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Abstract: In this article, a fractional model of HIV/AIDS that inclusi¢reatment and a time delay is investigated. The globalmdicga
of the spread of the disease are discussed using the refimdnamber. There is no infected equilibriumRf < 1. We also show
that the equilibrium poinE; is globally asymptotically stable (the disease disapp&ihenRy > 1, there is a unique infected point
E,. We introduce sufficient conditions for the stabilitylef. Sufficient conditions are given to guarantee the asynipsdibility of the
equilibria independent of time delay. We present threskaldes of the time delay that the treatment will be succeédesipositive
effects appear before this values. A finite difference meitton a general fractional system is presented and is usdteindmerical
simulations of the model.
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1 Introduction

Fractional calculus is an important tool to formulate mahysgical problems and recently, a large number of fractional
order models are appeared. These models represent vapiplications in fluid mechanics, viscoelasticity, biologyda
engineering [1-10]. In what concerns application of fractl order derivatives to epidemiological models somevesie
works start to appear [11-15]. The treatment and the exdst@fi time delays in treatment have a great effect in the
dynamical behavior of HIV/AIDS [9,16-19].

Recently Yan et al. [9] considered an HIV/AIDS model inclhglifractional differentiation with time delay.

In this article, we study the stability behavior of a fraciéd model for HIV/AIDS dynamics that includes treatment
and a time delay. This article is organized as follows: Weldig the mathematical model of our system in Section 1.
Stability analysis of the fractional model for HIV/AIDS isgsented in Section 2 while the stability behavior of the slod
including existence of time delay in treatment is considéneSection 3. In Section 4, we introduce a non-standarcefinit
difference scheme of a general system. lllustrative exasgte discussed in Section 5. Finally, our conclusion isrgiv
in Section 6.

2 Description of the Model

The total population in our model is divided into a suscdptitlass of sizeS, the infection population is classified into
two groups, asymptomatic phase of sizeymptomatic phase of sizeand the group of AIDS patients with siZe The
fractional order system takes the form:

DYS(t) = pk—cB(I(t)+bI(t)) S(t) — u S(t), ae (0,1,
D“I(t):c B(1(t) +bJI(1)) S(t) — (1 +ka) H(t)+3I(t),
(t):k (t) = (H+ka+0)J(1), 1)
D"A(t) koJ(t) — (u+d)A(t),
S00) = (0) lo, J(0)=Jo and A(0) =Ag
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with initial conditions:

S0)=%, 1(0)=lo, J(0)=J and A(0) = Ao,
where uk is the recruitment rate of the populatianis the average number of contacts of an individual per umeti
B, b are probability of disease transmission per contact by &etiive in stages$ and J respectively. The parameter
b > 1 captures the fact that the individuals in the symptomdigse stageJf are more infectious than the asymptomatic
phase stagel), u is the death ratek; , ko are transfer rates from stadgito stageJ and from stagel to AIDS cases
respectivelyd is the treatment rate from stage¢o stagd andd is the death rate for AIDS.

Model (1) is the generalization, to fractional order, of the modelgwsed by Cai et al [16]. Their model is equivalent
to system ) with the fractional-order derivative = 1.

A new technique based on the non standard finite differendeodg NSFDM) is developed to solve systed). (
Before we study to the stability analysis of the fractionalar system X); we first give a definition of fractional order
differentiation.

Definition 1 [20]: Caputo fractional derivative of order € (n— 1,n) of a functionf : R™ — Ris given by:

DY f(t) _ 1 /t f(n) (X) dx

Frn—a) Ja (t—xya-nt1 ="
wherel™ (.) is the Gamma function. Also we need the following Lemma.
Lemma 1[21]: Let X* = (X3, X5, ..., x*)T be an equilibrium point of the fractional differential edjoas:

DIX(t)=F(X), a€(0,1] and X(0)=Xo, (2)
whereX = (xq, X2, ..., Xn)T and F =(f1, fo, ..., fn)T. ThenX* is locally asymptotically stable if all the eigenvalues
of the Jacobin matriB (X*) of system ) satisfies:

. . amn
|arg(eigB(X™))| > —-, ®)

whereB (X*) = [bijlx=x:, 1, ]=12,..,n and bj;=20fi/dx;.
Return to the systend), then we only analyze the following subsystem:

DU S(t) = k— B (1(t) +bJ (1)) S(t) — uS(1)
D1 (t) = B (1(t) +bJ(1)) S(t) — (1-+ k)1 (1) + 8I(1) (4)
DI J(t) = ky I (t) = (U + ko + 8) I(t).

It follows from system 4) that

DY (S(t) + 1(t) + I(t)) = pk— p (S({t) + 1(t) + I(t)) — k2 I(1)
. Sincekp J(t) > 0 and considerp(t) = S(t) + 1 (t) + I(t) — k, then we have

DY®(t)+u @(t) <O. (5)
Using Laplace transform, we get the solution of Bypé6:

() <ct¥1Ey o(—At?) where c= DY L o(t
. Thent Hm ®(t) < 0 and the feasible region for syste#) {s

M=o

Q={(§1,3):S+1+J<k,S>0,1>0,3>0}
To evaluate the equilibrium points of systed),(we solve the nonlinear algebraic equations
DYS(t) =D%I(t) =D J(t)=0
Applying the next generation method, we calculate the bagicoduction number. it is proved in [16] that flBg <

1 there exists only the disease free equilibri&tk, 0, 0), and forRy > 1 there exists only the endemic equilibrium
E2 (S, 12, J2) (in addition toE;), where:

ROZCBk(u+k2+5+bk1)
(H+Ky) (U+k) +pd
_ kK __ uk(utkot+9d) 1  k
S =Ry 2= Gty (prigems (1~ &) @Al = g3 12
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3 Equilibria and Their Stability of the Fractional Order HIV /AIDS Model

In this section, we compute the equilibrium points of systdjn To achieve this target, we obtain the Jacobin matrix of
system §) in terms ofE;, i = 1, 2, it has the form:

(—[u+CB(Ii+in)] ~cBS —cBSb )
B(E) = cB(li+bd) cBS —(u+ky) d+cBSb |. (6)
0 ki —(U+ka+9)
Hence the associated transcendental equation o (
|B(E))—Al|=0, (7)

wherel is the identity matrix. We summarize the stability behawbthe disease free equilibrium poigg (k, 0, 0) in the
following theorem:

Theorem 2.1: Consider the disease free equilibrium polt of system 4) with o € (0,1], thenE; is locally
asymptotically stable iRy < 1 and unstable fary > 1.

Pr oof :

The transcendental characteristic equation of systgratE; is given by

(M+A) (A% +a3A +ap) =0, (8)
where
a1 =2Uu+ki +ko+0—cBk, ay
= (ko) (1 + ko) + 18— BK(H+ bk + ko + 8). )
One eigenvalue of E@B) is A = —u. To find the other two eigenvalues, we wriag and ay in terms of the basic

reproduction numbeR,, where:

ap = (1/(u+bks +ko+9)),
[(1—Ro) (M +ki) (M +ko) + HO)+Ki O
+bki(p+ki)+ (U+ko+9) (U +bky + ko + 9)],

a2 = (1~ Ro) [(H +ku) (1 + ko) + 3 ] (10)
Then forRy < 1, we haveg; > 0, i = 1, 2 hence the other two eigenvalues are
1
Aog= E[—ali\/af—%lz]. (11)
Itis clearthaiReA; <0 for i=1, 2 3. Bylemma 1.1F; is locally asymptotically stable.

ForRy > 1 this leads t@, < 0 which gives a positive real eigenvalue, consequéhilis unstable.
We discuss the properties of the solution near the infectgdlibrium point E,, the transcendental characteristic
equation oB(Ey) is:

P(A)=A%+aA? +aA +ag=0, (12)

where
a=H+k +Uu+k+pu+d+cf(l2+bh—-S),
= (H+ki) (M +ke)+HO+p(U+k +p+k+9)
+k]_CB (|2+bJ2)

(ko + -+ 8) 0B [la bl — S~ bky S, (13)
ag = H|[(H+kp) (U +k) +Ha—cBS(H+ke +0S+bky)]
+CB(l2+0bJ) [(H+k) (M +k2) + 1 8]
Definition 2 [22]: The discriminatd(p) of a real cubic polynomiap(A) defined by Eqg.12) is:
D(p) = 18ayapas + (ara)” — 4ag(a1)® — 4(ap)® — 27(ag)*. (14)
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The following theorem describes the required conditiomsdoal stability ofE, according to the sign dd(p).
Theorem 2.2Let Ry > 1, then the unique infected equilibrium polyt of the system4) is locally asymptotically stable
if either

D(p) >0 and a<(0,1] (15)
or
D(p)<0 and a€]0,2/3), (16)
whereD(p) is defined by Eqg.X4) with the coefficients in13).
Proof:

The coefficients in13) of the transcendental characteristic equatii?) €an be written in the following form:

a=HR -1 +ut+ke+pu+d+n,
=U[(Ro—1)(U+k +HU+ke+d)+u+tk+5+n],
a3= M (Ro—1)[(H+ke) (1 +ko)+ 0]

where n = ki[0+b(u+ky)]/(HU+ko+ 0+ bky).

If D(p) > 0, thenp(A) has three distinct real roots. From E§j7), Ry > 1 (For the existence &), anda; >0, i=1, 2, 3.
Then by the aid of Descartes’ rule of signs, we can concluagtkthie three roots are all negative wremm, —az > 0. And
hence all the eigenvalues of EBZ| satisfy condition ) for all a € (0, 1]. Simplifying the value of; a, — a3, we have:

17)

aa;—ag=(Ro—1) (ke 8+ (U+ko)?)+pt (U +ko)
U+k+0+n]+H[(Ro-pu+p+35+ n] (18)
X [U+ko+30+ (Ro—1)(U+ki+p +ko+0)+ nd] >0,

forall Ry>1, ae<]0,1].

Now if D(p) < 0, and using Descartes’ rule of signgA ) has one negative real rodf = b and two conjugate complex
rootsh, 3 = x+iy. Eq. (L2) can be factorized as:

(A =b)(A —x—iy) (A —x+iy)=0. (29)
Equating the coefficients of EqL?) and (L9), considerindp < 0 anda; >0, i =1, 2, 3, we have:

—2x—b>0,x+y*+2bx>0 and —(x*+y>)b>0. (20)

Then ifx < 0, all the eigenvalues of EQ.9) satisfy condition 8), while if x > 0 we should havéy/x)? > 3 to satisfy the
relations in 0). So the fraction of derivatives must belong to the interval € [0, 2/3).

4 Stability Behavior of the System with Delay Time

To investigate the effect of time delay on the stability babiaof system §). Let T represents the time interval from
starting of treatment in the symptomatic stage (J) usinfgidint techniques up to the effect of this treatment ex&tsve
rewrite system4) to be:

DYS(t) = pk—cB(I(t)+bI(t)) S(t) — u S(t),
D71 (t) = ¢ (I(t) +bI(1)) S(t) — (1 +Ky) 1 (1) +8I(t—T), 1)
DYJ(t) = kg I (t) — (u+k2)I(t) — I(t—T)
S0)=%,1(0)=1y and J(t)=Jy, te[0,1].
We investigate the behavior of the disease free equilibpomt E; whenRy < 1in the following theorem.
Theorem 3.1The disease free equilibrium poiBj of system 21) with a € (0, 1] is asymptotically stable wheRy < 1
for any time delayr > O if:

y=02—min{A;, Ay} <0, (22)
where
Ay = [O0ki(1+Ro) (ke + 1 (1—b))/(1—Ro) + (U +ka+bka) (1 +ka) (1 +ka2) |/,
Ao =(2u+ki+ky— Cﬁk)z-i-ZCBk([J +ko+Dbky) —2(u+Ky) (U+ ko).
Proof:
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The Jacobin matrix of the differential equatio24)atE; is:

—u —cBk —cpBk
B(E1) = 0 cBk—(u+k) cBk+oe?rT | .
0 ky — (Ut ko407
The transcendental characteristic equatioB(d; ) is

A+ [A%2+(br+cre ? A+ (e ? )] =0. (23)
with the coefficients

by =2u+ky + ko —cBKk,

C1=0, bp= (U +kp) (K +k—cBk)—cBkky
and

Co=0(H—cBKk).

The eigenvalues of EQ8) areA; = — 1 andA; 3 are the roots of the equation:

A4+ e ? A+ (bp+ce??) =0 (24)

By Theorem 2.1ReA; < 0,i=1,2,3 for 1 =0. By increasingr we seek about iReA, 3 change its sign to be
positive. This can occur if we get pure imaginary eigenvalde 3 = =+i w).
Substitute by the value of =i w in Eq. (24), then we have:

WC1 SINWT + Cp COSWT = w> — by
WCq COSWT — C2 SINWT = —wb;. (25)

Eliminating T from the two equations ireb), we get

Y2 + (bf —2bp — cf)y+ (b3 —c3) =0, (26)

wherey = w?, hence there is no positive roots for E2fYif b2 — 2b, — ¢ > 0 andb3 — ¢ > 0. In this case the values of
ReA; 3 cannot change their sign to be positive. Since

b2 —2b, — 3 =
(20 +ki+ka —cBK)? —2[ (K + ko) (L + ki — cBK)
— cBkbky] — 82> 0, (27)
by applying the condition22) we haveb3 — ¢ = (bp + ¢2) (b2 — ).
Since we can writd®, + ¢ = (1 — Ro) [ (1 +kp) (1 +k2) + o] > 0 whereRy < 1, and
by —cy = (U +ko) (U+ ks —cBk)—cBkbky — d(u —cBK)
=[ki(1+Ro) (k2 +p(1-b))
+(1—Ro) (H+ko+bka) (H+ki) (U +ke) — £ 0%]/(H+ko+ 3 +bki) >0
by condition @2). Hence the proof is completed.
If the parameters of systerd]) do not satisfy condition22), we have the following theorem:

Theorem 3.2The disease free equilibrium poiB§ of system 21) is asymptotically stable wheRy < 1 anda < [0, 1)
for any time delayr < t*, where:

" =1/(x* sin(am/2)) tan * f(x*) (28)
andx® is the smallest positive value miwhich satisfies:

—x[egsin(a1t/2) x2 4 ¢, sin(a 1) X+ (byc — bycy) sin(am/2)]

~ coSam/2) [cp@ + (D1Ca + baC1)X] + C2 COS AT X2 + bycy X2+ o) 0. (29)

f(x)
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Proof:
The eigenvalues of the characteristic equat®®) @reA; = —u andA; 3 roots of Eq. 24) and we havedReA, 3 < O for

T = 0. By increasing we seek about i, 3 become out of the stability region. Lat=r€&7/2, in Eq. 24), we have:

r2cogam) + rbycogam2) +rcycogar/2 — rrsin(am/2)) e TNA2) | ¢, coqrt sin(am/2)) e TeONa2) 4 b, — 0,
(30)

r2sin(a ) + rbysin(art/2) + reysin(am/2 — rtsin(ar/2)) e 'T%92) ¢, sin(r 1 sin(arr/2)) e T%92) 4 b, — Q.
(31)

Trying to solve the non linear set of equatio®§)(and @), we can get the value afin terms ofr in the following
formula:

T=(1/rsin(am/2)) tan 1 f(r).

Hence there exists a critical time delay transfer syst2) {ffom its stability region into unstable region if there is a
minimum positive value of = x* satisfying thatf (x*) > 0. This complete the proof.

Similar analysis can be done to defined a threshold valueedfrtie delayr* whenRy > 1. The time delay must not
exceedr* to guarantee the asymptotic stability of syste?t)( The characteristic equation of systePi)in terms ofE,
is:

AMtbr+ce? DA% +(bh+ce A+ (bz+c3e 7)) =0, (32)
with the coefficients

by =2u +ky +ka+ 1Ry — cBK/Ry,
by = HRo(2H +ky +kp) — S+ (8 — 1) cBk/Ry, (33)
b3 = p (U +ki) (M +ke)(Ro—1)+ pd(cBk/Ro— ),

c1=9, c2=0(U+ HRy—cPBk/Ro),
C3= O (HRo— cfK/Ry). (34)

The following theorem investigates the effect of existeotéme delay on the stability of the infected equilibriumipio
Eo.

Theorem 3.3LetRy > 1, the equilibrium poinE; of (21) is asymptotically stable for any time delay> O if the following
conditions and conditionl§) are satisfied:

Y= (u+k)(H+kz)(Ro—1)+25 cBk/Ro— 1 d(1+Ry) >0, (35)
{ =b3—c5+2cic3—2b1b3 >0, (36)
whereb; and ¢, i =1, 2,3 are defined by33) and @4).

Proof:

SinceRy > 1 then by Theorem 2.2, the infected equilibrium pdiatis asymptotically stable for the caselby) or
(16) whent = 0. Now for T > 0, we assume that Eq32) with the coefficients33) and @4) has pure imaginary roots
A =Z£iw, w> 0 for certain value of > 0. Hence we can write Eq3®) in the form:

—iw®— w?(by +c1CoSWT —icySINWT )+
iw(b2 +Cp COSWT —iCy SiNWT) (37)
+bz+c3coswt —icysinw = 0.

Equating both real and imaginary parts of E8j/)(by zero, and eliminating, we get:

y* + (b — ¢Z — 2b1) y? + (b5 — €5+ 2¢1C3 — 2by bg)y (38)
+(b3—c3) =0,
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wherey = w?. Itis clear that there will be no positive roots of EQ9)if b —c3+2cic3—2bibg3 >0 and b3—c%>0.
Consequently there will be no value ofsuch that the real part of the eigenvalues change their sign hegative to
positive.
Since
b5 — c5 = (bs +C3) (b3 — C3)
=H(Ro—1)[(U+ke) (1 +ko)+HS] (b3 —Ca)

and by simplification we have

bs—c3=p[(H+k)(H+k)(Ro—1)
+25cBk/Ro—pd(1+Ro)] >0
by condition @5). The proof is completed by applying the conditi®@®).

Theorem 3.4ConsiderRy > 1 and assume that the parameters2ti Gatisfy condition {5) or (16), then the infected
pointE; of system 1) is locally asymptotically stable for all time delayc [0, T*)andt* satisfies that

T = (1/X" sin(am/2)) tan L[ f(x*)/g(x*)] (39)
andx* is the smallest positive value gfthat satisfiesf (x) /g(x)] > 0, where
f(x) = cysin(am/2)x* — ¢, sin(am) x3

+]essin(3a7m/2) + (bycp + bpcy) sin(am/2)]x? (40)
+(b1cg — bsca) sin(a ) x+ (bacz — bacy) sin(am/2),

g(x) = —cpcog am/2)x* + [co cog am) — bycy [x°& — [czcog3aT1/2)
+ (b1Cz — bocy) cogam/2)]x?
— [baco + (bycs + bscy) cogam) | x+ (bacz + bscp) cogam/2). (41)
Proof:
SinceRy > 1 then by Theorem 2.2, the infected equilibrium pdipis asymptotically stable far = 0 when condition
(15) or (16) is satisfied. This means that all the eigenvalues satigidition (3). Now for 7 > 0, we assume that EQB?)

with the coefficients¥3) and B4) has an eigenvaluk = r € @™/2, Really if there is a time delay* gives this eigenvalue
then by increasing the system may be unstable. Substituting by this eigenvialgg.(32), we have

e "1e08aT2) (¢, r2 cog a1m) cogrTsin(a1m/2))
+r2¢ysin(am) sin(rrsin(a/2)) (42)
+rcacogar/2) coqrrsin(am/2))+
Cor sin(a/2) sin(rTsin(am/2))
+cgeogrrsin(amn/2)) =
— [r¥cog3am/2) +bir?cogam) + byrcogan/2) + bs),

e "1e0sam2) [_c, r?cog am) sin(r T sin(a /2

~— —

)
+r2¢ sin(am) cogrrsin(ar/2)
—rcycodam/2) sin(rtsin(amn/2))+ (43)
cor sin(a/2) coqrTsin(armn/2))

—cgsin(rrsin(a/2))
= —[r*sin(3a7/2) + byr?sin(am) + byrsin(am/2)).

Simplifying Eq. (42) and 43), we can get the value off as a function ofr satisfying that:
T=(1/rsin(am/2)) tan [ f(r)/g(r)], and the proof can be completed as Theorem 3.2.
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5 NSFDM of a General Fractional System

In this section, we develop a numerical method to solve @ational system. We first introduce the NSFDM [15] for a
single fractional differential equation

DIx(t) = f(x(t),t), 0<t<T,a>0 and Xtg) = Xo. (44)

We use the Griinwald-Letnikov approximation for the frantl term<9x(t) in order to get a numerical solution for
Eq.@4). The Grunwald-Letnikov for fractional derivative [24]:i

N
a = i _a —_— J .a - i

DY x(t) r|1|—>mo h Zo( 1) (J > X(t—jh), (45)

J_
whereN is the integer part o[ftﬁ] andh is the step size. So E¢14) can be discretized to be:

n+1

Z)Gf’x(t— jh)y=f(x(tn), th) ,n=1,2,3, ..., (46)

J:

wheret,, = nh ande’ are the Gruinwald-Letnikov coefficients

Gf =(1-(1+a)/j)G"1,j=1,23, .., (47)

whereG§ = h=7.
Mickens [25], introduced the basics of nonstandard finifeedénce technique, we introduce the NSFDM for ODEs
then we apply it for fractional differential equation.df= 1 in Eq. @4), the discrete derivative is:

dX _ X1 — X% (48)

dt g
where¢ is a function of the step size¢ satisfies thaip(h) = h+ o(h?). The functionsh, sinh, sinhhand €' — 1 are
examples ofp (h). For more details, we may refer to [25].
Now applying the NSFD technique with the Griinwald-Letnildiscretization method to obtain numerical solution
of the systems4) and @1), yields

H k*ZTi% G Sltny1-j)

S(th+1) = GE e THIE)] S(to) = S
cBbI(tn) Sltn41)+8I(tn) 311G It 1))

I (tn+1) = GI+ UK —CBS{tn1) ;| (tO) =lo,
kil (tnr1) =373 G jtnrai)

J(thia) = Gg+p+cﬁj[l IR J(to) = Jo,

wheret, =nh, n=0,1,2,3,....., G = (¢p(h))~“.

6 Discussion

We give two examples to illustrate the results of our article

Example 1: Let the parameters of systerdlj be k = 100, 3 = 0.005 b = 1.5, u = 0.01, ky = 0.09, k, = 0.01,0 =
0.05, ¢ = 0.02, anda = 0.9. HenceRy = 0.82 and by Theorem 3.E; is asymptotically stable for alt > 0 where

y = —0.0087< 0. Figure 1 (a, b, c) represent time responsd(bf for a numerical solution of systen21) during a
simulation time (5000 days) when= 0, 50 and 150 (days) respectively (the large values of the tielaydare just to
verify the theoretical results in Theorem 3.1). For the peeterk =100, 3 =0.003 b=1.1, u =0.01, k; =0.007, ko =
0.0016 = 0.17, ¢ = 0.03 anda = 0.9. HenceRy = 0.87 andy = 0.0286> 0, hence condition of Theorem 3.1 is not
satisfied. We examine the conditions of Theorem 3.2. We findrevthe numerator of (x) in Eqg. (29) is greater than
zero, where:

—x[cgsin(a1t/2) X2+ ¢, sin(a M) x+ (b — bpcy) sin(am/2)] = —x(x—0.0023) (x+0.0026) > 0 whenx € (0, 0.0023
and also the denominator of it has positive values in the sataeval. So for any time delay greater than zero the system
will be unstable. In Figure 2 (a, b), the time responsé(bf for T =0 andrt = 15 days are displayed. It is clear that the
solution is unstable for = 15.
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Fig. 1: (a) Time response dft) for T = 0 & (b) Time response af(t) for T = 50 days & (c) Time response dft) for T = 150 days.
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Fig. 2: (a) Time response oft) for T = 0 & (b) Time response df(t) for T = 15 days.

Example 2: Let the parameters of syster@lj ask = 100Q 3 = 0.005 b= 1.2, u = 0.02 k; = 0.09, k, = 0.01,6 =
0.02, ¢ = 0.03 anda = 0.9. HenceRy = 6.4054 and by Theorem 3.8, is asymptotically stable for ali > 0 where
Y > 0and{ > 0. Figure 3 (a, b, c) represent time responsd(®f for a numerical solution of systen21) during a
simulation time (5000 days) whan= 0, 50and 150 (days) respectively.
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Fig. 3: (a) Time response dft) for T = 0 & (b) Time response af(t) for T = 50 days & (c) Time response dft) for T = 150 days.
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7 Conclusions

A fractional model for HIV/AIDS with nonlinear incidence drreatment is discussed. Systef) with a = 1 is just

the model considered by Cai et. al. [16], the results of Caalktagree with our established results. and hence it is a
special cases of our work. The equilibria of the system amcesponding stability are analyzed. Sufficient conditifors
asymptotic stability of the system with time delay are giieiheorem 3.1 - Theorem 3.4. Also we give threshold values
of time delay defined by28) and @9). If the antiretroviral drugs give positive effects in matts after an interval less than
T*, then the infected equilibriurB, is asymptotically stable, while if the positive effectseakme duration more thart,
hencekE, will be unstable (fail in treatment). Finally, illustraivexamples are given with their numerical solutions carried
out using Matlab?7.
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