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Abstract: The behavior of eigenvalues, the boundedness of eigemndmscand the first and second derivatives of eigenfunctiéns o
the spectral problem

_}// )/ _/\ p ) ( ) X6[07a]7 a>07
with the boundary conditions:

y(a) =y (0)~y(0) =0,
/ y(X)Y (x)dx = a,a >0
have been studied, whekleis a spectral parameter.

Keywords: Boundedness, spectral problem, spectral parametersifeigions.

Symbol of Sturm-Liouville type for the second order differential
equation, with different types of boundary conditions and
The fo||0W|ng aux|||ary materials are used through the different classes of the coefficients, were obtained in
whole work, and each one is defined as follows: [1-4]and [6-10].
A is an eigenvalue and = 6 +iy, wherei = v/—1 and The behavior of eigenvalues and eigenfunctions
8,y € R andR is denoted to the set of all real numbers. boundedness of eigenfunctions of the boundary problems
Two positive real numbers and M are chosen so that Of Sturm-Liouville with the spectral parameter in the
0 < m< M. The symbolp(x) is refered to the positive boundary condition were obtained in[1-3]and [6-10].

weight function such that@m< p <M. I'"[0,a] refers |, yhig paper, we study the behavior of eigenvalues, the
to the set of all positive integrable functions aadnda 15 ndedness of eigenfunctions and the boundedness of

are positive real numbers. the first and second derivatives of eigenfunctions of the
spectral problem of the form:
!
1 Introduction Y () +Y(x) =A%py(x),x< 0.4 1)
)/(a) =Y(0)—y(0) =0, (2

Boundary value problems for differential equations of the / Y0¥ ()dx = a,a > 0 3)

second order with different boundary conditions were
studied in [1-4,6-10,12 and 13], and various applications
of such problems can be found in[5,11,and 14].

The behavior of eigenvalues and eigenfunctions and th
boundedness of eigenfunctions of the boundary problem3he paper is organized into four sections. The study of

where o is a positive constant, and is a spectral
garameter
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the boundedness of eigenfunctions and determination oihequality becomes

the behavior of eigenvalues are determined in Section (2).

In Section (3), the boundedness for norm of the first and 2. 2\/— 2 1o

second derivatives of eigenfunctions for the given ly()|* < o /|)/ dt)2+y(0))%  (4)
problem are presented.

Multiplying equation @) by y(x) and integrating the

2 Study the assessment of eigenfunctions and ©Ptained equation from 0 @ yields
the behavior of eigenvalues to the problem
/ y(X)y'(X) dx+/ y(x

(1)-(3)

This section concern to the study of the boundedness of _ S _
eigenfunctions and determination of the behavior oflntegrating the first integral by parts and by using the

x)dx = A /p )y (x)]%dx.

eigenvalues to the problem (1)-(3). boundary conditions)-(3) we get

Theorem 2.1. LetA = 6 +iy be an eigenvalue where a

0 # 0 andp(x) € 17[0,a], then the eigenfunctions of the 2 / 2 42

problem (1)-(3) satisfies the inequality YOI+ [ Iy () dx+a = A%k, ®)

MaXe o4 [Y(X)| < k|A[Y2,  wherek > 0 andk does not

depends op(x). k.= §p00lY() P> 0.
Proof. Let x be any point in0,a] and let us consider the Now, we rewrite equationd}-(3) as follows:
identity: ' '
YO)P? = y(X)V(X) ') +Y(x) (X)Y(x), (6)
/ O+ YO Y(@)=(0)~(0) =0, @)
_ [ V/POEOY O +y0Y 1) 2 a
- O/ N0 a0 [y (ax=a. (®)
0
From inequalityp( ) > m, we obtain By multiplying equation 6) by y(x) and integrating from
VOO < o VRO O -y Oty OV 1o% e obtan
Sﬁ(ofxx/ o) Idt+fx/ DOy (1)dt) / YOy (x)dx-+ / yix M.
+ |y(0)X2 Again, integrating the first integral in the last equation by
< \/_1_ [/ p®)[y®)|ly (t)|dt parts and using the boundary conditioids(8), we gain
0
X _ 2 a
0

YO)I? < %qz\/P(t)h/(t)IIB/(t)IﬂltﬂL y(0)[.

Using Cauchy-Schwartz inequality on the last inequality,
we deduce that

2 |7 / A MO+ A +A) [ Iy (x)[2dx
Yo7 < \/EJO/P(t)IY(t)IZdIJO/IV(t)Izdt O/

+A+A)a = (A +2)A Kk
And sincef # 0, then(A + ) # 0, therefore

By multiplying equation$) by A and equationg)
by A and add them we get

+Hy(0)[%.

a
Now, sincep(t),|y(t)|? > 0 then[ p(t)|y(t)|?dt > O,
0

a 2 2 R
Solet[ p(t)]y(t)|?dt = ki, wherek; > 0, therefore the last (0)] +/|3/(x)| dx+a = [A[%.
0 0
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Let |y(0)|> = ko, ko € RT, anda, |y(0)|? are positive real We multiply equation{0) by y(x) and integrate the
2

numbers, so is + |y(0)|, resulting from O taa, we obtain
therefore we assunte+|y( )|2 = ks, whereks € R+, thus a
the last equation reduces to / y'(X) dx+/ Y (X) = —VZ/ P

Integrating the last equation with using the boundary
2 2
/|3/(x)| dx = [A [k —ks. conditions (1) gives
0
1
By putting this equation in equatiod){ we deduce E((Y(O +/ X))%dx = —kpy?,
ly(x)[? < 2\\//__(|)\ %ky — k3) Y2 4 ko wherek; = [§ p(X)y?(x)dx. Or
a 1
2 k 20y — _ _ = 2 2
()2 < \\//__(|)\|2k1(1— |A|§k NY2 4 ko /O()/(X)) dx = —ky? 2(()’(0)) +(y(@)9). (13)
1
22k Since from theorem (2.1) we have shown that
yooP < 2, lrom egrem (2. e have
ly(a)] < W(é Y (X)[“dx) 2 + [y(0)|%, then
or
2k r m
yx)| < AV, 24 22 / x)|2dx)Z > a)|2 —|y(0)?
ly()| < [A] N (0 Y (x)|“dx) > I(1(Iy( )[“ = 1y(0)[)
And sincex is any value in the interva0, a], so It can be written as
2%k 7
< a2, | K / 2 B 2\2
e Veol < W R T T Y09 P > 22 (y(a) 2~ y(0)22
0

if we putk =,/ \Z/kl 1 ‘ > 0 which does notdepend on  From the last inequality and equatidtd it follows that

,weh 1
p(x). we have Ky~ S0+ (V(@)?) > o (Iy(@)2— y(O) )2
12 2 Y
max |y(x)| < K[A|7<.
xelod 422 2 2 2 2 4 2 2 4
Hence, the proof of theorem 2.1 is completed. — Ty W0)7 = —(¥(@)" = (¥(a))" — 2(y(3))"(¥(0))" + (¥(0))".
Lemma 2.1. For the presence of eigenvalues of the |f e assumes = (y(0))2, andu = (y(a))2, then the last
problem ()-(3), must: inequality reduces to
L.If 6 = 0, then the inequality 4K2 2k 2k
(2cm — 2kg)? > 16k2y?m + 8kicm + 4c?m?  holds, —% - % — ml — 2cu+¢?,
a
wherec = (y(0))? andk; = [ p(X)|y(x)|?dx. or
0 2
2.If 6 # 0, then the inequalityn(c; —c)? < 4k8(62— 2 (2c— 2_k1)u+ (M T 2cky +c?) <o,
y?) — 4k (a +c) holds, wheree; = |y(a)|?. m m m

. . . . this is possible only if the discriminate
This lemma is understood as follows; on the imaginary
axis eigenvalues are possible only if the inequality j 2Ky 5 4 ak2y? 20k
(2cm— 2k;)? > 16k2y?m+ 8k;cm+ 4c?m? holds and the = (2c- W) —4( m T m T
remainder of the complex plane only where the inequalityor
m(cy —¢)2 < 4k2(62 — y?) — 4ky(a + c) holds.

c?) >0,

2
(2¢ _2_k1) > 16k1V2+80_k1
m m m

or
(2c— 2k;)? > 16k3y?m+ 8ckym-+ 4c?m?.

+4c?,
Proof. (1) If 8 = 0, thenA =iy, andA? = —y?, so the
given problem reduces to:

!
Y () + —V POy xe 0.4 (10) Hence, the proof of part (1) is completed.
y(a) =y(0)— y(0) = 0 (11) (2) We consider the cage= 0.
We multiplying equation 1) by y(x) and the adjoint
a_ equation 6) by y(x) and adding the resulting equations,
| 900y e a.a >0 (12) e get
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—(Y’(X)V_OZ() +Y'(X)y(X) +
= (A2+2)p(M)ly(x)>.
Integrating both sides of this equation from O upaiave
obtain

- Of (v (9(X) + ¥ (<)y())dx -+ g (Y (¥¥(x)

+Y (y(9)dx = (A2+ 1) z p(x)]y(x)|?dx.

(Y 09y +¥ (X)y(x))

Integrating by parts and using the equatioBs (@) and
(7)-(8), we conclude

21y (0)|2 + 2/ Y (0 2dx+ 200 = (A2+ A )k, (14)
0

a
whereky = [ p(X)|y(x)[2dx.
0
Previously we have assumed toat |y(0)|? > 0 and since

(A2+17) = 2(6%— ),
thence equationld) reduces to

2+ 2/|y(x)|2dx+ 20 = 21 (62— \?),
0

or

Y0P k(62 =)~ (@+0).  (5)
0

From theorem (2.1) we have proved that
a
y(@) < 2—%(({ Y (x)[2d) M2 + [y(0) 2,

if we put|y(a)|?> = ¢; > 0, then this inequality becomes

¢ < \\//__/b/ 2dx)¥? +-c,

or
vm /
2—\/k—1(01— /|)/ x)|2dx) 2,
then A
Je (@ =< [y 0of2ax. (16)
0

From equations1(5) and (L6), we conclude that

i (@~ 0 < k(82— Y)— (a0,
hence
m(cy — €)% < 4k3(62 — y?) — ke (a +c©).

Thus, the proof of the second part is finished; thence the

proof of Lemma 2.1 is ended.

3 Estimations of the first and second
derivatives of eigenfunctions to the problem

(1)-(3)

The boundedness for norm of the first and second
derivatives of eigenfunctions for the probled)-(3) are
presented.

Theorem 3.1. Suppose tha® # 0 and the weight
function p(x) is integrable on the interva0, a] such that
0 <m< p(x) <M, then for all eigenvalue2, and the
corresponding eigenfunctiong,(x) of the problem
(1)-(3), there are positive constardsand B that do not
depend orp(x) such that the following inequalities holds:

1¥()lcio.q) < AlAn|*/2, and

[IYn(llcio.a <BI)\ %2,
whereB = kM + n ‘2
Proof. Let x be any point in the interval0,a].At the
beginning, we try to prove the first inequality.

Let us consider the foIIowing identity

Va2 = V(%)
/ (S) + Yn(9¥R"(5))ds+ |y (0) 2

0
In view of boundary condition2): y'(0) = y(0), so
M9 = / (SVH(9) + Yo(9TR"(5))ds + lyn(O)
< | [ 9 (9Y4(8) + Yo(95"(S)1dsi + lyn(O)

0
()Y (9)| + Ya(S)YR" (9))dis| + c1,

o\

wherec; = |yn(0)|? > 0.

IYa(I? < I/(Ix/n(S))/é(S)l+Ix/n(S)S/A(S)I)dSI+01
0

Va9 < ZI/M(S))/A(S)IdSIJrCl
0

<2/ [ Wa(slIvh(s)ldsi + cx.
0

Estimating the last integral by the Cauchy-Schwartz
inequality, we obtain

Y091 < 21(  nl(s)de) / YA(9) sy ? + .
0
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Y[ < 2I( / ¥h(9)Pds) 2 / ¥(9) P2+ cu
@

From theorem (2.1) we have shown that (by what we haveo

done in the same way we can going on to prove that)

a
[ V00 = 14 % ~ ke

0

wherek; = fp(x)|y(x)|2dx > 0 andks = |y(0)[*+a >0
and since0|)/,{(s)|2 is positive real number, so is
2|)/,{(s)|2ds, therefore we assun(%?h/n( s)|2ds)Y/2 = by,

where by is a positive real number, thus equatiobr)y
becomes

YA(I? < 2b1|(|An] ke — ka)/? + c1
k3
|yn |2 < 2b1|)\ ||(kl—|— |/\ |2)1/2| -+ C1.
ks

And smce(kﬁ—‘ Tl ) >0, so|(ky+ ,\—‘z)l/2|
= (ks + A—‘z)l/z, thence

\
YA [? < 201 [An| (ks + 3 |2>1/2+c1
k3

[Anf?

C1

12, 9
) |)\n|)7

= [An](201 (k1 + 5=

or

k
< 1/2 1/2

if we putA = \/Zbl(k1+ e 3‘ P2+

which does not depend op(x), the last inequality
becomes

IYA()] < AlAn|*2.

And sincex is any point in the intervg, a], so

max|3/n (x)] < AA[Y2,

thereby

12 () lcioa < AlAal ™2
Then, the proof of the first part is completed.

It remains to prove the second part. From equatigme
have

Ya(¥)| = [AZo(X)¥n(X) = Ya(¥)]
= [AZP(X)Yn(X) + (=Yn(¥)
< [AZP ()Y ()| + | —B/n
= |/\n|2p
< |Anlp

X)[Yn(X)[ +[¥a(¥)

X max [Yn(X)| + maX|)/n(X)
xe(0,a]

—_— o~

)
)]

< Anl*M maXIyn( )|+ max [yn(x)
xe[0,a] xe[0,a]

In the first part we have proved that
MaXc (0.4 [Yn(X)| < AlAn|Y/2, and from theorem (2.1) we
have shown that maxio g [Yn(X)| < k|An|*/?,wherek and
Aare not dependents on

), therefore the last inequality reduces to

YA ()] < [An[PMK|An| Y2+ AlAR | *2
= kM|An|%/2 + A|An|Y/?
A
= PalP2(M -+ )
Ya(¥)| < BlAn>2,
whereB = (kM + A ‘2) does not depend op(x). And

sincex is any point in the intervgD, a], thus

max|)/’ X)| < BJAn”2,

from here we get that

[IYn(¥)Ici0.a] < BlAn |5/2.

Hence, the proof of the second part has finished and
thereby, the proof of theorem (3.1) has finished.

Theorem 3.2. Suppose{yn(X)} be the sequence of
eigenfunctions corresponding to the sequence of
eigenvalueg A, = 6, +iyn|n € N}, where the sequence of
eigenvalues satisfyingn < by|6,|, whereb; > 0 be a
fixed number, then there are constadisand d, where
0 < di < d such that the following double inequality
holds
dy[An[Y2 < [lyn(X)llcpoa < dalAn|™?

,for all natural numbera.
Proof. Here we discuss two casé3ase (1): If 8 = 0.
Case (2):1f6 = 0.

Case (1): 116 # 0, sincey, < bq|6y| it follows that
Vi < bil6nf?

Now, [An| = /62 + 2 <
=|6n|y/1+ b2 = |6,|by,
whereb, = ,/1+ b? > 0. Now let|yn(a)|?> = bs > 0. So

|6n|?+ bZ] 642

> —
then
b3
|6n|b2

lyn(a)] > [An|*2
> dy|An M2,

whered; = ‘etn% > 0.
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Since|lyn(¥)llcioa) > [yn(@)| > d1fAn|*/?, s0

1yn(®)llcioa) = dulAn 2. (18)

And from theorem (2.1) we havé/n(X)||cjoa < K|An|Y/2,
wherek > 0 andk does not depend qm(x). And sincek is

any positive number, which means that the last inequalit

a
whered; = | [ p(X)yn(x)dx| > 0. Therefore
0

lyn(@)| > d1|An|¥2,¥n € N. And since
[Yn(X¥)||cjo.a) > [yn(a)[Vn € N, then

holds for any positive number which does not depends ONy,(x)| = |— yn yh(X)

p(x), hence this means that d, > 0 such that

1Yn(¥)llcioa) < dolAnl 2. (19)

So from equationsl@) and (L9) we conclude that
ci|An|™? < [|yn(¥)||cio. < dolAn|*2.

Thus the casé +# 0 is completely discussed.

Case (2): If 8 = 0. then the given problem becomes

_yn + yn —Vﬁp (x)yn(x), (20)
Yn(@) = Yn(0) —yn(0) =0,

/ ROV, ()dx = @.
0

Integrating equatior20) from O toa with respect tox gives

—Ya(¥)]5+Yn(¥)]§ = _VZ/.D )Yn(X

IYn(®)llcioa) = dulAa2 ¥ € N. (21)
yAgaln from equatlonZ{O) We have
Véap(x Vap(0)
!
X
vnp y v%p(X) el
1
OO a0
!
+
Vnp ||3/ X)|+]- 20(X |I>/n
" V2o(x N”
(sincey?, p(x) > 0). From mequalltym < p(x) it follows
that
1< 1
m > 500 therefore
X)| <
|Yn( )| Vnp |3/n Vnp |3/n
< _—_ |
< myzn/n(xﬂ mynzn/n
< !
< g 001+ a3y

Sincem—yz, [YA(X)], [yn(X)| > 0O, thus we assume that

In view of boundary conditions, the last equations reduced, = my2(|)/n( )| -+ [YA(X)]) > O, hence the last inequality

to:

¥ [ P0yn(xdx
0
Wn(@)] = 1 [ pOyn(x)ax
0

(@] = 142 | POOY(0X,
0
or

¥n(@)] = Anf?l [ P¥Ya(00K
0

W@l > A2 [ (a0
0

= d1|/\n|1/27

becomes

[Yn(X)| < dg,¥n € N and sincecis any point in the interval
[0,4], then

MaXcpo.q [Yn(X)| < da,¥n € N, it follows that

[[Yn(¥)||cio,a) < d2 < da2|A |l/2,Vn €N. (22)
From equationsa1) and @2) we get

d1fA Y2 < [lyn(¥)||cioq < d2A|Y2, ¥ne N.

Thence, the proof of theorem (3.2) is completed.

4 Conclusions

In this study, we obtain the assessment of eigenfunctions,
the behavior of eigenvalues, and the boundedness of the
first and second derivatives of eigenfunctions for the
boundary value theorem. Which contains the first
derivative with the boundary condition but doesnt contain
the spectral parameter.
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