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1 Introduction

So far, instability problems for solutions of various linear and non-linear differential
equations of higher order, third-, fourth-, fifth-, sixth-, seventh and eighth orders, have been
studied and still are being investigated by many authors. For some related contributors
to the subject, we refer to the papers of Ezeilo ([1], [2], [3], [4], [5]), Krasovskii [7],
Liao and Lu [8], Li and Yu [9], Li and Duan [10], Lu [11], Lu and Liao [12], Sadek
([16], [17]), Skrapek ([18], [19]), Sun and Hou [20], Tejumola [21], Tunç ([22], [23],
[24], [25], [26], [27], [28], [29]), Tunç and Sevli [30], C. Tunç and E. Tunç ([31], [32],
[33], [34]), E. Tunç [35] and the references listed in these papers. In all of the above
mentioned papers, authors took into consideration of Krasovskii’s criteria [7] and used the
Lyapunov’s second (or direct) method [13]. The reason is, perhaps, due to the effectiveness
of Krasovskii’s criterion [7] and Lyapunov’s second method [13]. In [6], Iggidr and Sallet
expressed that “The most efficient tool for the study of the stability of a given non-linear
system is provided by Lyapunov’s theory”. Similarly, in [15], Qian stated that “So far, the
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most effective method to study the stability of non-linear differential equations is still the
Lyapunov’s direct method”.

Now, it should be better to summarize some works, in particular, focused on the insta-
bility of nonlinear differential equations of fifth order. Namely, with respect to our obser-
vations in the literature, first, in 1978 and 1979 for the case n = 1, Ezeilo ([2], [3], [4])
investigated the instability of zero solution for the following nonlinear scalar differential
equations, respectively,

x(5) + a1x
(4) + a2

...
x + a3ẍ + a4ẋ + f(x) = 0,

x(5) + a1x
(4) + a2

...
x + h(ẋ)ẍ + g(x)ẋ + f(x) = 0,

x(5) + ψ(ẍ)
...
x + φ(ẍ) + θ(ẋ) + f(x) = 0

and
x(5) + a1x

(4) + a2
...
x + g(ẋ)ẍ + h(x, ẋ, ẍ,

...
x, x(4))ẋ + f(x) = 0,

where a1, a2, a3, a4 are some constants and f , g, h, ψ, φ and θ are continuous functions
depending only on the arguments shown such that f(0) = φ(0) = θ(0) =0.

On the other hand, in 2003, Sadek [17] studied the instability behaviors of solutions of
fifth order nonlinear vector differential equations described by

X(5) + Ψ(Ẍ)
...
X + Φ(Ẍ) + Θ(Ẋ) + F (X) = 0

and
X(5) + AX(4) + B

...
X + H(Ẋ)Ẍ + G(X)Ẋ + F (X) = 0.

More recently, Tunç ([26], [29]) and Tunç&Sevli [33], respectively, also gave sufficient
conditions which guarantee that the zero solution of the vector differential equations of the
form

X(5) + AX(4) + Ψ(X, Ẋ, Ẍ,
...
X,X(4))

...
X + G(Ẋ)Ẍ

+H(X, Ẋ, Ẍ,
...
X,X(4))Ẋ + F (X) = 0,

X(5) + AX(4) + B(t)Ψ(X, Ẋ, Ẍ,
...
X,X(4))

...
X + C(t)G(Ẋ)Ẍ

+D(t)H(X, Ẋ, Ẍ,
...
X,X(4))Ẋ + E(t)F (X) = 0

and
X(5) + Ψ(Ẋ, Ẍ)

...
X + Φ(X, Ẋ, Ẍ) + Θ(Ẋ) + F (X) = 0

is unstable.
Now, this paper is devoted to the investigation of instability of the zero solution of

fifth-order non-linear vector differential equation

X(5) + Ψ(Ẋ, Ẍ)
...
X + Φ(X, Ẋ, Ẍ,

...
X,X(4)) + Θ(Ẋ) + F (X) = 0 (1.1)
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in the real Euclidean space <n (with the usual norm denoted in what follows by ‖.‖ ),
where X ∈ <n ; Ψ is an n× n -symmetric continuous matrix function depending, in each
case, on the arguments shown; Φ : <n × <n × <n × <n × <n → <n, Θ : <n → <n,
F : <n → <n and Φ(X, Ẋ, 0,

...
X,X(4)) = Θ(0) = F (0) = 0 . It is also supposed that

the functions Φ, Θ and F are continuous. Throughout this paper, we consider, instead of
equation (1.1), the equivalent differential system

.

X = Y,
.

Y = Z,
.

Z = W,
.

W = U,

.

U = −Ψ(Y, Z)W − Φ(X, Y, Z,W,U)−Θ(Y )− F (X), (1.2)

which was obtained as usual by setting Ẋ = Y , Ẍ = Z,
...
X = W , X(4) = U in (1.1). It is

also assumed that the expressions J (Ψ(Y,Z)Z |Y ), J (Ψ(Y,Z) |Z ), JΘ(Y ) and JF (X),
respectively, denote the Jacobian matrices as follows:

J (Ψ(Y, Z)Z |Y ) =

(
∂

∂yj

n∑

k=1

ψikzk

)
=

(
n∑

k=1

∂ψik

∂yj
zk

)
,

J (Ψ(Y, Z) |Z ) =

(
∂

∂zj

n∑

k=1

ψik

)
=

(
n∑

k=1

∂ψik

∂zj

)
,

JΘ(Y ) =
(

∂θi

∂yj

)
, JF (X) =

(
∂fi

∂xj

)
, (i, j = 1, 2, ..., n),

where (x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn), (ψik), (i, k = 1, 2, . . . , n),
(θ1, θ2, . . . , θn) and (f1, f2, . . . , fn) are the components of X , Y , Z, Ψ, Θ and F , respec-
tively. In addition to these, it is assumed, as basic throughout the paper, that the Jacobian
matrices J (Ψ(Y, Z)Z |Y ), J (Ψ(Y,Z) |Z ), JΘ(Y ) and JF (X) exist and are continuous
and symmetric. The symbol 〈X, Y 〉 corresponding to any pair X , Y in <n stands for the

usual scalar product
n∑

i=1

xiyi, and λi(A), ( A = (aij), (i, j = 1, 2, . . . , n) ), are the eigen-

values of the n × n - symmetric matrix A and the matrix A = (aij) is said to be positive
definite if and only if the quadratic form XT AX is positive definite, where X ∈ <n and
XT denotes the transpose of X .

Finally, it is also worth mentioning that the motivation for the present work has been
inspired basically by the papers mentioned above. Next, equation (1.1) has never been the
subject of systematic investigations in this direction.

2 Preliminaries

In order to prove our main results, we give some basic information which plays an
essential role throughout the paper.



54 C. Tunç

Lemma 2.1. Let A be a real symmetric n× n -matrix and

a′ ≥ λi(A) ≥ a > 0(i = 1, 2, . . . , n),

where a′, a are constants. Then

a′ 〈X, X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉
and

a′
2 〈X, X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .

Proof. See Mirsky [14].

In order to prove our further coming results, it will suffice (see Krasovskii [7]) to show
that there exists a continuous Lyapunov function V0 = V0(X,Y, Z, W,U) which has the
following Krasovskii properties:

(K1) In every neighborhood of (0, 0, 0, 0, 0) there exists a point (ξ, η, ζ, µ, ρ) such that
V0(ξ, η, ζ, µ, ρ) > 0 ;

(K2) the time derivative V̇0 = d
dtV0(X,Y, Z,W,U) along solution paths of the system

(1.2) is positive semi-definite;
(K3) the only solution (X, Y, Z, W,U) = (X(t), Y (t), Z(t),W (t), U(t)) of the system

(1.2) which satisfies V̇0 = 0 (t ≥ 0) is the trivial solution (0, 0, 0, 0, 0) .

3 Main Results

Our main results are the following theorems concerned with the instability of zero so-
lution of equation (1.1).

Theorem 3.1. Beside the basic assumptions imposed on Ψ, Φ, Θ and F that appeared in
equation (1.1), we assume the following conditions are satisfied:
(i) F (0) = 0 and F (X) 6= 0 if X 6= 0, and the Jacobian matrix JF (X) is symmetric and
λi(JF (X)) < 0, (i = 1, 2, . . . , n), for all X ∈ <n,
(ii) Φ(X,Y, 0,W,U) = 0, Φ(X, Y, Z, W,U) 6= 0 if Z 6= 0, and
n∑

i=1

ziφi(X,Y, Z,W,U) ≥ 0 for all X , Y , Z, W , U ∈ <n, where Φ(X,Y, Z, W,U) =

(φ1(X, Y, Z, W,U), . . . , φn(X, Y, Z, W,U)),
(iii) The matrices Ψ(Y,Z) and J (Ψ(Y,Z)Z |Y ) are symmetric and J (Ψ(Y, Z)Z |Y ) ≤ 0
for all Y , Z ∈ <n.

Then the zero solution X = 0 of equation (1) is unstable.

Proof. We define the Lyapunov function V0 = V0(X,Y, Z,W,U) as follows:

V0 =
1
2
〈W,W 〉 − 〈Y, F (X)〉 − 〈Z, U〉 −

1∫

0

〈Θ(σY ), Y 〉 dσ −
1∫

0

〈σΨ(Y, σZ)Z, Z〉 dσ.

(3.1)
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Taking notice of (3.1), we see that V0(0, 0, 0, 0, 0) = 0 . Next, in view of Lemma 2.1
and (3.1), we get that

V0(0, 0, 0, ε, 0) =
1
2
〈ε, ε〉 =

1
2
‖ε‖2 > 0

for all arbitrary ε 6= 0, ε ∈ <n. These facts, clearly, show that the Lyapunov function V0 =
V0(X,Y, Z, W,U) satisfies the first property of Krasovskii, (K1).

Now, let (X,Y, Z,W,U) = (X(t), Y (t), Z(t),W (t), U(t)) be an arbitrary solution of
the system (1.2). Differentiating the Lyapunov function given by (3.1) and making use of
the system (1.2), we find that

V̇0 =
d

dt
V0(X, Y, Z, W,U)

= 〈Z, Φ(X,Y, Z, W,U)〉 − 〈Y, JF (X)Y 〉+ 〈Ψ(Y, Z)W,Z〉

+ 〈Θ(Y ), Z〉 − d

dt

1∫

0

〈Θ(σY ), Y 〉 dσ − d

dt

1∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ. (3.2)

Now, recall that

d

dt

1∫

0

〈σΨ(Y, σZ)Z,Z〉 dσ

=

1∫

0

〈σΨ(Y, σZ)W,Z〉 dσ +

1∫

0

σ
∂

∂σ
〈σΨ(Y, σZ)W,Z〉 dσ

+

1∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z ,Z〉 dσ

= σ2 〈Ψ(Y, σZ)W,Z)〉
∣∣1
0 +

1∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z ,Z〉 dσ

= 〈Ψ(Y, Z)W,Z〉+

1∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z , Z〉 dσ. (3.3)

Similarly, we have that

d

dt

1∫

0

〈Θ(σY ), Y 〉 dσ =

1∫

0

σ 〈JΘ(σY )Z, Y 〉 dσ +

1∫

0

〈Θ(σY ), Z〉 dσ

=

1∫

0

σ
∂

∂σ
〈Θ(σY ), Z〉 dσ +

1∫

0

〈Θ(σY ), Z〉 dσ

= σ 〈Θ(σY ), Z〉
∣∣1
0

= 〈Θ(Y ), Z〉 . (3.4)
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Substituting the estimations (3.3) and (3.4) into (3.2) we obtain

V̇0 = 〈Z, Φ(X, Y, Z, W,U)〉 − 〈Y, JF (X)Y 〉 −
1∫

0

〈σJ(Ψ(Y, σZ)Z |Y )Z , Z〉 dσ. (3.5)

Making use of the assumption J (Ψ(Y, Z)Z |Y ) ≤ 0, we have from (3.5) that

V̇0 ≥ 〈Z, Φ(X, Y, Z, W,U)〉 − 〈Y, JF (X)Y 〉 . (3.6)

Subject to the assumptions of Theorem 3.1, we deduce from (3.6) that V̇0(t) ≥ 0 for all
t ≥ 0, that is, V̇0 is positive semi-definite. This shows that the property (K2) of Krasovskii
is satisfied. Finally, V̇0 = 0 (t ≥ 0) necessarily implies that Y = 0 for all t ≥ 0, and hence
also that X = ξ (a constant vector), Z = Ẏ = 0, W = Ÿ = 0, U =

...
Y = 0, for all t ≥ 0 .

By using the expressions

X = ξ, Y = Z = W = U = 0

in the system (1.2), it can be seen easily that F (ξ) = 0, which necessarily leads that ξ = 0
because F (0) = 0 and F (X) 6= 0 if X 6= 0. In view of the above discussion, clearly, it
follows that

X = Y = Z = W = U = 0 for all t ≥ 0.

That is, we now have the property of (K3) Krasovskii. Therefore, subject to the assump-
tions of Theorem 1, the function V0 has the entire the criteria of Krasovskii [7], (K1) ,
(K2) and (K3) . Thus, the basic properties of the function V0(X, Y, Z, W,U), which were
proved above, verify that the zero solution of system (1.2) is unstable. The system of equa-
tions (1.2) is equivalent to differential equation (1.1) and hence the proof of Theorem 1 is
now complete.

Theorem 3.2. Beside the basic assumptions imposed on Ψ, Φ, Θ and F that appeared in
equation (1.1), we assume the following conditions are satisfied:
(i) F (0) = 0 and F (X) 6= 0 if X 6= 0 and the Jacobian matrix JF (X) is symmetric and

λi(JF (X)) > 0, (i = 1, 2, . . . , n), for allX ∈ <n,

(ii) Φ(X,Y, 0,W,U) = 0, Φ(X, Y, Z, W,U) 6= 0 if Z 6= 0, and
n∑

i=1

ziφi(X, Y, Z,W,U) ≤ 0 for all X,Y, Z,W,U ∈ <n,

where Φ(X, Y, Z, W,U) = (φ1(X, Y, Z, W,U), . . . , φn(X, Y, Z, W,U)).
(iii) The matrices Ψ(Y,Z) and J (Ψ(Y, Z)Z |Y ) are symmetric, λi(Ψ(Y, Z)) > 0, (i =
1, 2, . . . , n), and J (Ψ(Y,Z)Z |Y ) ≥ 0 for all Y , Z ∈ <n.

Then the zero solution X = 0 of equation (1.1) is unstable.



On the Instability of Solutions 57

Proof. In a similar manner as in the proof of Theorem 3.1, we define for the proof of
Theorem 3.2, the Lyapunov function V1 = V1(X, Y, Z, W,U) such that V1 = - V0, where V0

is defined as the same in (3.1), that is,

V1 = −1
2
〈W,W 〉+ 〈Z,U〉+ 〈Y, F (X)〉+

1∫

0

〈Θ(σY ), Y 〉 dσ +

1∫

0

〈σΨ(Y, σZ)Z, Z〉 dσ.

Clearly, V1(0, 0, 0, 0, 0) = 0 and in view of the assumption (iii), we have that

V1(0, 0, ε, 0, ε) = 〈ε, ε〉+

1∫

0

〈σΨ(0, σε)ε, ε〉 dσ

≥‖ε‖2 +

1∫

0

〈σΨ(0, σε)ε, ε〉 dσ > 0,

for all arbitrary ε 6= 0, ε ∈ <n . The rest of the proof is similar to that of Theorem 3.2,
except for some minor modifications, hence it is omitted.

Remark 3.3. It should be noted that, for the case n = 1, the result of Ezeilo [4; Theorem
3] is a special case of our first result. Next, the results constituted here give additional result
to those of established by Sadek [17; Theorem 3] and Tunç&Şevli [30].

Example: As a special case of the system (1.2), if we take for n = 5,

Ψ(Z) =




1 + z2
1 0 0 0 0

0 1 + z2
2 0 0 0

0 0 1 + z2
3 0 0

0 0 0 1 + z2
4 0

0 0 0 0 1 + z2
5




, Φ(Z) =




z3
1 + z5

1

z3
2 + z5

2

z3
3 + z5

3

z3
4 + z5

4

z3
5 + z5

5




,

Θ(Y ) =




y1 + y3
1

y2 + y3
2

y3 + y3
3

y4 + y3
4

y5 + y3
5




and F (X) =




−x1 − x3
1

−x2 − x3
2

−x3 − x3
3

−x4 − x3
4

−x5 − x3
5




then, respectively, we have

λ1(Ψ(Z)) = 1 + z2
1 , λ2(Ψ(Z)) = 1 + z2

2 , λ3(Ψ(Z)) = 1 + z2
3 ,

λ4(Ψ(Z)) = 1 + z2
4 , λ5(Ψ(Z)) = 1 + z2

5 ,
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JΘ(Y ) =




1 + 3y2
1 0 0 0 0

0 1 + 3y2
2 0 0 0

0 0 1 + 3y2
3 0 0

0 0 0 1 + 3y2
4 0

0 0 0 0 1 + 3y2
5




,

λ1(JΘ(Y )) = 1 + 3y2
1 λ2(JΘ(Y )) = 1 + 3y2

2 λ3(JΘ(Y )) = 1 + 3y2
3 ,

λ4(JΘ(Y )) = 1 + 3y2
4 λ5(JΘ(Y )) = 1 + 3y2

5 ,

JF (X) =




−1− 3x2
1 0 0 0 0

0 −1− 3x2
2 0 0 0

0 0 −1− 3x2
3 0 0

0 0 0 −1− 3x2
4 0

0 0 0 0 −1− 3x2
5




and

λ1(JF ) = −1− 3x2
1 λ2(JF ) = −1− 3x2

2 λ3(JF ) = −1− 3x2
3,

λ4(JF ) = −1− 3x2
4 λ5(JF ) = −1− 3x2

5 .

Hence,

λi(Ψ(Z)) ≥ 1 for all z1, z2, z3, z4 and z5,

λi(JΘ(Y )) ≥ 1 for all y1, y2, y3, y4 and y5,

λi(JF (X)) ≤ −1 for all x1, x2, x3, x4, x5, (i = 1, 2, 3, 4, 5),

and
3∑

i=1

ziΦi(Z) = z4
1 + z6

1 + z4
2 + z6

2 + z4
3 + z6

3 + z4
4 + z6

4 + z4
5 + z6

5 ≥ 0

for all z1, z2, z3, z4 and z5. So the assumptions of Theorem 3.1 are satisfied.
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[30] C. Tunç and F. Erdogan, On the instability of solutions of certain non-autonomous
vector differential equations of fifth order, SUT Journal of Mathematics 43 (2007),
1–14.
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