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1 Introduction HQ’B (U) = Uyx+ Uy + 27aux+ %uy— 22U

Potenti dle i =0 (Has)
otential theory has played a paramount rdle in both a.p

analysis and computation for boundary value problems

for elliptic partial differential equations. Numerous (0 <a< }; 0<B< }>

applications can be found in fracture mechanics, fluid 2 2)’

mechanics, elastodynamics, electromagnetics, and .
acoustics. Results from potential theory allow us toWherE O;]’ iB I?r?dw);l are tﬁonstantﬁ. rYVhfelt}lh_ O’nthrlsliz d
represent boundary value problems in integral equatior?q.ua on 1S known as e equation of the generaiize
form. For problems with known Green’s functions, an axially symmetric potential theory whose name is due to

integral equation formulation leads to powerful numerical Wemstgam v;/hot' f'lrf‘rg conS|deared faac;g)nqll_hdlmens.lﬂnal
approximation schemes. space in potential theory (se85 and [36]). The specia

. . ., . case whereA = 0 was also investigated by (among
The double-layer potential plays an important role in others) Erdelyi (seef] and [7]), Gilbert (see 101, [17],

solving boundary value problems of elliptic equations. 1 141 and 15)). Gilbert and Howard Ranger
The representation of the solution of the (first) bo”nda‘.ry{3%’a[nd]Henric[i ?]s)éeZO] and 2). Variouiniﬁteres%ng
value problem is sought as a double-layer potential with A

unknown density and an application of certain propertyProblems associated with the equatic(rh-laﬁ) were
leads to a Fredholm equation of the second kind forstudied by many authors (see, for exampi, [2], [3],
determining the function (se&§] and [29)). [9], [23], [24], [25], [26], [27], [28], [30], [32] and [34]).

By applying a method of complex analysis (based  Fundamental solutions of the equatifhi? .) were

. . X a,B
upon analytic funct!ons), G'Iber.tlb] constructed an  constructed recently (sed9q). In fact, the fundamental
integral representation of solutions of the following '

generalized bi-axially Helmholtz equation: solutions of the equatior(H(’}’B) when A = 0 can be
expressed in terms of Appell's hypergeometric function in
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2202 (1—a)l (B)F (1—a+p)

two variables of the second kind, that is, the Appell k> = . (17
function PP ’ amn r(2—2a)l (2B) 7
F2(a,ba,bz;c1,C2i%Y) o — 2212028 M (q)[ (1-PB)I (1+a—P) 18)
defined by (seef, p. 224, Eq. 5.7.1 (7)]; see als4 p. 14, an ra)r(2-2B) ’ '
Eg. (12)]and 83, p. 23, Eq. 1.3 (3 20—
q( )] 3 p q ()]) k4:24 2a ZBI‘(l—a)F(l—B)I‘(Z—a—B) (19)
F2 (a, by, bp;c1,C2ix,y) 4m r@-2a)r2-2g '
= i (@men (B1)m (b2)n @ ﬂ’ (1.1) r? (X—X0)2+ (y_)’o)2
m,n=0 (C )m(CZ)n mt n!
7| = | x+x)?+(y—y0)? |,
where (k) denotes thggeneralPochhammer symbol or
theshifted factoria) since rs (X—%0)2+ (Y + Yo)?
(Dn=n" (neNp:=NU{0}; N:={1,2,3,---}),
r2—r? r2—r2
which is defined (for, v € C), in terms of the familiar {=—pn and  n=—j5* (1.10)

Gamma function, by
The fundamental solutions given by (1.2) to (1.5)

possess the following properties:

_T(k+v)
(K)V T F(K)
1 v=0;keC\{0
= | oD XZ“% {a1(x.y;%0,Y0)}| =0, (111a)
K(k+1)---(k+n—1) (v=neN, kecC), x=0
it being understood:onventiqnalIythat (0)p:=1 and. yzﬁai{ql (X,Y;%0,Y0) } =0, (1.11b)
assumedacitly that thel” -quotient exists. We thus obtain y y=0
the following results: 02 (X, Y; X0, Y0)|y—0 = O (1.12a)
s Y ) x=0— Y% .
~a—p
o (%,Y;%0,¥o) = ka (r3) " * 259 .
W {QZ (Xa an07YO)} = 03 (11%)
‘R (a+B,a,B;2a,2B;¢,n),  (L1.2) %y y=0
17}
e X2 —{az(x,y;%0,¥0)}| =0, (1.13a)
t2 (%, Y; %0, Yo) =Kz (r3)® g 1X1_20'Xé_2a ox X=0
‘FRl-a+B,1-a,B8,2—-2a,2B;¢,n), (1.3) q3(x’y;x07y0)|y=O:O’ (1.13b)
04 (X, Y;X0,Y0)|x—0 =0 (1.14a)
— 1 4 _ X:
Gs (X, Y; X0, Yo) =ks (r?) - Y- 2Py, 2 and
and 0 (X,¥;%0,Y0)ly—o = O. (1.14b)

Here, by making use of the fundamental solutions
given by (1.2) to (1.5) in the domai2 defined by

2 1 20 1-2B.1-2q. 1—

G (XY X0, Yo) =kq (r2) P2t 2yl 2Byt 20826
F2(2—G—B,l—a,l—B,Z—Za,Z—ZB,E,n),
(1.5)  we aim at investigating a double-layer potential for the
where the constants; to ks are determined as follows €duation (HS,ﬁ)- Furthermore, we prove some results
upon solving boundary value problems for the equation(see Lemmas 1 to 3 and Theorem 3) on limiting values of

(H" ): the double-layer potential in (3.2). These results are
a.p (potentially) useful for future works in which boundary

value problems for the equatic(n-lg B) are investigated
in more general domains.

QCR?:={(xy):x>0 and y>0}, (1.15)

2T (BT (a+B)
1T Tan r(2a)r2p)

(1.6)
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2 Green’s Formula
We begin by considering the following identity:

X2 y2P [quﬁ (V) —VHY (u)}

e

-2 [Xzayzﬁ (VUi — Vuy)] @Y

Integrating both parts of the identity (2.1) on a domain

Qin (1.15), and using Green’s formula, we find that

// 2"’yzB uHg 5 ngﬁ(u)] dx dy
:/xz"yzﬁu (vxdy— vydx)
s

—x29y2By (uxdy — uydXx) ,
whereS= 0Q is the boundary of the domai@.
If u(x,y) andv(x,y) are solutions of the equation
(Hgﬁ), we find from (2.2) that

(2.2)

ov du
2a, 23 A hdhe _
!x y? (udn Vdn) ds=0, (2.3)
where
9 _dyo dxd
on dsdx dsady’
dy dx
e cos(n,X) and de= —cos(ny), (2.4)

n being the exterior normal to the cur@Here cogn, x)
denotes the cosine of the angle between plositive
x-direction and theoutwardnormal to the curvés at the
point(x,y) onS. Similarly, cogn,y) denotes the cosine of
the angle between theositive ydirection and the
outwardnormal to the curvé& at the point(x,y) on S. We
also obtain the following identity:

Jdu

2 2 2 2

//Q x2y?P (U + ud) dxdy= /x “yzBu%ds, (2.5)
s

whereu(x,y) is a solution of the equatloéHaE The
special case of (2.3) whan= 1 reduces to the following

form: P
20,2 9U o _
/X ¥ 0nds
s
We note from (2.6) that the integral of the normal
derivative of a solution of the equatio(‘l—igﬁ) with a

0. (2.6)

weightx29y?# along the boundar$ of the domainQ in
(1.15) is equal to zero.

3 A Double-Layer Potential w(V (xo,yo)

Let Q in (1.15) be a domain bounded by intervélsa)
and (0,b) of the x- andy-axes, respectively, and a curve
I with the extremities at pointa(a,0) andB(0,b). The
parametric equations of the curieare given by

x=x(s) and y=y(s)  (s€[0l]),
wherel denotes the length df. We assume the following

properties of the curve:

(i) The functionsx = x(s) andy = y(s) have continuous
derivativesx (s) andy (s) on a segmenf0,l] and do
not vanish simultaneously;

(i) The second derivativeg” (s) andy” (s) satisfy the
Holder condition on0,1], wherel denotes the length
of the curvel™;

(iii) In some neighborhoods of poin#s(a,0) andB(0,b),
the following conditions are satisfied:

dx

< +E
ds| = Cyl

and ‘ﬂ' ‘ <odte(s) (31)
ds
(0< e <1;c=aconstant

(x,y) being the coordinates of a variable point on the
curvel .

Consider the following integral
w (x0, o)
! 17}
= [P s (5) o (v y0)} ds - (32

where the density; (s) € C[0, 1] andq; is given in (1.2).
We call the integral (3.2) @ouble-layer potential with
densenesp; (S).

We now investigate some properties of a double-layer
potentialw® (xo,Yo) with densenesg; (s).

Lemma 1. The following formula holds true

-1 ((x.¥0)€Q)
(X0,Y0)=1¢ -3  ((Xo.Y0) €T) (33)
0 ((X07y0) g 5)7

where a domaiQ and the curve™ are described as in
this sectionand2 := QU .

Proof.

Case 1.When (Xp,Y0) € Q, we cut a circle centered at
(Xo,Yo) with a small radiusp off the domainQ and
denote the remaining part b° and the circuit of the
cut-off-circle byCy. The functionqs (X,y;Xo,Yo) in (1.2)
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is a regular solution of the equatic(rhig B) in the domain

QP. Using the following derivative formula of Appell's

0 —q-B—
hypergeometric functioR; (see &, p. 19, Eq. (20)]): d_y{ql (X.Y:%0,Y0)} = —2(a + B) kayo (r?) ot
‘F(a+B+1a,1+B;2a,1+2B;&,n)
o o o —2(a+PB)kly—yo) () * P
FomaAan 7b 7b ’ ) 1Ny
axmayn {2 (% P baicu X)) Fo(a+B+1,a,B;20,2B;€,n). (3.8)
= Blmen Bt b2y Thus, with the help of (3.7) and (3.8), it follows f
(C)m(C2),, us, wi e help of (3.7) and (3.8), it follows from

(1.2) and (2.4) that
-F2(a+m+n,by+mby+n;c1 +m,co+n; xy),

(3.4) 5
we have a0yt = — (@ + Bk (r2) 7
'F2(0+B+1,U,B;Za,2[3;f,l7)%{In r?}
n—a—p-1
j—x {ar (X, y:%0,¥0)} = =2(a + B) kg (rz)_“‘B‘l(x_xo) +2(a+B)kwyo (r?) d
‘F(a+B,a,B;2a,2B;&,n) -Fz(a+ﬁ+1,a,1+ﬁ;2a,1+2ﬁ;5,n)d_s{x(s)}
2@ +pha () ~2(a+ Bk () P

'XOFz(a+B+11’a+1’B;Za+1’zﬁ;f’n) -F2(0+ﬁ+170(+17ﬁ;20!+1,23;5,’7)dis{)’(s)}'
_2k1(r2)_a_ﬁ_ (X—Xo)

(3.9)
(a+B)a . . , o —
: TEFZ (a+B+1a+1B;20+1,2B;¢,n) Applying (2.6) and considering the identity (1.11), we get
a the following formula:
(a+B)B

T

an(or+B+1,a,B+1;2a,2[3+1;£,n)], _ 5
(3.5) Wi (%0.Y0) = lim, C/ Xy - {au (x.Y:%. o)} ds
0

. . . , (3.10)
By applying the following known contiguous relation Substituting from (3.9) into (3.10), we find that
(see B, p. 21)):

wi” (%0, Yo)
b o
o Fo(at 1,by+ 1,y + 1,C2:%,Y) — —(a+B)kilim /xZC'yZﬁ (r2) " F
C1 p—0
b2 F(a+1,by,by+1 1 ”
+ 2y R (a+1,by,by+1ic1,00+ 1%, e
Czy ( 1,02 1, C2 y) —2(a + B)kixo lim /X20y2[3 (r2) a—p-1
=R (a+1,by,by;ci, 2% y) — Fa(a, b1, bp; €1, €05 X, y) pﬁocp
(3.6)

‘F(1+a+B,1+a,B;1+2a,2B;&,n) d%{y(S)}dS

to (3.5), we obtain —a-p-1
+2(a + B) kiyo lim /xz"’yzﬁ (r%)
p—>OC
0

J —a-p-1
oy L (%Y X0, Y0)} = —2(a + B) ko (r?) P ‘F(1+a+B,a,1+B;2a,1+2B;€,n) d%{x(s)}ds
‘R(a+B+1a+1,B2a+1,23;¢,n) = —(a+B)k1lI)im0J1(xo,yo)—2(a+B)k1xo lim Jz (xo,Yo)
on—a—p-1 — p—
—2(a+ Bk (x=x0) (r) +2(a+B)kayo lim Js (xo.Yo) (3.11)
‘Fa(a+B+1,0,8:20,28:&,n).  (3.7) p0
whereJ;, J, andJ; are the corresponding integrals in the
Similarly, we find that first equality. Now, by introducing the polar coordinates:
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X=Xo+pcosp and y=yo+psing,

we get

2

200.y0) = lm, [ (xo-+pcosp)™ (yo+psing)*
0

_(pZ)*O’*ﬁ FRa+B+1,a,B;2a,2B3;&,n)dé.
(3.12)

By using the following known formulas (seB, [p. 253,

Eq. (26)]; see alsdg, p. 113, Eq. (4)]):

F2(a, by, bp;cy,co;x,y)
~ 2 (@)j(b)j(b2)j (xy)]
_,Zo (c)j(c); !

i
- oF1(a+j,bi+ e+ ;%)

- oF1(a+j,ba+j;c2+jiy) (3.13)
and
2F1(a,b;c,x)
1 p\-b PR,
=(1-x) 2F1(c a,b,c,x_1>, (3.14)
we obtain
F2(a, by, bp;c1,C2;%,Y)
=11y
o (a)j(bl)j(bz)j< X >J< y )j
. X
'2F1<Cl_a7b1+l;01+J;m>
-2F1<C2—a,b2+j;C2+j;yTy1>, (315)

where
2F1(a,b;c;x)

is Gauss’s hypergeometric function (s8gd. 69, Eq. (2)]).

Hence we have

F(l+a+B;a,B;20,2B;&,n)
= (07)"** (p? + 23+ 4xopcosg)
- (P?+ 4y§+ dyopsin ¢)7B P11,

—a

(3.16)

where

B 2 (I+a+p)a);(B);
1= 2

2., 28), (i1
_ 43 + 4Xop COS ]
P2+ 4x5 + 4xop COSP
( 4y3+ 4yopsin g )j
P2+ 4y3 + dyopsin ¢

. . 4x2+4xgpcos
-2F1(G—B—1,G+J;20+J; X0 T #XoP ¢)

P2+ 4%+ 4xop COSP
4y3 + dyopsin ¢ )
P2+ 4y3+4dyopsing )

R (p-a-1piizpe;
Using the well-known Gauss’s summation formula for
oF1 (see B, p. 112, Eq. (46)])

rc)r(c-a—»h)
M(c—a)rl (c—Db)

oF1(a,b;c;1) =

(O(c—a—b)>0;¢c#0,-1,-2,--+),
we obtain
r2a)r (2B)
roa)yrB)rl+a+p)

Thus, by virtue of the identities (3.12), (3.16), and (3,17)
we get

lim P = (3.17)
p—0

(a+pB) klﬁl)iTOJl (X0,Y0) = 1. (3.18)

Similarly, by considering the corresponding identitiesl an
the fact that

lim plnp =0,
p—0

we find that

2(a + B)kixo lim Jz (X0, Yo)
p—0
=2(a + B) kuyo lim J3(xo,Yo)
p—0
-0 (3.19)

Hence, by view of (3.18) and (3.19), the formula (3.11) in
the case ofxo,Yo) € Q becomes

Wi (x0,y0) = —1. (3.20)

Case 2When(xo,Yo) € ", we cut a circleC, centered at
(X0,Yo) with a small radiusp off the domainQ and
denote the remaining part of the curve By-I,. Let C;,
denote a part of the circlg, lying inside the domain®.
We consider the domaif?, which is bounded by a curve

(@© 2015 NSP
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r—rp, C and the segment®,a] and|[0,b] along thex-
andy—axes respectively. Then we have

W(1>(XO,YO)
I i
:/ x2“y25—{q1(x,y;xO,yo)}dS
0 an
— lim 2"yzﬁ ~{a(x¥;x0,y0)ds  (3.21)
p—0
I_fl'p

When the point(Xo,Yyo) lies outside the domaiy, it is
found that, in this domaing; (X,y;Xo,Yo) is a regular

solution of the equatior(Hg‘B). Therefore, by virtue of
(2.6), we have

/ 2"3/2‘3 ~{au (x.¥:%.0)} ds
rn

a
= /xz"yzﬁ% {a1(X,y;%0,Y0)}ds  (3.22)
S

Substituting from (3.22) into (3.21), we get

wi¥ (x0,Y0)
! d
:/0 xzayzﬁa—{ql(x,y;Xo,yo)}dS
— lim 2"yzﬂ ~ {0 (x ¥;%0,y0)}ds (3.23)
p—0

o

Similarly, by again introducing the polar coordinates

centered at the poirfko, Yo), we find that

1
wi (%0.30) = — 3. (3.24)

Case 3.When (Xo,Yo) & 5, it is noted that the function

g1 (X,¥; X0, Yo) is a regular solution of the equatiféhig E) .
Hence, in view of the formula (2.6), we have

(1

Proof. For considering the first case whep € (0,a),
we introduce a straight ling = h for a sufficiently small
positive real numben and consider a domai@;, which is
the part of the domaim2 lying above the straight line
y = h. Applying the formula (2.6), we obtain

wi¥ (%,0)
= lim /Xl xz"yzﬁi{q (X,Y:%0,0)}  dx
h-0.Jo ay 1A Y, A0,

y=h
(3.27)

wherex; (€) is an abscissa of a point at which the straight
liney = hintersects the curvE. It follows from (3.8) and
(3.27) that

Wi (x,0)
X
— 2(a+ Pk LiLnOh”zﬁ/o "y2a

. I
(X—X0)® +h?
dx

:| a+p+1

2F1 <a+B+1,a;Za;—

[(x—x0)?+ 1P
(3.28)
Now, by using the hypergeometric transformation

formula (3.14) inside the integrand of (3.28), we have

Wi (x0.0)
X
Z—Z(G—I—B)kl J]iinohlJer/o 1X20

4
2F1 (a—ﬁ—l,a;Za;i(erX;())?Jth)
2 B+1 2 o dX,
[(x—xo) +h2} [(x+xo) +h2]

(3.29)

which, upon setting = xo + ht inside the integrand, yields

W~ (X0, Yo)
' 2a.2p 0 : WY (x0,0)

:/o xay? %{Q1(X,y,xo7)’o)}d5 1 ’

—0, (3.25) —2(a+B)ke nm/ X0+ ht)2?
The proof of Lemma 1 is thus completed.

2F1 (a—B - 1,a;2a,M+2ht)2>
Lemma 2. The following formula holds true . (20 +ht)"+h
a I
(3.30)
W<11) (0,00 =14 -3 (Xo=0o0rx=a) (3.26)
where
0 (a< ). h=-20 and 1,= 8%
h h
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Considering Now, in view of the following inequalities:
lim >F; (a B—1,a;2a; M) r2
0 20+ 07 1 1P 2F1<a—[3,a+j;2a+j;1——2>
—,Fi(a—B—La;2a;1) o F (B2 &
reara+p) < (2a)I" (B) (2a);
“@rprarpra rlaxpritash);
and and
® dt il (2B)
L. (L42)f T 2%-1pre(p)’ ,
we find from (3.30) that 2F1 (B—UHB+J';ZB+J':1—:—2)
2
wi (x0,0) = —1. (3.31) ___@Br(a)(2p);
“r(a+p)r(B)(a+p);’

The otherthreecases whery = 0, X = aandxp > a
can be proved by using arguments similar to those detailedve find from (3.34) that the inequality (3.33) holds true.
above in the first case. Hence Theorem 1 is proved.

This evidently completes our proof of Lemma 2.

By virt f the following k f lag, p. 117,
Lemma 3. The following formula holds true Eq. ()1/2\;{ ue of the following known formulag, p

-1 (Yoe(0,b)) oF1 (a,b;a+b;2)

1 1
W (Oyo)=1¢ -3  (Yo=0oryo=b) (332 _ T(ath) o -
= @ o (a)l' ) oF1(a,b;1;1-2)In(1—-2)
0 (b<yo). a+b ® a+J +1)
Proof. The proof of Lemma 3 would run parallel to that Z)
of Lemma 2.

[2w<1+1> Y(a +J)—‘IJ(b+J)](1—Z)j
Theorem 1.For any points(x,y) and (o, Yo) € R2 and

X # Xo andy # Yo, the following inequality holds true (Jargl-2z)|<m—e (0<e<w);a,b#0,—-1,-2,),
where
a1 (x,y; %0, Yo)| < k M( r2) % (r )
rz(a+p) o o
’ § = —{In _
oF1 U,B;a+[3;(1—:—2> (1 :2> (3.33) W@ =g @} =7
1 2

or, equivalently,
wherea and B are real parameters withf0 < a, B < 3)
as in the equatior(Hé‘ﬁ) (withA =0),and r,r; and InT(z / P(t)

are as in(1.10).
we observe from (3.33) thafp(x,y;xo,Yo) has a

Proof. It follows from (3.15) that logarithmic singularity at = 0
Theorem 2.If the curvel” satisfies condition€3.1),then
G (%, Y; X0, o) = kq (r?) “ (r%)fﬁ the following inequality holds true
2 (@+B)(@);(B) [, 12\ [ 12\
,Zo (2a), (2B); ]! <1_H> <1_@> / ZGYZB‘ {o (x,¥:%0,Y0) }| dS= Cy,

r

. . r2
- o (a—B,a+J;2a+J;1—r—2>

2 where G is a constant

2
o (B —a,B+j2B+j:1— r_2> . (3.34) Proof. Theorem 2 follows by suitably applying Lemmas
rz 1to 3.
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Theorem 3.The following limiting formulas hold true for the second kind for the explicit determination of the
a double-layer potentig[3.2): solution in terms of the Appell functioR, of the second
kind in two variables, which is defined by (1.1).
1 . Various known properties and formulas involving the
wb (t) = ~SH (t)+/0 p1(s)Ki(st)ds  (3.35) é%[]))ell function; such as (see, for details§][ [8] and

F(a,b,b’;c,c;x,y)

(1) _ 1 ! @ a(B)m(B ) X™
We (t) - Eul (t) +./0 Ha (S) K1 (S,t)dS, (336) = mmzzo (a)n(:;)ni(l/ El ) % %

where as usual iy (t) € [0, 1], © m
¢ b0 €101 =5y @O (@4 mp;ciy)
m=0 (C)m m!
_ 20 2B 0 /
K4 (50 = b ) =5 @k Fainben k. @)
— n H
FRCALCBIORIORICIINE i
((X(S),y(S)) €l (x(t),Yo(t)) el’), Fo(ab,b;aaxy) =(1-x) P 1—y)™
/.
wfl) (t) and e (t) are limiting values of the double-layer o b, Xy (4.2)
potential(3.2) at a (1=x)(1-y)
(V) Yo (1) =T and
from the inside and the outsidespectively
Proof. We find from Lemma 1, in conjunction with a,b; X
Theorems 1 and 2, that each of the limiting formulas Fz(a,b,b’;c,b’;x,y) = (1—y) ,F; vl (4.3)
asserted by Theorem 3 holds true. Y

which express the functiof, in terms of the simpler

4 Computational and Applied Aspects Gauss hypergeometric functionpF; that possesses
easily-accessible numerical algorithms for computationa
In such widely-investigated subject as Potential Theorypurposes, can indeed be used to numerically compute the
both single-layer potential and double-layer potentiaypl ~ solution presented here for many different special values
significant roles in solving boundary value problems Of the parametera, b, Y, c andc’ and the argumentsand
involving various families of elliptic partial differer#l Y.
equations. In particular, a double-layer potential presid Numerous applications of several suitably specialized
a solution of Lap|ace's equation Corresponding to theversions of the solutions presented in this paper can be
electrostatic or magnetic potential associated with afound in fracture mechanics, fluid mechanics,
dipole distribution on a closed surface in the elastodynamics, electromagnetics, and acoustics (see, fo
three-dimensional Euclidean space or (more generally) offletails, some of the citations handling special situations
a hypersurface in the-dimensional Euclidean space. which were motivated by such widespread applications).
In our present investigation of the generalized

bi-axially Helmholtz equation (Hgﬁ), we have

successfully developed a worthwhile alternative to theACKnowledgements

method of complex analysis (based upon analytic

functions). We make use of results from potential theoryThis research was supported by thlasic Science

in order to represent boundary value problems in integraResearch Programthrough the National Research
equation form. In fact, in problems with known Green’s Foundation of Korea funded by the Ministry of
functions, an integral equation formulation leads to Education, Science and Technology of the Republic of
powerful numerical approximation schemes. Thus, byKorea (Grant No. 2010-0011005). The present
seeking the representation of the solution of the boundarynvestigation was supported, in part, by tlidatural
value problem as a double-layer potential with unknownSciences and Engineering Research Council of Canada
density, we are eventually led to a Fredholm equation ofunder Grant OGP0007353.
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