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Abstract: In this paper we compute the metric dimension of two families of graphs constructed from antiprism
graph.
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1 Introduction

For a connected graph G, the distance d(u,Vv) between two vertices u,veV (G) is the length of a
shortest path between them in G . Let W ={w,, W,,....,w, } be an ordered set of vertices of G and let v
be a vertex of G, the representation of the vertex v with respect to W, denoted by r(v|W) is the k -
tuple (d(v,w,),d(V,W,),.....,d(v,w,)) . If distinct vertices of G have distinct representations with

respect to W, then W is called a resolving set or locating set for G [2]. A resolving set of minimum
cardinality is called a metric basis for G and this cardinality is the metric dimension of G dim(G),

For a given ordered set of verticesW ={w,,W,,....,w,} of a graph G, the ith component of r(v|W) is
0 if and only if v=w, . Thus, to show that W is a resolving set it suffices to verify that
r(x|W) = r(y|W) for each pair of distinct vertices X,y eV (G)\W .

Motivated by the problem of uniquely determining the location of an intruder in a network, the concept of
metric dimension was introduced by Slater in [10,11] and studied independently by Harary and Melter in
[3]. Applications of this invariant to the navigation of robots in networks are discussed in [8] and
applications to chemistry in [2] while applications to problems of pattern recognition and image
processing, some of which involve the use of hierarchical data structures are given in [9]. In [4,5,6] Imran
et al. proved the metric dimension of some families of convex polytopes.

In [2] Chartrand et al. proved that a graph has metric dimension 1 if and only if it is a path, hence paths on
n vertices constitute a family of graphs with constant metric dimension. Similarly, cycle with n>3
vertices also constitute such a family of graphs as their metric dimension is 2. In [1] J. Caceres et al.
proved that:

2, if n,is odd;

dim C,)=
(Pn>C0) {3, other wise.
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Since prisms D, are the trivalent plane graphs obtained by the cartesian product of the path P, with a
cycle C, ; they also constitute a family of 3-regular graphs with constant metric dimension. Javaid et
al. proved in [7] that the graph of antiprism A, constitutes a family of regular graphs with constant
metric dimension and dim(A,) =3 forevery n>5.

In this paper, we extend this study by considering two families of graph which are constructed from
antiprism.

The antiprism A, n >3, consists of an outer n-cycle a,a,...a, , an inner n-cycle b,b,...b,, and a set of

n spokes b.a, and b, ,a,,i =1,2,3,...,n where n+i is taken modulo n.

i+1

The graph H, is constructed from the graph A, as follows: We delete the edges a,a;

i+1

from A, . For
each i=1,2,..,n, we introduce new vertices ¢, and d, for @ and b, respectively. For each
i =1,2,...,n, introduce new edges b.c,, a,d;, c,d;, and b.c,, where n+i is taken modulo n.

The graph R, is constructed from the graph A, as follows: We delete the edges a,a;

i+1

from A, . For each
i=1,2,..,n, we introduce new vertices ¢, and d; for @, and b, respectively. For each i =1,2,...,n
introduce new edges b.c,, a,d,, c,d;, d.d,,, and b.c, where n+i is taken modulo n.

2 Main Results

Theorem: Let n>6 be an integer then dim(H ,)=3.

Proof. We distinguish two cases.

Case (i): n=2k, k>3, ke IN. We consider W ={b,,b,,b, ..}V (H,). We show that W is a
resolving set for V(H ). For this we find the representations of the vertices of V(H ,)\W with respect to
W. The representations of the vertices are as follows;

(i-1,i-2,1+k—1i), for 3<i<k;
r(b [W) = . . :
2k —-i+1,2k +2—i,i-1-k), k+2<i<n.
1,2,k +1), fori=1;
r(c, |W)=<(,i-1,k+2-1i), for 2<i<k+1;
2k +2-1,3+2k —i,i—k), fork+2<i<n.
(1,1,k), i=1;
i—=1,k+1-1), 2<i<k;
(a, |W) = (i,i +1-1) : i
(k,k,1), i=k+1;
2k +1-1,2k+2—-1i,i—k), k+2<i<n.
2,2,k +1), i=1;
(d, |W) = (i+1,i,k+2-1), ?sisk;
(k+1,k+1,2), i=k+1;
2k +2-i,2k+3—i,i+1-k), k+2<i<n.

Note that there are no two vertices having the same representations implying that dim(H ) <3.
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Now we show that dim(H,) >3, by proving that there is no resolving set W' with |W'|= 2. We have

the following possibilities;
(1). Both vertices belong to {b, :i =1,2,...,n} <V (H,). Without loss of generality we suppose that one

resolving vertex is b, and the other is b, (2<t<k+1). For 2<t<k we have
r(c, |{b,,b,}) =r(a, |{b,,b.}) = (1,1) and for t=k+1, we have
r(a, |{b,b}) =r(a.; |{b.b}) = (k,1), a contradiction.

(2). Both vertices belong to {c; :1 =1,2,...,n} <V (H ). Without loss of generality we suppose that one
resolving vertex is ¢, , and the other is ¢, , (2<t<k+1) . Then for 2<t<k we have
r(o, [{c,.c.}) =r(a, [{c;,c.}) = 2, t+1) for t=k+1is r(a [{c,c}) = r(ae.. {c..¢}) = (k+1,1),
a contradiction.

(3). Both vertices belong to {a, :1 =1,2,...,n} <=V (H,). We suppose that one resolving vertex is a, and

the other isa,, (2<t<k+1). Then for 2<t<k we have r(c, |{a,,a})=r(, [{a,a}) = (2,t+1)
and for t =k +1, is r(b., [{a,,a.}) =r(b, |{a,,a}) = (k,1), a contradiction.

(4). Both vertices belong to {d, :i =1,2,...,n} <V (H,) . We suppose that one resolving vertex is d, and
the other is d,, (2<t<k+1). For 2<t<k we have r(a, |{d,,d,}) =r(b, |{d;,d,}) = (3,t +2) and
for t=k+1, we have r(c,,|{d;,d.})=r(c.,|{d,,d.})=(k+21), acontradiction.

(5). One wvertex belong to {b:i=12..,n}cV(H,) and another vertex belong to
{c,:i=12,...,n}cV(H,). Without loss of generality we suppose that one resolving vertex is b, and the
other is ¢,, (1<t<k+1). For 1<t<k we have r(a,|{b,c}) =r(b,|{b.c}) =(1,t+1) and for
t=k+1 is r(a [{b,c}) =r(a.,|{b,c}) = (k,2), acontradiction.

(6). One wvertex belong to {b:i=12..,n}cV(H,) and another vertex belong to
{a,:1=12,..,n}cV(H,). Without loss of generality we suppose that one resolving vertex is b, and the
other is a,, (1<t<k+1). Then for 1<t<k we have r(a, |{b,a})=r(c, |{b,a})=(1,t+1) and
fort=k+1 r(b |{b,a}) =r(a.,,|{b,a}) =(k—1,2), acontradiction.

(7). One vertex belong to {c :i=12,..,n}cV(H,) and another vertex belong to
{a,:1=12,..,n}cV(H,). Without loss of generality we suppose that one resolving vertex is ¢, and the
other is a,, (1<t<k+1). For 1<t<k-1we have r(a, |{c,a}) =r(b, |{c,a}) = (2,t+1) and for
t=k, r(a., |{c,,a.}) = r(c, |{c,,a,}) = (k,2), similarly for t=k+1, we have
r(a. |{c,,a}) =r(c., |{c,a}) = (k+1,2), a contradiction.

(8). One vertex belong to {a:i=12..,n}cV(H,) and another vertex belong
to{d, :1=1,2,...,.n} =V (H,) . Without loss of generality we suppose that one resolving vertex is @, and
the other isd,, (1<t<k+1).For 1<t<k we have r(a, |{a;,d.})=r(b, |{a,,d.}) =(2,t+2) and for
t = k +1 the representation is r(c, , [{a,,d.}) = r(c,., [{a;,d.}) = (k+2,1) , a contradiction.

(9). One wvertex belong to {b:i=12..,n}cV(H,) and another vertex belong to
{d.:i=1.2,...,n}cV(H,). Without loss of generality we suppose that one resolving vertex is b,
and the other § d,, (A<t<k+1). For 1<t<k-1 we have
r(a, |{b,d})=r,|{b,d})=1,t+2) and for t=k the  representation is
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r(a, |{b,,d.}) =r(c, |{b,,d.}) = (k,1), similarly for t=k+1 we have
r(a,, |{b,,d.,}) =r(c.., |{b,,d,}) = (k,1),a contradiction.
(10). One vertex belong to {c,:i=12,.,n}cV(H,) and another vertex belong to
{d,:1=1,2,..,n}cV(H,). Without loss of generality we suppose that one resolving vertex is c,
and the other IS d,, A<t<k+1). For 1<t<k-1 we have
r(a, 1{c.d3) =r(b, 1{.d}) = (2.t+2) and for t=k, r(a, [{c.d})=r(c, [{c, d}) = (k+11),
similarly for t = k +1, we have r(a, |{c,,d,}) =r(c.., [{c,,d,}) = (k+1,1), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices for V (H,) implying that
dim(H,)=3
Case(ii): n=2k+1, k>3, kelIN . Let W={b,b,,b,,}<=V(H,) . We show that W is a
resolving set for V(H,). For this we find the representations of vertices of V(H,)\W with

respectto W .
The representations of the vertices are as follow;

1,1,k +1), fori=1,
ra [W)=<@,i-1,k+2-1), for 2<i<k+1;
2k+2-i,3+2k—i,i—-k-1), fork+2<i<n.

(i-1,i-22+k-1i), for 3<i<k+1,

r(b. |W) = . . .
(2k—-i1+2,2k+3—-1,i—2-k), k+3<i<n.
1,2,k +1), =1,

'(c, [W) = (i,i—-1,k+3-1), ?$i£k+l;
(k+1,k+1,1), i=k+2;
(2k +3-i,2k +4—i,i-1-k), k+3<i<n.
2,2,k +2), fori=1,

r(d, |W)=<(@+1,i,k+3-1), for 2<i<k+1;

(2k+3-1,4+2k—1i,i—k), fork+2<i<n.
Proceeding on same line as in case(i) we note that there are no two vertices having the same
representations, implying that dim(H_) <3.
Also as in case(1), it can be shown that there is no set W' with |[W'=2], such that W' is a
resolving set for V(H,) for n>6 and n is odd. Thus, dim(H,)>3. Hence dim(H,) =3 From
case(i) and case(ii) we get dim(H, ) =3.
Theorem: Let n>6 be an integer then dim(R,) = 3.

Proof. We distinguish two cases:
Case(i) n=2k, k>3, ke IN . Suppose W ={b,,b,,b, ., }=V(R,) . We show that W is a resolving set

forV (R,) . For this we find the representations of the vertices of V (R,)\W with respect to W.
The representations of the vertices are as follows;
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(i-1,i-2,1+k—1i), for 3<i<k;
r(b, |W) = ] .. :
2k —i+1,2k+2-1,i-1-k), k+2<i<n.
1,2,k +1), fori=1;
r(c, |W)=<(,i-1,k+2-1i), for 2<i<k+1;
(2k +2—-i,3+2k —i,i—k), fork+2<i<n.
(1,1,k), i=1;
hi-1,k+1-10), 2<i<k;
(a W) = (i, +1-1) : i
(k,k,1), i=k+1;
(2k +1-i,2k +2—i,i—k), k+2<i<n.
(2,2,k +1), =1,
(d, |W) = (i+1,i,k+2-1), :2£i£k;
(k+1,k+1,2), i=k+1;
2k +2-i,2k+3—i,i+1-k), k+2<i<n.

We note that there are no two vertices having the same representations implying that dim(R,) <3.

Now we show that dim(R) >3, by proving that there is no resolving set W' with |W'|= 2. We have the
following possibilities,
(1). Both vertices belong to {b, :1=1,2,...,n} =V (R,) . Without loss of generality we suppose the

resolving  vertices b, and b, , (2<t<k+1l) . For 2<t<k we have
r(c [{b.b}) =r(a, [{b,b}) = (1,t) and for t=k+1, r(a [{b.b}) =r(a., {b.b}) =(k1), a
contradiction.

(2). Both vertices belong to{c, :1=1,2,...,n} =V (R,). We suppose that one resolving vertex is c, and

the other is c,, (2<t<k+1). For 2<t<k we have r(b, |{c;,c.}) =r(a, |[{c;,c,}) = (2,t +1) and for

t=k+1 r(b,|{c.c})=r(a,|{c,c}) =(2,t+1), acontradiction.

(3). Both vertices belong to {a, :1 =1,2,...,n} =V (R,) . We suppose that one resolving vertex is

a, and the other is a,, (2<t<k+1). For 2<t<k we have r(c, |[{a,,a})=r(b, |[{a,,a}) = (2,t+1)
and for t=k+1 we have rib, [{a,,a}) =r(b, |{a,.a}) = (k,1), a contradiction.

(4). Both vertices belong to{d; :i =1,2,...,n} <V (R,). We suppose that one resolving vertex is d, and
the other is d,, (2<t<k+1). For 2<t <k we have r(a, |{d,;,d.})=r(b, |{d,,d,})=(3,t+2) and
for t=k+1 r(c,,|{d;,d.})=r(c.,|{d,,d.})=(k+21), acontradiction.

(5). One vertex belong to {b, :1=1,2,...,n} =V (R,) and another belong to {c; :1 =1,2,...,n}cV(R,) .
Without loss of generality we suppose that one resolving vertex is b, and the other is ¢,, (1<t <k+1).
For 1<t<k we have r(a,|{b,c})=r(,|{b,c})=(1t+1) and for  t=k+1,
ra, |{b,.c}) =r(a., |{b.c}) = (k,2), a contradiction.

(6). One vertex belong to {b. :1=1,2,...,n}cV(R,) and another belong to {a, :1 =1,2,...,.n}cV(R,).
Without loss of generality we suppose that one resolving vertex is b, and the other is a,, (1<t<k+1).
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For 1<t<k we have r(a,|{b,a})=r( |{b,a})=(1t+1) and for t=k+1 is
rib |{b,a}) =r(a., |{b,a}) = (k—-1,2), a contradiction.

(7). One vertex belong to {c, :1=1,2,...,n}cV(R,) and another belong to {a, :1=1,2,....,n}cV(R,).
Without loss of generality we suppose that one resolving vertex is C, and the other is a,, (1<t<k+1).
For 1<t<k-1 we have r(a,|{c,a})=r(,|{c,a})=(2,t+1) and for t=k,
r(a,, [{c,,a.}) = r(c, |{c,,a,}) = (k,2), similarly for t=k+1 we have
r(a, |{c,,a}) =r(c., |{c,,a}) = (k+1,2), a contradiction.

(8). One vertex belong to {a, :1=1,2,...,n} <V (R,) and another belong to {d, :i=1,2,...,.n}cV(R,).
Without loss of generality we suppose that one resolving vertex @, and the other is d,, (1<t<k+1).
For 1<t<k we have r(a,|{a,,d})=r(,[{a,d})=2t+2) and for t=k+1 is
ric.,|{a,d}) =r(.,|{a,d,}) = (k+2,1), a contradiction.

(9). One vertex belong to {b, :i=1,2,...,n}<=V(R,) and another belong to {d, :i =1,2,...,.n}cV(R,).
Without loss of generality we suppose that one resolving vertex is b, and the other is d,, (1<t<k+1).
For 1<t<k-1 we have r(a,|{b,d})=r(,|{b,d})=(t+2) and for t=k is
r(a, |{b,,d.}) =r(c, |{b,,d.}) = (k,1), similarly for t=k+1 than we have
ria., |{b,d.}) =r(,., |{b,d,}) = (k,1), a contradiction.

(10). One vertex belong to {c, :1=1,2,...,nN}cV(R,) and another belong to {d, :1=1,2,...,.n}cV(R,).
Without loss of generality we suppose that one resolving vertex is ¢, and the other is d,, (1<t<k+1).
For 1<t<k-1 we have r(a,|{c,d})=r(,|{c,d})=2t+2) and for t=k is
r(a, |{c,,d,}) =r(c, [{c,;,d.}) =(k+1,1), similarly for t=k+1 than we  have
r(a., [{c,,d.}) =r(c,., |{c,d,}) = (k+1,1), a contradiction.

Hence, from above it follows that there is no resolving set with two vertices for V(R,) implying that
dim(R,) >3

Case (ii): n=2k+1, k>3, keIN . Consider W ={b,,b,,b,,,}=V(R,) . We show that W is a

resolving set for V(R,) . For this we find the representations of vertices of V(R ) \W with respect to W.
The representations of the vertices are as follow;
1,1,k +1), fori=1;
ria [W)=<@,i-1,k+2-1), for 2<i<k+1;
2k+2-1,3+2k —i,i—-k-1), fork+2<i<n.

(b W)= (i-1,i-22+k—i), for 3<i<k+1;
T @k =i+ 2,2k +3—i0,i-2-k), k+3<i<n.
1,2,k +1), i=1;

(6 W)= (i,i—1,k+3-1), 2<i<k+1;
U Nk +1,k+1,0), i=k+2;

2k +3-i,2k +4—i,i-1-k), k+3<i<n.
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2,2,k +2), fori=1,
r(d, |W)=<0+1,i,k+3-1), for 2<i<k+1;

2k +3—i,4+2k—i,i—k), fork+2<i<n.
Proceeding on same line as in case(i) we observe that there are no two vertices having the same
representations, implying that dim(R,) <3.
Also as in case(l), it can be shown that there is no set W' with |W' = 2|, such that W' is a resolving
set for V(R,) for n>6 and n is odd. Thus, dim(R )>3. Hence dim(R,) =3. From case(i) and
case(ii) we get dim(R,) = 3.

3 Conclusion

In this paper we have studied the metric dimension of two families of graphs which are the extension of the
antiprism graph. We have seen that the metric dimension of these graphs is finite and does not depend on
the order of the graph and only three vertices appropriately chosen suffice to resolve all the vertices of
these graphs.
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