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Abstract: In this work, curves of constant breadth are defined and sdvaeacterizations of closed dual curves of constant breadth
according to Bishop frame are presented in dual EuclideanespAlso, it has been obtained that a third order vectoiftgrdntial
equation in dual Euclidean 3-space.
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1 Introduction The symbole designated the dual unit with the property
€2 = 0 for € # 0. Thereafter, a good amount of research
The curves of constant breadth were introduced i [ work has been done on dual numbers, dual functions and

[2] had obtained a problem to determine whether there?S Well as dual curvedp]. L .
exist space curve of constant breadth or not, and he 1hen dual angle is introduced, which is defined as

defined breadth for space curves on a surface of constarﬁ: 0+ £6*, where® is the projected angle between two
breadth. FurthermoreSI defined the curve of constant spears and* is the shortest distance between them. In
breadth on the sphere. 18][ some geometric properties recent years, dual numbers have been applied to study the
of plane curves of constant breadth are given. In recentlynotion of a line in space; they seem even to be most
work [4], these properties are studied in the Euclideanappropriate way for this end and they have triggered use
3-space B Moreover, In [L§], this kind curves are of dual numbers in kinematical problems.

studied in four dimensional Euclidean spacé E [6] The theory of relativity opened a door for using of
expressed some characterizations of timelike curves ofiegenerate submanifolds, and the researchers treated
constant breadth in Minkowski 3-space and partially null some of classical differential geometry topics, extended t
curves of constant breadth in semi-Riemannian space.. Iporentzian manifolds. In light of the existing literature,
recently works this topic were studied and further ymaz deal with the timelike dual curves of constant
characterizations related to different geometries werepreadth in dual Lorentzian space, s&€]]

obtained, see7], [8], [18], characterizations of Curves of  The setD of dual numbers is commutative ring with
Constant Breadth in Galilean 3-Spac GJ]. the operations- and- The set

D3—DxDxD= {$ —$red i, 9" eE3}
2 Dual Curves of Constant Breadth

According to Dual Bishop Frame in D is a module over the rin@, Let us denoteé = a+ £a*
A A
andb = b+ éb*. The Euclidean inner product afandb
[11] introduced dual numbers with the set is defined by
A " " A
D= {X=X+8X XX € R} <ab>=<ab>+te(<a’,b>+ <ab">).
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A
For$ #0, the normH$ H of $ is defined by If we call 6 as the angle between the tangent of the curve
A
N P N . . .,deé _A
H¢H _ /< 6.6 >. C at point¢ with a given direction and conS|deé§ T

A
dg A
ASAN A .
Let {T, N1, Nz} be dual Bishop frame of the differential andg =T , then we have (3) as follow;

dual space curve in the dual spabé. Then the dual
Bishop frame equations are

dy Lk 4k
|4 1 2 A
ALA A A A —=0.—+A.—-—1(6
T = ki.N1+ko.N» dé ? ? (6)
Al AA A A
Ny = kT @ 5 ks
R (4)
! A A A A
N, = —ko. T de T
3 n dA k
whereky = ki + €k; andk, = ko + €k; are nowhere pure — = _972
dual natural curvatures and do T
A
k=Kt ek’ = /K& + K+ 26 (kakj +keks). 4
A wheref(6) = 7+ =
A Kor A de T T
0(s) = 8+ €6* = Arctan(:2), T(s) = ds
k1
Let ¢ = ¢(s) be a simple closed dual curve in*D R ﬁ R Q
These curves will be denoted & The normal plane at LetK, = Tl andK, = 72, and this case using system

every pointP on the curve meets the curve at a single _ T T .
pointQ which is different fromP. We call the poinQthe  of ordinary differential equations (4), we have the
opposite point oP. We consider dual curve in the claSs  following dual third order differential equation with

A A A
as in ] having parallel tangent and T in opposite ~ féspecttoyas;

A
directions at the opposite poin(?vaanolgr of the curve. A

simple closed dual curve of constant breadth having d3§/ IQ IQ d@/
parallel tangents in opposite directions at opposite goint A3 +(Ki+Ka) =%
can be represented with respect to dual Frenet frame by dé do
the equation 4 A2 g g
A A A A A
A A AN AN AN +[—(Ky) +K1—(K1)—(K2)]y
E=0+yT+ON+ AN @) [dg AT ] ®)
A A
where 9,6 andA are arbitrary functions ofs. 50 ) )
Differentiating both sides of equation (2), we get +(f &dé).d—(ﬁl) + d_f2 -0
df ds dy An 4 d5 "1 gp d6
ac _Sf _ _y_ A _ A A AN do A
ds ds _(ds O0.ky —A ko + )T + (y.ky + dS)Nl
N A R Corollary 2.1 : The obtained dual differential
+ (Q/.k2+ %)Nz equation of third order (5) is a characterizations for the
ds simple closed dual curvé. By means of solution of it,
A A ) position vector of a simple closed dual curve can be
considerT =—T; we have the following system of gatermined.
equations
a Let us investigate the solution of the equation (5) in a
dy AA AA d . Lob A
ay _ O.ky+A ko — %% special case leK;,K, and f(8) be constant. Then
ds ds equation (5) has the form
- Y ©)
R By A A dy
%__Aﬁ ?+(K1+K2)—/\:0- (6)
ds @ d6 de
(@© 2016 NSP

Natural Sciences Publishing Cor.



Math. Sci. Lett5, No. 1, 75-78 (2016) www.naturalspublishing.com/Journals.asp NS = 77

The solution of the equation (6) yields the components  This equation is characterizations for the components.
However, the general solution of it has not been found.

A A2 A A CAZ A A D hi ; ; : ial |
y = A+Bcog(K; +K2)8] +Csin|(K, + K2) 6] ue toAt is, AWe mvestlAgate in a special case, let us
A 5 A suppos& 1 = Ky, =0 andt # 0.
A A A A A A H H
5 f{(A+Bco§(K1+K2)9]+Csin[(K1+K2)9]) kAl}de In this case, we rewrite (13)
0
T d3§/
— 710
A A 3 .
A 6 AZ A A A A Kyl A A
A =- [{(A+Bcog(K,+K2)8]+Csin|(K,+K;)6]) -~ }df de
0

(7) By this way, we have such that the components
Corollary 2.2: Position vector a simple closed curve
with constant dual curvature and constant dual torsion can A f Lcs
be obtained in terms of (7)(7), and (7. =3

A
If the distance between opposite pointscﬁoiamdgr is 3 constant
constant, then we can write that N
A2 A = constant.
y +5 + A =constant (8)
Differentiating with respect t@ 3 Conclusion
Ad@/ /\d5 /\d/\ In this work we extened the curves of constant breadth
— +0—+A—F=0 (9)  concept to dual curves of dual Euclidean space according
deé de de to type-2 Bishop frame. Thereafter, we determined
By virtue of (4), the differential equation (9) yields relations using dual Bishop derivate formulau. In the light
of the obtained result, we characterized dual constant
9 f(é) -0 (10) breadth of the curves according to some special cases. We

also express some open problems and theorems for

further studies.
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breadth can be written as

A
Case 1:9: 0. Then we have other componedsnd

A A A A A A
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