corresponding to the
stage 3 of the algorithmITERATIVE MOVE() and the third
part is corresponding to the stage 4.

4.1 The first part of the solution

Similar to the initial value ofdir which can be set tol or
r, the first move directiond1 can be set to 1 or -1. If we
set d1 = 1, then from the algorithmITERATIVE MOVE()
presented in the last section, the move direction sequence
for the stage 1 and 2 must be

1,−2,−1,2,2,1, · · · ,(−1)m−1,

m
︷ ︸︸ ︷

2(−1)m, · · · ,2(−1)m

This move direction sequence can be divided intom
sections as

2
︷ ︸︸ ︷

1,−2,

3
︷ ︸︸ ︷

−1,2,2, · · · ,
m+1

︷ ︸︸ ︷

(−1)m−1,2(−1)m, · · · ,2(−1)m

The sectionj consists of 1 slide andj jumps and thus
has a size ofj +1.

The total length of the sequence is therefore
s1 = ∑m

j=1(j +1) = m(m+3)/2. Our task is now to find

ti = ∑i
j=1d j quickly for each 1≤ i ≤ s1.

If we denote thej + 1 elements of the sectionj as
at j ,1 ≤ t ≤ j + 1, and the sum of sectionj as

a j = ∑ j+1
t=1 at j , j = 1, · · · ,m, then it is not difficult to see

that for eachj = 1, · · · ,m,

at j =

{
(−1) j−1 t = 1
2(−1) j t > 1

(3)

and for 1≤ k≤ j +1,

k

∑
t=1

at j = (−1) j(2k−3) (4)

Therefore,a j = (−1) j(2 j −1), j = 1, · · · ,m. Thesem
sums form an alternating sequence

−1,3,−5, · · · ,(−1)m(2m−1)

For each 1≤ k≤m, we have,

k

∑
j=1

a j =
k

∑
j=1

(−1) j(2 j−1) = (−1)kk (5)

The steps in each section must be

1
︷︸︸︷

1,2 ,

2
︷ ︸︸ ︷

3,4,5, · · · ,
m

︷ ︸︸ ︷

(m−1)(m+2)/2+1, · · · ,m(m+3)/2

If we denote thej +1 steps of the sectionj asbt j ,1≤
t ≤ j+1, and the boundary of sectionj asb j = b(j+1) j , j =
1, · · · ,m, then it is not difficult to see that for eachj =
1, · · · ,m,

{
b j = j(j +3)/2 1≤ j ≤m
bt j = b j−1+ t 1≤ t ≤ j +1,1≤ j ≤m (6)

For any integer 1≤ i ≤ bm, the corresponding integer
k such that the integeri falls into the sectionk can be
computed by a functionf1(x) as follows.

Lemma 5.Let f1(x) =
√

8x+1−1
2 . For any integer1≤ i ≤

bm, it must be a step number in the section k= ⌊ f1(i)⌋.

Proof.
It can be seen readily that functionf1(x) is a strictly

increasing function on(0,+∞). For each sectionk,1≤ k≤
m, its first step number isbk−1+1= (k−1)(k+2)/2+1
and it satisfies

f1(
(k−1)(k+2)

2 +1) =
√

4(k−1)(k+2)+9−1
2 =

√
(2k+1)2−1

2 = k

Therefore, for each integeri in the sectionk, we have,k≤
f1(i)< k+1. This means⌊ f1(i)⌋= k.

The proof is completed.�
From Lemma5 and formula (4) and (5), we can now

computeti = ∑i
j=1d j ,1≤ i ≤ s1 as follows.

Let α = ⌊ f1(i)⌋, then,
ti = ∑i

j=1d j = ∑α−1
j=1 a j + ∑i

j=bα−1+1d j =

(−1)α−1(α−1)+ (−1)α(2(i−bα−1)−3).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

858 D. Zhu et. al. : Complete Solutions for a Combinatorial Puzzle in...

It follows that for each 1≤ i ≤ s1,

ti = (−1)α(2i−α(α +2)) (7)

where,α = ⌊
√

8i+1−1
2 ⌋.

It follows from formula (2) that for each 1≤ i ≤ s1,

xi = n+1− (−1)α(2i−α(α +2)) (8)

If we setd1 =−1, a similar result will be obtained. In
this case, we have,

xi = n+1+(−1)α(2i−α(α +2)) (9)

Combine these two cases, we conclude that,

xi = n+1−d1(−1)α(2i−α(α +2)) (10)

4.2 The second part of the solution

If we set d1 = 1, then according to the algorithm
ITERATIVE MOVE() presented in the last section, the
move direction sequence for the stage 3 must be in the
form of (11).

This move direction sequence can be divided naturally
into n−m sections. The sectionj consists of 1 slide and
m jumps and thus has a size ofm+1. The total length of
the sequence is therefores2 = (n−m)(m+ 1). Our task
for this part is now to findti = ∑i

j=1d j quickly for each
s1+1≤ i ≤ s1+ s2.

If we denote them+ 1 elements of the sectionj as
at j ,1 ≤ t ≤ m + 1, and the sum of sectionj as
a j = ∑m+1

t=1 at j , j = 1, · · · ,n−m, then it is not difficult to
see that for eachj = 1, · · · ,n−m,

at j =

{
1 t = 1
2(−1)m+ j t > 1

(12)

and for 1≤ k≤m+1,

k

∑
t=1

at j = 1+(−1)m+ j(2k−2) (13)

Therefore, a j = 1 + 2m(−1)m+ j , j = 1, · · · ,n− m.
Thesen−msums form an alternating sequence

1+2m(−1)m+1,1+2m(−1)m+2, · · · ,1+2m(−1)n

For each 1≤ k≤m, we have,

k

∑
j=1

a j = k+
k

∑
j=1

2m(−1)m+ j = k+m(−1)m+k−m(−1)m

(14)
If we set j = i−s1, then the steps in each section must

be in the form of (15).
If we denote them+ 1 steps of the sectionj as

bt j ,1 ≤ t ≤ m+ 1, and the boundary of sectionj as

b j = b(m+1) j , j = 1, · · · ,n−m, then it is not difficult to
see that for eachj = 1, · · · ,n−m,

{
b j = j(m+1) 1≤ j ≤ n−m
bt j = b j−1+ t 1≤ t ≤m+1,1≤ j ≤ n−m (16)

For any integer 1≤ j ≤ bm, the corresponding integer
k such that the integerj falls into the sectionk can be
computed by a functionf2(x) as follows.

Lemma 6.Let f2(x) = x+m
m+1. For any integer1≤ j ≤ bm, it

must be a step number in the section k= ⌊ f2(j)⌋.

Proof.
It can be seen readily that functionf2(x) is a strictly

increasing function on(0,+∞). For each sectionk,1≤ k≤
n−m, its first step number isbk−1+1= (k−1)(m+1)+1
and it satisfies

f2((k−1)(m+1)+1)= (k−1)(m+1)+1+m
m+1 = k(m+1)

m+1 = k

Therefore, for each integerj in the sectionk, we have,
k≤ f2(j)< k+1. This means⌊ f2(j)⌋= k.

The proof is completed.�
From Lemma5 and formula (13) and (14), we can now

computeti = ∑i
j=1d j ,s1+1≤ i ≤ s1+ s2 as follows.

Let r = i−s1, β = ⌊ f2(r)⌋, andp= r−(β −1)(m+1)

then,ti = ∑i
j=1d j = ts1 +∑β−1

j=1 a j +∑p
j=1a jβ .

Therefore

ti− ts1

= β −1+m(−1)m+β−1−m(−1)m+1+(−1)m+β(2p−2)
= β +(−1)m+β (2p−2)−m((−1)m+β +(−1)m+2β)

= β +(−1)m+β (2p−2−m(1+(−1)β))

It follows that for eachs1+1≤ i ≤ s1+ s2,

ti = ts1 +β +(−1)m+β (2p−2−m(1+(−1)β)) (17)

where,β = ⌊ i−s1+m
m+1 ⌋, andp= i−s1− (β −1)(m+1).

It follows from formula (2) that for eachs1 +1≤ i ≤
s1+ s2,

xi = n+1− ts1−β − (−1)m+β (2p−2−m(1+(−1)β))
(18)

If we setd1 = −1, a similar result will be obtained. In
this case, we have,

xi = n+1− ts1−β +(−1)m+β (2p−2−m(1+(−1)β))
(19)

Combine these two cases, we conclude that,

xi = xs1−β −d1(−1)m+β (2p−2−m(1+(−1)β)) (20)

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2, 851-864 (2015) /www.naturalspublishing.com/Journals.asp 859

1,

m
︷ ︸︸ ︷

2(−1)m+1, · · · ,2(−1)m+1,1,

m
︷ ︸︸ ︷

2(−1)m+2, · · · ,2(−1)m+2, · · · ,1,
m

︷ ︸︸ ︷

2(−1)n, · · · ,2(−1)n (11)

m+1
︷ ︸︸ ︷

1, · · · ,m+1,

m+1
︷ ︸︸ ︷

m+2, · · · ,2m+2, · · · ,
m+1

︷ ︸︸ ︷

(n−m−1)(m+1)+1, · · · ,(n−m)(m+1) (15)

4.3 The third part of the solution

According to the algorithmITERATIVE MOVE() presented
in the last section, ifd1 = 1, then the move direction
sequence for the stage 4 must be

(−1)n+1(1,

m−1
︷ ︸︸ ︷

2, · · · ,2,−1,

m−2
︷ ︸︸ ︷

−2, · · · ,−2, · · · ,(−1)m−1).
This move direction sequence can be divided naturally

into msections. The sectionj consists of 1 slide andm− j
jumps and thus has a size ofm− j + 1. The total length
of the sequence is therefores3 = m(m+ 1)/2. Our task
for this part is now to findti = ∑i

j=1d j quickly for each
s1+ s2+1≤ i ≤ s1+ s2+ s3 = nm+n+m.

If we denote them− j + 1 elements of the sectionj
asat j ,1≤ t ≤m− j +1, and the sum of sectionj asa j =

∑m− j+1
t=1 at j , j = 1, · · · ,m, then it is not difficulty to see that

for eachj = 1, · · · ,m,

at j =

{
(−1)n+ j t = 1
2(−1)n+ j t > 1

(21)

and for 1≤ k≤m− j +1,

k

∑
t=1

at j = (−1)n+ j(2k−1) (22)

Therefore,a j = (−1)n+ j(2(m− j) +1), j = 1, · · · ,m.
Thesem sums form an alternating sequence

(−1)n+1((2m−1),−(2m−3), · · · ,(−1)m−1)

For each 1≤ k≤m, we have,

∑k
j=1a j = ∑k

j=1(−1)n+ j(2m− (2 j−1))
= (−1)n(2m((−1)k−1)/2)− (−1)kk)

Therefore,

k

∑
j=1

a j = (−1)n((−1)k(m− k)−m) (23)

If we set j = i−s1−s2, then the step numbers in each
sections must be

m
︷ ︸︸ ︷

1, · · · ,m,

m−1
︷ ︸︸ ︷

m+1, · · · ,2m−1, · · · ,
1

︷ ︸︸ ︷

m(m+1)/2

If we denote them− j + 1 steps of the sectionj as
bt j ,1 ≤ t ≤ m− j + 1, and the boundary of sectionj as

b j = b(m− j+1) j , j = 1, · · · ,m, then it is not difficulty to see
that for eachj = 1, · · · ,m,

{
b j = j(m+1)− j(j +1)/2 1≤ j ≤m
bt j = b j−1+ t 1≤ t ≤m− j +1,1≤ j ≤m

(24)
For any integer 1≤ j ≤ bm, the corresponding integer

k such that the integerj falls into the sectionk can be
computed by a functionf3(x) as follows.

Lemma 7.Let f3(x) = m−
√

m(m+1)−2x+9/4+3/2.
For any integer1≤ j ≤ bm, it must be a step number in the
section k= ⌊ f3(j)⌋.

Proof.
It can be seen readily that functionf2(x) is a strictly

increasing function on(0,m(m+ 1)/2]. For each section
k,1≤ k≤m, its first step number isbk−1+1= (k−1)(m+
1)− k(k−1)/2+1 and it satisfies

f3((k−1)(m+1)− k(k−1)/2+1)= m+3/2
−
√

m(m+1)−2(k−1)(m+1)+ k(k−1)−2+9/4
= m+3/2−

√

(k−m−3/2)2 = k

Therefore, for each integerj in the sectionk, we have,
k≤ f3(j)< k+1. This means⌊ f3(j)⌋= k.

The proof is completed.�
From Lemma7 and formula (21) and (22), we can

now computeti = ∑i
j=1d j ,s1+s2+1≤ i ≤ nm+n+mas

follows.
Let r = i−s1−s2, γ = ⌊ f3(r)⌋, andq= r−(γ−1)(m+

1)+ γ(γ−1)/2 then,

ti = ∑i
j=1d j = ts2 +∑γ−1

j=1 a j +∑q
j=1a jγ .

Therefore

ti− ts2

= (−1)n((−1)γ−1(m− γ +1)−m)+ (−1)n+γ(2q−1)
= (−1)n+γ(γ +2q−m−2)−m(−1)n

It follows that for eachs1+ s2+1≤ i ≤ nm+n+m,

ti = ts2 +(−1)n+γ(γ +2q−m−2)−m(−1)n (25)

where,γ = ⌊m−
√

m(m+1)−2(i− s1− s2)+9/4+
3/2⌋, andq= i− s1− s2− (γ−1)(m+1)+ γ(γ−1)/2.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

860 D. Zhu et. al. : Complete Solutions for a Combinatorial Puzzle in...

It follows from formula (2) that for eachs1+ s2+1≤
i ≤ nm+n+m,

xi = n+1−ts2−(−1)n+γ(γ+2q−m−2)+m(−1)n (26)

If we setd1 =−1, a similar result will be obtained. In
this case, we have,

xi = n+1−ts2+(−1)n+γ(γ+2q−m−2)−m(−1)n (27)

Combine these two cases, we conclude that,

xi = xs2−d1((−1)n+γ(γ +2q−m−2)−m(−1)n) (28)

Summing up, the explicit optimal solutions for solving
the general game of shifting the checkers consisting ofn
black checkers andmwhite checkers can be given in three
parts as shown in the following Theorem.

Theorem 3In the general game of shifting the checkers
consisting of n black checkers and m white checkers, its
optimal move steps xi ,1 ≤ i ≤ nm+ n + m, can be
expressed explicitly in formulas (29) and (30).

where, d is the first move direction.

It requiresO(1) time to compute(−1)k for any positive
integerk, since

(−1)k =

{
−1 if k odd
1 if k even

Therefore, for each 1≤ i ≤ nm+ n+ m, xi can be
computed inO(1) time by using the formula (27), and
then the optimal move sequence of the general game
consisting ofn black checkers andm white checkers can
be easily computed in optimalO(nm+n+m) time.

5 The Number of Optimal Solutions

In this section we will use the state space graph of a game
as a tool to discuss the number of optimal solutions of our
problem. A state refers to the status of a game at a given
moment. In our problem it must be the positions of the
checkers on the checkerboard. In solving a problem one
starts from some initial state and tries to reach a goal state
by passing through a series of intermediate states. In
game playing, each move on the game board is a
transition from one state to another. If we think of each
state being connected to those states which can follow
from it, we have a graph. Such a collection of
interconnected states is called a state space graph. For
example, the initial state and the goal state in our problem

are

n
︷ ︸︸ ︷

b· · ·bO
m

︷ ︸︸ ︷
w· · ·w and

m
︷ ︸︸ ︷
w· · ·wO

n
︷ ︸︸ ︷

b· · ·b. A state space graph
of the easy case ofn= m= 1 is shown in Fig. 2.

In state based search, a computer program may start
from an initial state, then look at one of its successor or
children states and so on until it reaches a goal state. It

Fig. 2: A state space graph of the easy case ofn= m= 1

may reach a dead end state from where it cannot proceed
further. In such a situation the program may ”backtrack”,
i.e. undo its last move and try an alternative successor to
its previous state. A path from the initial state to the goal
state constitutes a solution. An optimal solution of the
problem corresponds to a shortest path from the initial
state to the goal state in the state space graph of the
problem. Our task in this section is to count the number of
different optimal solutions of the problem, which is
equivalent to count the number of different shortest paths
from the initial state to the goal state in the state space
graph of the problem. For example, in the easy case of
n= m= 1, we have two different optimal solutions of the
problem, as shown in Fig. 2.

In any optimal solutions, the following 4 special states
are especially important:

ξ0 =

n
︷ ︸︸ ︷

b· · ·bO
m

︷ ︸︸ ︷
w· · ·w

ξg =

m
︷ ︸︸ ︷
w· · ·wO

n
︷ ︸︸ ︷

b· · ·b

ξ1 =

n
︷ ︸︸ ︷

b· · ·bwO
m−1

︷ ︸︸ ︷
w· · ·w

ξ2 =

n−1
︷ ︸︸ ︷

b· · ·bOb
m

︷ ︸︸ ︷
w· · ·w

The stateξ0 is the initial state, andξg is the goal state
of the game. From Lemma 1 we know that in any optimal
move sequence, only the classes of moves numbered from
1 to 4 in Table 1 are possible. With this restriction, our
first move from the initial state must be a slide in one
direction. If the first move isslide(l), then the initial state
ξ0 will be changed toξ1. Otherwise, the first move must
beslide(r), and the initial stateξ0 will be changed toξ2.
In other words, the shortest paths from the initial stateξ0
to the goal stateξg must be in the formsξ0,ξ1,P1,ξg or
ξ0,ξ2,P2,ξg, whereξ1,P1,ξg is a shortest path fromξ1 to
the goal stateξg andξ2,P2,ξg is a shortest path fromξ2 to
the goal stateξg. If we have made a first move, the

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2, 851-864 (2015) /www.naturalspublishing.com/Journals.asp 861

xi =







n+1− (−1)α d(2i−α(α +2)) 1≤ i ≤ s1

xs1−β − (−1)m+β d(2p−2−m(1+(−1)β)) s1+1≤ i ≤ s1+s2
xs2−d((−1)n+γ (γ +2q−m−2)−m(−1)n) s1+s2+1≤ i ≤ nm+n+m

(29)







s1 = m(m+3)/2
s2 = (n−m)(m+1)

α = ⌊
√

8i+1−1
2 ⌋

β = ⌊ i−s1+m
m+1 ⌋

γ = ⌊m−
√

m(m+1)−2(i−s1−s2)+9/4+3/2⌋
p= i−s1− (β −1)(m+1)
q= i−s1−s2− (γ−1)(m+1)+ γ(γ −1)/2

(30)

following pathsP1 or P2 can be determined by the moving
rules of Lemma 1.

There are two cases to be distinguished.

5.1 The general case of n≥m> 1

Without loss of generality, let the first move beslide(l),
and the initial stateξ0 be changed toξ1. We now consider
the shortest pathP1. We have noticed in the proof of
Lemma 1 that in any optimal move sequence no two or
more pieces of the same color can come together, unless
the two ends of the sequence. From this point of view, we
can prove the following facts by induction.

Lemma 8.The following special statesλ1,λ2, · · · ,λm must
be in the path P1, and for all i such that1≤ i ≤m−1, the
shortest paths between the statesλi andλi+1 are unique.

λ1 =

n−1
︷ ︸︸ ︷

b· · ·bOwb
m−1

︷ ︸︸ ︷
w· · ·w

λ2 =

n−2
︷ ︸︸ ︷

b· · ·bwbwbO
m−2

︷ ︸︸ ︷
w· · ·w

...

λt =







n−t
︷ ︸︸ ︷

b· · ·b
2t

︷ ︸︸ ︷

wb· · ·wbO
m−t

︷ ︸︸ ︷
w· · ·w t even

n−t
︷ ︸︸ ︷

b· · ·bO

2t
︷ ︸︸ ︷

wb· · ·wb
m−t

︷ ︸︸ ︷
w· · ·w t odd

...

λm =







n−m
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbO meven
n−m
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

wb· · ·wb modd

Proof.
It is clear that the only way to move optimally from

the stateξ1 is a move ofjump(r), which changes the state
ξ1 to λ1. Similarly, from the stateλ1, the unique choice
among the 4 possible moves is a move ofslide(r),
otherwise two pieces of the same color will come

together, which is forbidden. Following this move, two
jump(l) are forced for the same reason. At this point, the
stateλ2 is reached, and the shortest path fromλ1 to λ2 is
unique.

Suppose the claim is true fori < t. In the case of
i = t < m, we have to move from the stateλt to λt+1. If t

is even, thenλt =

n−t
︷ ︸︸ ︷

b· · ·b
2t

︷ ︸︸ ︷

wb· · ·wbO
m−t

︷ ︸︸ ︷
w· · ·w. It is clear that

from the stateλt , the movesjump(l) and jump(r) will
make two pieces of the same color come together. If a
slide(r) is applied first, then no jumps are possible in the
following moves. The game will reach a dead end to this
case. Therefore, the only choice for the first move is
slide(l). Following this move,t + 1 jump(r) are forced
for the same reason, and then we reached the stateλt+1.
The shortest path fromλt to λt+1 is clearly unique. The
claim is therefore true by induction. Ift is odd, the proof
is similar.

The proof is completed.�

Lemma 9.The following special statesµ1,µ2, · · · ,µn−m
must be in the path P1, and for all i such that
1≤ i ≤ n−m−1, the shortest paths between the statesµi
andµi+1 are unique.

µ1 =







n−m−1
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

wb· · ·wbb meven
n−m−1
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbOb modd

µ2 =







n−m−2
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbObb meven
n−m−2
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

wb· · ·wbbb modd

...

µt =







n−m−t
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbO

t
︷ ︸︸ ︷

b· · ·b m+ t even
n−m−t
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

wb· · ·wb

t
︷ ︸︸ ︷

b· · ·b m+ t odd

...

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

862 D. Zhu et. al. : Complete Solutions for a Combinatorial Puzzle in...

µn−m =







2m
︷ ︸︸ ︷

wb· · ·wbO

n−m
︷ ︸︸ ︷

b· · ·b neven

O

2m
︷ ︸︸ ︷

wb· · ·wb

n−m
︷ ︸︸ ︷

b· · ·b nodd

Proof.

If m is even, thenλm=

n−m
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbO. It is clear that
from the stateλm, only two movesjump(r) andslide(r)
are possible. If ajump(r) is applied first, then no slides
are possible in the following moves. The game will reach
a dead end to this case. Therefore, the only choice for the
first move isslide(r). Following this move,m jump(r) are
forced for the same reason, and then we reached the state
µ1. The shortest path fromλm to µ1 is clearly unique. In
the case ofmodd, the analysis is similar.

Suppose the claim is true fori < t. For the case ofi =
t < n−m, we have to move from the stateµt to µt+1.

If m+ t is odd, thenµt =

n−m−t
︷ ︸︸ ︷

b· · ·bO

2m
︷ ︸︸ ︷

wb· · ·wb

t
︷ ︸︸ ︷

b· · ·b. It is
clear that from the stateλt , the movesjump(l) will go
back and thus not optimal. If ajump(r) is applied first,
then the game will reach a dead end

O

n−m−t
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wb

t
︷ ︸︸ ︷

b· · ·b for this case. If aslide(l) is
applied first, then the next move must be ajump(r),

which will lead to the state

n−m−t−1
︷ ︸︸ ︷

b· · ·b Owbb

2m−2
︷ ︸︸ ︷

wb· · ·wb

t
︷ ︸︸ ︷

b· · ·b.
In this state, the two black pieces come together, and they
are not at the right end sincem> 1. This is impossible.
Therefore, the only choice for the first move isslide(r).
Following this move,m jump(l) are forced for the same
reason, and then we reached the stateµt+1. The shortest
path from µt to µt+1 is clearly unique. The claim is
therefore true by induction.

If m+ t is even, thenµt =

n−m−t
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wbO

t
︷ ︸︸ ︷

b· · ·b. It is
clear that from the stateλt , the moves jump(l) and
jump(r) will go back and thus not optimal. If aslide(l) is
applied first, then the game will reach a dead end
n−m−t
︷ ︸︸ ︷

b· · ·b
2m

︷ ︸︸ ︷

wb· · ·wb

t
︷ ︸︸ ︷

b· · ·bO for this case. Therefore, the only
choice for the first move isslide(r). Following this move,
m jump(l) are forced for the same reason, and then we
reached the stateµt+1. The shortest path fromµt to µt+1
is clearly unique. The claim is therefore true by induction.

The proof is completed.�

Lemma 10.The following special statesν1,ν2, · · · ,νm
must be in the path P1, and for all i such that
1≤ i ≤m−1, the shortest paths between the statesνi and
νi+1 are unique.

ν1 =







wO

2(m−1)
︷ ︸︸ ︷

wb· · ·wb

n−m+1
︷ ︸︸ ︷

b· · ·b neven

w

2(m−1)
︷ ︸︸ ︷

wb· · ·wbO

n−m+1
︷ ︸︸ ︷

b· · ·b nodd

ν2 =







ww

2(m−2)
︷ ︸︸ ︷

wb· · ·wbO

n−m+2
︷ ︸︸ ︷

b· · ·b neven

wwO

2(m−2)
︷ ︸︸ ︷

wb· · ·wb

n−m+2
︷ ︸︸ ︷

b· · ·b n odd

...

νt =







t
︷ ︸︸ ︷
w· · ·w

2(m−t)
︷ ︸︸ ︷

wb· · ·wbO

n−m+t
︷ ︸︸ ︷

b· · ·b n+ t even
t

︷ ︸︸ ︷
w· · ·wO

2(m−t)
︷ ︸︸ ︷

wb· · ·wb

n−m+t
︷ ︸︸ ︷

b· · ·b n+ t odd

...

νm =

m
︷ ︸︸ ︷
w· · ·wO

n
︷ ︸︸ ︷

b· · ·b

Proof.
The claim of this lemma is symmetric to Lemma 8, and

therefore the proof is also symmetric.�

Combining Lemma 8,9 and 10, we conclude that in
the shortest pathξ0,ξ1,P1,ξg from the initial stateξ0 to
the goal stateξg, the shortest pathP1 must be unique. The
analysis for the case of first moveslide(r) is similar, and
we can conclude also that in the shortest pathξ0,ξ2,P2,ξg
from the initial stateξ0 to the goal stateξg, the shortest
pathP2 must be unique. Finally we conclude that in the
general case ofn ≥ m> 1, there are only two different
shortest paths from the initial stateξ0 to the goal stateξg.
Therefore, in this case, the number of optimal solutions of
the game is 2. The two different optimal solutions of the
game can be computed by the formula (29) of Theorem3
in linear time.

5.2 The special case of n≥m= 1

In this special case, Lemma 8 and 10 are also true.
Therefore, the shortest paths from the initial stateξ0 to
the stateλ1, and the shortest path from the stateµn−1 to
the stateν1 = ξg are still unique. The special states of
Lemma 9 become complicated in the case ofm= 1, since
the shortest paths between any two consecutive states of
these special states are no longer unique. In this special
case, we will expand the special statesµ1,µ2, · · · ,µn−m of
Lemma 9 further to µi j ,0 ≤ i ≤ n− 1,1 ≤ j ≤ 2 as
follows. 





µ01 =

n−1
︷ ︸︸ ︷

b· · ·bwbO

µ02 =

n−1
︷ ︸︸ ︷

b· · ·bOwb






µ11 =

n−2
︷ ︸︸ ︷

b· · ·bwbOb

µ12 =

n−2
︷ ︸︸ ︷

b· · ·bOwbb

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2, 851-864 (2015) /www.naturalspublishing.com/Journals.asp 863

...






µt1 =

n−t−1
︷ ︸︸ ︷

b· · ·bwbO

t
︷ ︸︸ ︷

b· · ·b

µt2 =

n−t−1
︷ ︸︸ ︷

b· · ·bOwb

t
︷ ︸︸ ︷

b· · ·b
...







µ(n−1)1 = wbO

n−1
︷ ︸︸ ︷

b· · ·b

µ(n−1)2 = Owb

n−1
︷ ︸︸ ︷

b· · ·b
The claim of Lemma9 will modified to the following
Lemma11.

Lemma 11.The special statesµi j ,1≤ i ≤ n−1,1≤ j ≤ 2
must be in the path P1 or P2. For each i such that0≤ i ≤
n− 2, there is only one shortest path from the stateµi1
to the stateµ(i+1)2; there are two shortest paths from the
stateµi2, one to the stateµ(i+1)1, and the other to the state
µ(i+1)2.

Proof.
It is clear thatµ01 = ξ1 and µ02 = ξ2. Two moves

slide(r) and jump(r) change the stateµ01 to µ12. Two
movesslide(r) and jump(l) change the stateµ02 to µ11,
and another two movesslide(l) and jump(r) change the
stateµ02 to µ12.

For the general case of 0≤ i ≤ n−m−1, two moves
slide(r) and jump(r) change the stateµi1 to µ(i+1)2; two
movesslide(r) and jump(l) change the stateµi2 to µ(i+1)1,
and another two movesslide(l) and jump(r) change the
stateµi2 to µ(i+1)2.

Notice that the length of the shortest paths from
µ01 = ξ1 andµ02 = ξ2 to µ(n−1)1 andµ(n−1)2 is 2(n−1)
by Lemma 4, we conclude that The special states
µi j ,1≤ i ≤ n−1,1≤ j ≤ 2 must be in the pathP1 or P2.

The proof is completed.�
Denote the number of different shortest paths from the

stateµi j to the statesµ(n−1)1 or µ(n−1)2 as ρ(i, j), then
from Lemma11we have,







ρ(i,1) = ρ(i +1,2)
ρ(i,2) = ρ(i +1,1)+ρ(i +1,2)
ρ(n−2,1) = 1
ρ(n−2,2) = 2

(31)

The solution of this recurrence is
{

ρ(i,1) = Fn−i
ρ(i,2) = Fn−i+1

(32)

whereFn is thenth Fibonacci number. The sequence
Fn of Fibonacci numbers is defined by the recurrence
relation Fn = Fn−1 + Fn−2, with seed values
F0 = 0,F1 = 1. The Fibonacci numbers have a

closed-form solutionFn =
1√
5

((
1+
√

5
2

)n
−
(

1−
√

5
2

)n)

.

Therefore, in this case, the number of different
shortest paths from the initial stateξ0 to the goal stateξg
is ρ(0,1)+ρ(0,2) = Fn+Fn+1 = Fn+2.

Summing up, the number of optimal solutions for
solving the general game of shifting the checkers
consisting ofn black checkers andm white checkers can
be given in the following Theorem.

Theorem 4For the general game of shifting the checkers
consisting of n black checkers and m white checkers, let
ϕ(n,m) be the number of optimal solutions for solving the
game, thenϕ(n,m) can be expressed explicitly as follows.

ϕ(n,m)=







1√
5

((
1+
√

5
2

)n+2
−
(

1−
√

5
2

)n+2
)

n≥m= 1

2 n≥m> 1
(33)

6 Concluding Remarks

We have studied the general shifting the checkers game
consisting ofn black checkers andm white checkers. It
has been proved in the section 2 that the minimum
number of steps needed to play the game for generaln
andm is nm+n+m. All of the optimal solutions for the
moving checkers game of small size can be found by a
backtracking algorithm presented in section 2. In the
section 3, a linear time recursive construction algorithm
which can produce an optimal solution in linear time for
very large sizen andm is presented. The time cost of the
new algorithm isO(nm) andO(n+m) space is used. In
Section 4, an extremely simple explicit solution for the
optimal moving sequences of the general game is given.
The formula gives for each individual stepi, its optimal
move in O(1) time. Finally, in Section 5 we give the
complete optimal solutions for the game in general cases.

Another similar game is to reverse then checkers
numbered 1, · · · ,n by two permissible types of moves
slide and jump. It is not clear whether our methods
presented in this paper can be applied to this game. We
will investigate the problem further.

Acknowledgment

This work was supported by the Natural Science
Foundation of Fujian under Grant No.2013J01247, Fujian
Provincial Key Laboratory of Data-Intensive Computing
and Fujian University Laboratory of Intelligent
Computing and Information Processing.

References

[1] R. Bird, Pearls of Functional Algorithm Design, 258-274,
Cambridge University Press, 2010.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

864 D. Zhu et. al. : Complete Solutions for a Combinatorial Puzzle in...

[2] Erik D. Demaine, Playing games with algorithms,
Algorithmic combinatorial game theory. Proceedings
of the 26th Symposium on Mathematical Foundations in
Computer Science, LNCS 2136, 18-32, 2001.

[3] Erik D. Demaine and Martin L. Demaine, Puzzles, Art, and
Magic with Algorithms, Theory of Computing Systems,39,
473-481, 2006.

[4] A. Levitin and M. Levitin, Algorithmic Puzzles, 3-31,
Oxford University Press, New York, 2011.

[5] J. Kleinberg, E. Tardos. Algorithm Design, 223-238,
Addison Wesley, 2005.

[6] D.L. Kreher and D. Stinson, Combinatorial Algorithms:
Generation, Enumeration and Search, 125-133, CRC Press,
1998.

[7] John S. Gray, The shuttle puzzle ł A lesson in problem
solving, Journal of Computing in Higher Education,10, 56-
70, 1998.

[8] Hazewinkel, Michiel, ed. (2001), ”Fibonacci numbers”,
Encyclopedia of Mathematics, Springer.2, 55-56.

Daxin Zhu received
his M.Sc. degree in Computer
Science from Huaqiao
University of China in
2003. He is now an associate
professor in Quanzhou
Normal University of China.
His current research interests
include design and analysis
of algorithms, network

architecture and data intensive computing.

Yingjie Wu received
the Ph.D degree in computer
science from Southeast
University of China in 2012.
He is currently an associate
professor in the Department
of Computer Science
at Fuzhou University, China.
His research interests include
data privacy and data mining.

Lei Wang Ph.D
in Computer Science
from Georgia Institute
of Technology 2011.
Applied researcher at
Microsoft. Has experience
in computer science with
emphasis in algorithm
design. The areas of interest
are approximation and

randomized algorithms,mechanism design, market
equilibrium computation.

Xiaodong Wang
is currently a professor
in Computer Science
Department of Quanzhou
Normal University and
Fuzhou University,China.
Has experience in
computer science and
applied mathematics.
The areas of interest
are design and analysis of

algorithms,exponential-time algorithms for NP-hard
problems,strategy game programming.

c© 2015 NSP
Natural Sciences Publishing Cor.

	Introduction
	A Backtracking Algorithm
	A Linear Time Construction Algorithm
	The Explicit Solutions to the Problem
	The Number of Optimal Solutions
	Concluding Remarks

