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1 Introduction

Potential theory has played a paramount rôle in both
analysis and computation for boundary value problems
for elliptic partial differential equations. Numerous
applications can be found in fracture mechanics, fluid
mechanics, elastodynamics, electromagnetics, and
acoustics. Results from potential theory allow us to
represent boundary value problems in integral equation
form. For problems with known Green’s functions, an
integral equation formulation leads to powerful numerical
approximation schemes.

The double-layer potential plays an important rôle in
solving boundary value problems of elliptic equations.
The representation of the solution of the (first) boundary
value problem is sought as a double-layer potential with
unknown density and an application of certain property
leads to a Fredholm equation of the second kind for
determining the function (see [18] and [29]).

By applying a method of complex analysis (based
upon analytic functions), Gilbert [16] constructed an
integral representation of solutions of the following
generalized bi-axially Helmholtz equation:

Hλ
α ,β (u)≡ uxx+uyy+

2α
x

ux+
2β
y

uy−λ 2u

= 0
(

Hλ
α ,β

)

(

0< α <
1
2

; 0< β <
1
2

)

,

where α, β and λ are constants. Whenλ = 0, this
equation is known as the equation of the generalized
axially symmetric potential theory whose name is due to
Weinstein who first considered fractional dimensional
space in potential theory (see [35] and [36]). The special
case whereλ = 0 was also investigated by (among
others) Erdélyi (see [6] and [7]), Gilbert (see [10], [12],
[13], [14] and [15]), Gilbert and Howard [17], Ranger
[31] and Henrici (see [20] and [22]). Various interesting

problems associated with the equation
(

Hλ
α ,β

)

were

studied by many authors (see, for example, [1], [2], [3],
[9], [23], [24], [25], [26], [27], [28], [30], [32] and [34]).

Fundamental solutions of the equation
(

Hλ
α ,β

)

were

constructed recently (see [19]). In fact, the fundamental

solutions of the equation
(

Hλ
α ,β

)

when λ = 0 can be

expressed in terms of Appell’s hypergeometric function in
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two variables of the second kind, that is, the Appell
function

F2(a,b1,b2;c1,c2;x,y)

defined by (see [8, p. 224, Eq. 5.7.1 (7)]; see also [4, p. 14,
Eq. (12)] and [33, p. 23, Eq. 1.3 (3)])

F2 (a,b1,b2;c1,c2;x,y)

=
∞

∑
m,n=0

(a)m+n (b1)m(b2)n

(c1)m(c2)n

xm

m!
yn

n!
, (1.1)

where(κ)ν denotes thegeneralPochhammer symbol or
theshifted factorial, since

(1)n = n! (n∈N0 := N∪{0}; N := {1, 2, 3, · · · }) ,

which is defined (forκ , ν ∈ C), in terms of the familiar
Gamma function, by

(κ)ν :=
Γ (κ +ν)

Γ (κ)

=







1 (ν = 0; κ ∈ C\ {0})

κ(κ +1) · · ·(κ +n−1) (ν = n∈ N; κ ∈C),

it being understoodconventionallythat (0)0 := 1 and
assumedtacitly that theΓ -quotient exists. We thus obtain
the following results:

q1 (x,y;x0,y0) = k1
(

r2)−α−β

·F2(α +β ,α,β ;2α,2β ;ξ ,η) , (1.2)

q2 (x,y;x0,y0) =k2
(

r2)α−β−1
x1−2αx1−2α

0

·F2(1−α +β ,1−α,β ;2−2α,2β ;ξ ,η) , (1.3)

q3 (x,y;x0,y0) =k3
(

r2)−α+β−1
y1−2β y1−2β

0

·F2(1+α −β ,α,1−β ;2α,2−2β ;ξ ,η) (1.4)

and

q4(x,y;x0,y0) =k4
(

r2)α+β−2
x1−2αy1−2β x1−2α

0 y1−2β
0

·F2(2−α −β ,1−α,1−β ;2−2α,2−2β ;ξ ,η) ,
(1.5)

where the constantsk1 to k4 are determined as follows
upon solving boundary value problems for the equation
(

Hλ
α ,β

)

:

k1 =
22α+2β

4π
Γ (α)Γ (β )Γ (α +β)

Γ (2α)Γ (2β)
, (1.6)

k2 =
22−2α+2β

4π
Γ (1−α)Γ (β )Γ (1−α +β)

Γ (2−2α)Γ (2β)
, (1.7)

k3 =
22+2α−2β

4π
Γ (α)Γ (1−β)Γ (1+α −β)

Γ (2α)Γ (2−2β)
, (1.8)

k4 =
24−2α−2β

4π
Γ (1−α)Γ (1−β)Γ (2−α −β)

Γ (2−2α)Γ (2−2β)
, (1.9)











r2

r2
1

r2
2











=











(x− x0)
2+(y− y0)

2

(x+ x0)
2+(y− y0)

2

(x− x0)
2+(y+ y0)

2











,

ξ =
r2− r2

1

r2 and η =
r2− r2

2

r2 . (1.10)

The fundamental solutions given by (1.2) to (1.5)
possess the following properties:

x2α ∂
∂x

{q1 (x,y;x0,y0)}

∣

∣

∣

∣

x=0
= 0, (1.11a)

y2β ∂
∂y

{q1 (x,y;x0,y0)}

∣

∣

∣

∣

y=0
= 0, (1.11b)

q2 (x,y;x0,y0)|x=0 = 0, (1.12a)

y2β ∂
∂y

{q2 (x,y;x0,y0)}

∣

∣

∣

∣

y=0
= 0, (1.12b)

x2α ∂
∂x

{q3(x,y;x0,y0)}

∣

∣

∣

∣

x=0
= 0, (1.13a)

q3 (x,y;x0,y0)|y=0 = 0, (1.13b)

q4(x,y;x0,y0)|x=0 = 0 (1.14a)

and

q4 (x,y;x0,y0)|y=0 = 0. (1.14b)

Here, by making use of the fundamental solutions
given by (1.2) to (1.5) in the domainΩ defined by

Ω ⊂ R
2
+ := {(x,y) : x> 0 and y> 0} , (1.15)

we aim at investigating a double-layer potential for the

equation
(

H0
α ,β

)

. Furthermore, we prove some results

(see Lemmas 1 to 3 and Theorem 3) on limiting values of
the double-layer potential in (3.2). These results are
(potentially) useful for future works in which boundary

value problems for the equation
(

H0
α ,β

)

are investigated

in more general domains.
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2 Green’s Formula

We begin by considering the following identity:

x2αy2β
[

uH0
α ,β (v)− vH0

α ,β (u)
]

=
∂
∂x

[

x2αy2β (vxu− vux)
]

+
∂
∂y

[

x2αy2β (vyu− vuy)
]

. (2.1)

Integrating both parts of the identity (2.1) on a domain
Ω in (1.15), and using Green’s formula, we find that

∫ ∫

Ω
x2αy2β

[

uH0
α ,β (v)− vH0

α ,β (u)
]

dx dy

=

∫

S

x2αy2β u(vxdy− vydx)

− x2αy2β v(uxdy−uydx) , (2.2)

whereS= ∂Ω is the boundary of the domainΩ .
If u(x,y) and v(x,y) are solutions of the equation

(

H0
α ,β

)

, we find from (2.2) that

∫

S

x2αy2β
(

u
∂v
∂n

− v
∂u
∂n

)

ds= 0, (2.3)

where

∂
∂n

=
dy
ds

∂
∂x

−
dx
ds

∂
∂y

,

dy
ds

= cos(n,x) and
dx
ds

=−cos(n,y) , (2.4)

n being the exterior normal to the curveS. Here cos(n,x)
denotes the cosine of the angle between thepositive
x-direction and theoutwardnormal to the curveS at the
point(x,y) onS. Similarly, cos(n,y) denotes the cosine of
the angle between thepositive y-direction and the
outwardnormal to the curveSat the point(x,y) on S. We
also obtain the following identity:
∫ ∫

Ω
x2αy2β (u2

x +u2
y

)

dxdy=
∫

S

x2αy2β u
∂u
∂n

ds, (2.5)

whereu(x,y) is a solution of the equation
(

H0
α ,β

)

. The

special case of (2.3) whenv= 1 reduces to the following
form:

∫

S

x2αy2β ∂u
∂n

ds= 0. (2.6)

We note from (2.6) that the integral of the normal

derivative of a solution of the equation
(

H0
α ,β

)

with a

weight x2αy2β along the boundaryS of the domainΩ in
(1.15) is equal to zero.

3 A Double-Layer Potentialw(1) (x0,y0)

Let Ω in (1.15) be a domain bounded by intervals(0,a)
and (0,b) of the x- andy-axes, respectively, and a curve
Γ with the extremities at pointsA(a,0) andB(0,b). The
parametric equations of the curveΓ are given by

x= x(s) and y= y(s) (s∈ [0, l ]),

wherel denotes the length ofΓ . We assume the following
properties of the curveΓ :

(i) The functionsx= x(s) andy= y(s) have continuous
derivativesx′ (s) andy′ (s) on a segment[0, l ] and do
not vanish simultaneously;

(ii) The second derivativesx′′ (s) and y′′ (s) satisfy the
Hölder condition on[0, l ], wherel denotes the length
of the curveΓ ;

(iii) In some neighborhoods of pointsA(a,0) andB(0,b),
the following conditions are satisfied:

∣

∣

∣

∣

dx
ds

∣

∣

∣

∣

≦ cy1+ε (s) and

∣

∣

∣

∣

dy
ds

∣

∣

∣

∣

≦ cx1+ε (s) (3.1)

(0< ε < 1; c= a constant),

(x,y) being the coordinates of a variable point on the
curveΓ .

Consider the following integral

w(1) (x0,y0)

=

∫ l

0
x2αy2β µ1 (s)

∂
∂n

{q1(x,y;x0,y0)} ds, (3.2)

where the densityµ1 (s) ∈C[0, l ] andq1 is given in (1.2).
We call the integral (3.2) adouble-layer potential with
densenessµ1 (s).

We now investigate some properties of a double-layer
potentialw(1) (x0,y0) with densenessµ1 (s).

Lemma 1.The following formula holds true:

w(1)
1 (x0,y0) =



















−1
(

(x0,y0) ∈ Ω
)

− 1
2

(

(x0,y0) ∈ Γ
)

0
(

(x0,y0) 6∈ Ω̄
)

,

(3.3)

where a domainΩ and the curveΓ are described as in
this section andΩ̄ := Ω ∪Γ .

Proof.

Case 1.When (x0,y0) ∈ Ω , we cut a circle centered at
(x0,y0) with a small radiusρ off the domainΩ and
denote the remaining part byΩ ρ and the circuit of the
cut-off-circle byCρ . The functionq1 (x,y;x0,y0) in (1.2)
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is a regular solution of the equation
(

H0
α ,β

)

in the domain

Ω ρ . Using the following derivative formula of Appell’s
hypergeometric functionF2 (see [4, p. 19, Eq. (20)]):

∂ m+n

∂xm∂yn {F2 (a,b1,b2;c1,c2;x,y)}

=
(a)m+n (b1)m(b2)n

(c1)m(c2)n

·F2(a+m+n,b1+m,b2+n;c1+m,c2+n;x,y) ,
(3.4)

we have

∂
∂x

{q1 (x,y;x0,y0)}=−2(α +β)k1
(

r2)−α−β−1
(x− x0)

·F2 (α +β ,α,β ;2α,2β ;ξ ,η)

−2(α +β)k1
(

r2)−α−β−1

·x0 F2 (α +β +1,α +1,β ;2α +1,2β ;ξ ,η)

−2k1
(

r2)−α−β−1
(x− x0)

·

[

(α +β)α
2α

ξ F2(α +β +1,α +1,β ;2α +1,2β ;ξ ,η)

+
(α +β)β

2β
ηF2(α +β +1,α,β +1;2α,2β +1;ξ ,η)

]

.

(3.5)

By applying the following known contiguous relation
(see [4, p. 21]):

b1

c1
x F2 (a+1,b1+1,b2;c1+1,c2;x,y)

+
b2

c2
y F2 (a+1,b1,b2+1;c1,c2+1;x,y)

= F2(a+1,b1,b2;c1,c2;x,y)−F2(a,b1,b2;c1,c2;x,y)
(3.6)

to (3.5), we obtain

∂
∂x

{q1(x,y;x0,y0)}=−2(α +β)k1x0
(

r2)−α−β−1

·F2(α +β +1,α +1,β ;2α +1,2β ;ξ ,η)

−2(α +β)k1 (x− x0)
(

r2)−α−β−1

·F2(α +β +1,α,β ;2α,2β ;ξ ,η) . (3.7)

Similarly, we find that

∂
∂y

{q1 (x,y;x0,y0)}=−2(α +β)k1y0
(

r2)−α−β−1

·F2(α +β +1,α,1+β ;2α,1+2β ;ξ ,η)

−2(α +β)k1 (y− y0)
(

r2)−α−β−1

·F2(α +β +1,α,β ;2α,2β ;ξ ,η) . (3.8)

Thus, with the help of (3.7) and (3.8), it follows from
(1.2) and (2.4) that

∂
∂n

{q1 (x,y;x0,y0)}=−(α +β)k1
(

r2)−α−β

·F2(α +β +1,α,β ;2α,2β ;ξ ,η)
∂

∂n

{

ln r2}

+2(α +β)k1y0
(

r2)−α−β−1

·F2(α +β +1,α,1+β ;2α,1+2β ;ξ ,η)
d
ds

{x(s)}

−2(α +β)k1x0
(

r2)−α−β−1

·F2(α +β +1,α +1,β ;2α +1,2β ;ξ ,η)
d
ds

{y(s)} .

(3.9)

Applying (2.6) and considering the identity (1.11), we get
the following formula:

w(1)
1 (x0,y0) = lim

ρ→0

∫

Cρ

x2αy2β ∂
∂n

{q1 (x,y;x0,y0)}ds.

(3.10)
Substituting from (3.9) into (3.10), we find that

w(1)
1 (x0,y0)

=−(α +β)k1 lim
ρ→0

∫

Cρ

x2αy2β (r2)−α−β

−2(α +β )k1x0 lim
ρ→0

∫

Cρ

x2αy2β (r2)−α−β−1

·F2(1+α +β ,1+α,β ;1+2α,2β ;ξ ,η)
d
ds

{y(s)}ds

+2(α +β)k1y0 lim
ρ→0

∫

Cρ

x2αy2β (r2)−α−β−1

·F2(1+α +β ,α,1+β ;2α,1+2β ;ξ ,η)
d
ds

{x(s)}ds

=: −(α +β)k1 lim
ρ→0

J1 (x0,y0)−2(α +β)k1x0 lim
ρ→0

J2 (x0,y0)

+2(α +β)k1y0 lim
ρ→0

J3 (x0,y0) , (3.11)

whereJ1, J2 andJ3 are the corresponding integrals in the
first equality. Now, by introducing the polar coordinates:
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x= x0+ρ cosϕ and y= y0+ρ sinϕ ,

we get

J1 (x0,y0) = lim
ρ→0

2π
∫

0

(x0+ρ cosϕ)2α (y0+ρ sinϕ)2β

·
(

ρ2)−α−β
F2 (α +β +1,α,β ;2α,2β ;ξ ,η)dϕ .

(3.12)

By using the following known formulas (see [5, p. 253,
Eq. (26)]; see also [8, p. 113, Eq. (4)]):

F2 (a,b1,b2;c1,c2;x,y)

=
∞

∑
j=0

(a) j (b1) j (b2) j

(c1) j (c2) j

(xy) j

j!

· 2F1 (a+ j,b1+ j;c1+ j;x)

· 2F1 (a+ j,b2+ j;c2+ j;y) (3.13)

and

2F1 (a,b;c,x)

= (1− x)−b
2F1

(

c−a,b;c,
x

x−1

)

, (3.14)

we obtain

F2 (a,b1,b2;c1,c2;x,y)

= (1− x)−b1 (1− y)−b2

·
∞

∑
j=0

(a) j (b1) j (b2) j

(c1) j (c2) j j!

(

x
1− x

) j ( y
1− y

) j

· 2F1

(

c1−a,b1+ j;c1+ j;
x

x−1

)

· 2F1

(

c2−a,b2+ j;c2+ j;
y

y−1

)

, (3.15)

where
2F1(a,b;c;x)

is Gauss’s hypergeometric function (see [8, p. 69, Eq. (2)]).
Hence we have

F2 (1+α +β ;α,β ;2α,2β ;ξ ,η)

=
(

ρ2)α+β (ρ2+4x2
0+4x0ρ cosϕ

)−α

·
(

ρ2+4y2
0+4y0ρ sinϕ

)−β
P11, (3.16)

where

P11=
∞

∑
j=0

(1+α +β) j (α) j (β ) j

(2α) j (2β ) j ( j!)2

·

(

4x2
0+4x0ρ cosϕ

ρ2+4x2
0+4x0ρ cosϕ

) j

·

(

4y2
0+4y0ρ sinϕ

ρ2+4y2
0+4y0ρ sinϕ

) j

· 2F1

(

α −β −1,α + j;2α + j;
4x2

0+4x0ρ cosϕ
ρ2+4x2

0+4x0ρ cosϕ

)

· 2F1

(

β −α −1,β + j;2β + j;
4y2

0+4y0ρ sinϕ
ρ2+4y2

0+4y0ρ sinϕ

)

.

Using the well-known Gauss’s summation formula for
2F1 (see [8, p. 112, Eq. (46)])

2F1 (a,b;c;1) =
Γ (c)Γ (c−a−b)
Γ (c−a)Γ (c−b)

(

ℜ(c−a−b)> 0; c 6= 0,−1,−2, · · ·
)

,

we obtain

lim
ρ→0

P11=
Γ (2α)Γ (2β )

Γ (α)Γ (β )Γ (1+α +β)
. (3.17)

Thus, by virtue of the identities (3.12), (3.16), and (3.17),
we get

(α +β)k1 lim
ρ→0

J1 (x0,y0) = 1. (3.18)

Similarly, by considering the corresponding identities and
the fact that

lim
ρ→0

ρ lnρ = 0,

we find that

2(α +β)k1x0 lim
ρ→0

J2 (x0,y0)

= 2(α +β)k1y0 lim
ρ→0

J3 (x0,y0)

= 0. (3.19)

Hence, by view of (3.18) and (3.19), the formula (3.11) in
the case of(x0,y0) ∈ Ω becomes

w(1)
1 (x0,y0) =−1. (3.20)

Case 2.When(x0,y0) ∈ Γ , we cut a circleCρ centered at
(x0,y0) with a small radiusρ off the domainΩ and
denote the remaining part of the curve byΓ −Γρ . Let C

′

ρ
denote a part of the circleCρ lying inside the domainΩ .
We consider the domainΩρ which is bounded by a curve

c© 2015 NSP
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Γ −Γρ , C
′

ρ and the segments[0,a] and[0,b] along thex-
andy-axes, respectively. Then we have

w(1)
1 (x0,y0)

=

∫ l

0
x2αy2β ∂

∂n
{q1(x,y;x0,y0)}ds

= lim
ρ→0

∫

Γ−Γρ

x2αy2β ∂
∂n

{q1(x,y;x0,y0)}ds. (3.21)

When the point(x0,y0) lies outside the domainΩρ , it is
found that, in this domain,q1 (x,y;x0,y0) is a regular

solution of the equation
(

H0
α ,β

)

. Therefore, by virtue of

(2.6), we have

∫

Γ−Γρ

x2αy2β ∂
∂n

{q1 (x,y;x0,y0)}ds

=

∫

C′
ρ

x2αy2β ∂
∂n

{q1 (x,y;x0,y0)}ds. (3.22)

Substituting from (3.22) into (3.21), we get

w(1)
1 (x0,y0)

=
∫ l

0
x2αy2β ∂

∂n
{q1 (x,y;x0,y0)}ds

= lim
ρ→0

∫

C
′
ρ

x2αy2β ∂
∂n

{q1 (x,y;x0,y0)}ds. (3.23)

Similarly, by again introducing the polar coordinates
centered at the point(x0,y0), we find that

w(1)
1 (x0,y0) =−

1
2
. (3.24)

Case 3.When (x0,y0) 6∈ Ω̄ , it is noted that the function

q1 (x,y;x0,y0) is a regular solution of the equation
(

H0
α ,β

)

.

Hence, in view of the formula (2.6), we have

w(1)
1 (x0,y0)

=
∫ l

0
x2αy2β ∂

∂n
{q1 (x,y;x0,y0)}ds

= 0. (3.25)

The proof of Lemma 1 is thus completed.

Lemma 2.The following formula holds true:

w(1)
1 (x0,0) =



















−1
(

x0 ∈ (0,a)
)

− 1
2 (x0 = 0 or x0 = a)

0 (a< x0) .

(3.26)

Proof. For considering the first case whenx0 ∈ (0,a),
we introduce a straight liney = h for a sufficiently small
positive real numberh and consider a domainΩh which is
the part of the domainΩ lying above the straight line
y= h. Applying the formula (2.6), we obtain

w(1)
1 (x0,0)

= lim
h→0

∫ x1

0
x2αy2β ∂

∂y
{q1(x,y;x0,0)}

∣

∣

∣

∣

y=h
dx,

(3.27)

wherex1 (ε) is an abscissa of a point at which the straight
line y= h intersects the curveΓ . It follows from (3.8) and
(3.27) that

w(1)
1 (x0,0)

=−2(α +β)k1 lim
h→0

h1+2β
∫ x1

0
x2α

·

2F1

(

α +β +1,α;2α;−
4xx0

(x− x0)
2+h2

)

[

(x− x0)
2+h2

]α+β+1
dx.

(3.28)

Now, by using the hypergeometric transformation
formula (3.14) inside the integrand of (3.28), we have

w(1)
1 (x0,0)

=−2(α +β)k1 lim
h→0

h1+2β
∫ x1

0
x2α

·

2F1

(

α −β −1,α;2α;
4xx0

(x+ x0)
2+h2

)

[

(x− x0)
2+h2

]β+1[

(x+ x0)
2+h2

]α dx,

(3.29)

which, upon settingx= x0+ht inside the integrand, yields

w(1)
1 (x0,0)

=−2(α +β)k1 lim
h→0

∫ l2

l1
(x0+ht)2α

·

2F1

(

α −β −1,α;2α;
4x0 (x0+ht)

(2x0+ht)2+h2

)

(1+ t2)
β+1

[

(2x0+ht)2+h2
]α dt,

(3.30)

where

l1 =−
x0

h
and l2 =

x1− x0

h
.
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Considering

lim
h→0

2F1

(

α −β −1,α;2α;
4x0 (x0+ht)

(2x0+ht)2+h2

)

= 2F1(α −β −1,α;2α;1)

=
Γ (2α)Γ (1+β)

(α +β)Γ (α +β)Γ (α)

and
∫ ∞

−∞

dt

(1+ t2)β+1
=

πΓ (2β)
22β−1βΓ 2 (β )

,

we find from (3.30) that

w(1)
1 (x0,0) =−1. (3.31)

The otherthreecases whenx0 = 0, x0 = a andx0 > a
can be proved by using arguments similar to those detailed
above in the first case.

This evidently completes our proof of Lemma 2.

Lemma 3.The following formula holds true:

w(1)
1 (0,y0) =



















−1 (y0 ∈ (0,b))

− 1
2 (y0 = 0 ory0 = b)

0 (b< y0) .

(3.32)

Proof. The proof of Lemma 3 would run parallel to that
of Lemma 2.

Theorem 1. For any points(x,y) and (x0,y0) ∈ R2
+ and

x 6= x0 andy 6= y0, the following inequality holds true:

|q1(x,y;x0,y0)|≦ k1
Γ (2α)Γ (2β)

Γ 2 (α +β)
(

r2
1

)−α (
r2
2

)−β

· 2F1

[

α,β ;α +β ;

(

1−
r2

r2
1

)(

1−
r2

r2
2

)]

, (3.33)

whereα and β are real parameters with
(

0< α, β <
1
2

)

as in the equation
(

Hλ
α ,β

)

(with λ = 0), and r, r1 and r2
are as in(1.10).

Proof. It follows from (3.15) that

q1 (x,y;x0,y0) = k1
(

r2
1

)−α (
r2
2

)−β

·
∞

∑
j=0

(α +β) j (α) j (β ) j

(2α) j (2β ) j j!

(

1−
r2

r2
1

) j (

1−
r2

r2
2

) j

· 2F1

(

α −β ,α + j;2α + j;1−
r2

r2
1

)

· 2F1

(

β −α,β + j;2β + j;1−
r2

r2
2

)

. (3.34)

Now, in view of the following inequalities:

2F1

(

α −β ,α + j;2α + j;1−
r2

r2
1

)

≦
Γ (2α)Γ (β )(2α) j

Γ (α +β)Γ (α) (α +β) j

and

2F1

(

β −α,β + j;2β + j;1−
r2

r2
2

)

≦
Γ (2β)Γ (α)(2β ) j

Γ (α +β)Γ (β ) (α +β) j
,

we find from (3.34) that the inequality (3.33) holds true.
Hence Theorem 1 is proved.

By virtue of the following known formula [8, p. 117,
Eq. (12)]:

2F1 (a,b;a+b;z)

=−
Γ (a+b)

Γ (a)Γ (b) 2F1(a,b;1;1− z) ln(1− z)

+
Γ (a+b)

[Γ (a)]2[Γ (b)]2

∞

∑
j=0

Γ (a+ j)Γ (b+ j)

( j!)2

· [2ψ (1+ j)−ψ (a+ j)−ψ (b+ j)] (1− z) j

(

|arg(1−z)|≦ π−ε (0< ε <∞); a,b 6= 0,−1,−2, · · ·
)

,

where

ψ(z) :=
d
dz

{lnΓ (z)} =
Γ ′(z)
Γ (z)

or, equivalently,

lnΓ (z) =
∫ z

1
ψ(t)dt,

we observe from (3.33) thatq1 (x,y;x0,y0) has a
logarithmic singularity atr = 0.

Theorem 2.If the curveΓ satisfies conditions(3.1), then
the following inequality holds true:

∫

Γ

x2αy2β
∣

∣

∣

∣

∂
∂n

{q1(x,y;x0,y0)}

∣

∣

∣

∣

ds≦C1,

where C1 is a constant.

Proof. Theorem 2 follows by suitably applying Lemmas
1 to 3.
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Theorem 3.The following limiting formulas hold true for
a double-layer potential(3.2):

w(1)
i (t) =−

1
2

µ1 (t)+
∫ l

0
µ1 (s)K1 (s, t)ds (3.35)

and

w(1)
e (t) =

1
2

µ1 (t)+
∫ l

0
µ1 (s)K1 (s, t)ds, (3.36)

where, as usual, µ1 (t) ∈ [0, l ] ,

K1 (s, t) = [x(s)]2α [y(s)]2β

·
∂
∂n

{q1 [x(s) ,y(s) ;x0 (t) ,y0 (t)]} (1)

(

(x(s) ,y(s)) ∈ Γ ; (x0 (t) ,y0 (t)) ∈ Γ
)

,

w(1)
i (t) and w(1)e (t) are limiting values of the double-layer

potential(3.2)at
(

x0 (t) ,y0 (t)
)

→ Γ

from the inside and the outside, respectively.

Proof. We find from Lemma 1, in conjunction with
Theorems 1 and 2, that each of the limiting formulas
asserted by Theorem 3 holds true.

4 Computational and Applied Aspects

In such widely-investigated subject as Potential Theory,
both single-layer potential and double-layer potential play
significant rôles in solving boundary value problems
involving various families of elliptic partial differential
equations. In particular, a double-layer potential provides
a solution of Laplace’s equation corresponding to the
electrostatic or magnetic potential associated with a
dipole distribution on a closed surface in the
three-dimensional Euclidean space or (more generally) on
a hypersurface in then-dimensional Euclidean space.

In our present investigation of the generalized

bi-axially Helmholtz equation
(

Hλ
α ,β

)

, we have

successfully developed a worthwhile alternative to the
method of complex analysis (based upon analytic
functions). We make use of results from potential theory
in order to represent boundary value problems in integral
equation form. In fact, in problems with known Green’s
functions, an integral equation formulation leads to
powerful numerical approximation schemes. Thus, by
seeking the representation of the solution of the boundary
value problem as a double-layer potential with unknown
density, we are eventually led to a Fredholm equation of

the second kind for the explicit determination of the
solution in terms of the Appell functionF2 of the second
kind in two variables, which is defined by (1.1).

Various known properties and formulas involving the
Appell functionF2 such as (see, for details, [4], [8] and
[33])

F2(a,b,b
′;c,c′;x,y)

:=
∞

∑
m,n=0

(a)m+n(b)m(b′)n

(c)m(c′)n

xm

m!
yn

n!

=
∞

∑
m=0

(a)m(b)m

(c)m
2F1(a+m,b′;c′;y)

xm

m!

=
∞

∑
n=0

(a)n(b′)n

(c′)n
2F1(a+n,b;c;x)

yn

n!
, (4.1)

F2(a,b,b
′;a,a;x,y) = (1− x)−b (1− y)−b′

· 2F1





b,b′;

a;

xy
(1− x)(1− y)



 (4.2)

and

F2(a,b,b
′;c,b′;x,y) = (1−y)−a

2F1





a,b;

c;

x
1− y



 , (4.3)

which express the functionF2 in terms of the simpler
Gauss hypergeometric function2F1 that possesses
easily-accessible numerical algorithms for computational
purposes, can indeed be used to numerically compute the
solution presented here for many different special values
of the parametersa,b,b′,c andc′ and the argumentsx and
y.

Numerous applications of several suitably specialized
versions of the solutions presented in this paper can be
found in fracture mechanics, fluid mechanics,
elastodynamics, electromagnetics, and acoustics (see, for
details, some of the citations handling special situations
which were motivated by such widespread applications).
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