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Abstract: 1,3-Propanediol (1,3-PD) is one of the important products used in chemical industry, in particular for 
polyesters production. Using crude glycerol for producing 1,3-PD is a suitable solution from the economical as 

well as ecological point of view. In this paper, the optimum conditions of culture for 1,3-PD include of 1,3-PD 
concentration (g/L) as response was studied using metaheuristic algorithms including genetic algorithms (GAs), 

simulated annealing (SA), particle swarm optimization (PSO), and imperialist competitive algorithm (ICA). 

The process parameters studied were: the value of pH (6-8), (NH4)2SO4 (2-10 g/L), crude glycerol (10-50 g/L), 

cultivation time (6-14 h), and temperature (31̊ -43̊ ). The obtained results from metaheuristic algorithms were 

compared with the results from the response surface methodology (RSM) in literature. The results obtained by 

metaheuristic algorithms offer higher 1,3-PD concentration compared to the results given by RSM. 
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1 Introduction

      1,3-Propanediol (1,3-PD) has numerous 

applications for the production of polymers, 
cosmetics, foods, lubricants, and medicines [1]. 

1,3-PD has gained commercial attention as an 

important monomer to synthesize a new type of 
polyester, polytrimethylene terephthalate (PTT), 

which has excellent properties for use by textile and 

fiber industries [2]. 
      However, traditional chemical methods to 

produce 1,3-PD are difficult  and  have  low  

selectivity. Consequently, its high price has 
hindered the utilization of 1,3-PD in polymer 

industries. Interest in investigating biochemical 

processes to produce 1,3-PD originates from the 
idea of utilizing inexpensive renewable resources . 
     The microbial conversion of glycerol to 1,3-PD 

is particularly attractive in that the process is 

relatively easy and does not generate toxic by-
products [3-5]. Increasingly, the bulk production of 

glycerol as a by-product of the biodiesel and soap 

industries has made it a low cost, renewable 
resource . 
     Considering the environmental benefits, 

production of 1,3-PD through biochemical 
processes appears to be an attractive alternative to 

chemical synthesis [6-8]. The traditional “one-at-a-

time” optimization strategy is relatively simple, and 

the individual effects of culture condition factors 
can be graphically depicted without the need for 

statistical analysis. 
     Unfortunately, it frequently fails to locate the 

region of optimum response in such procedures, 
thus, an efficient approach is required for 

optimization. A combination of factors generating a 

certain optimum response can be identified through 
factorial design and the use of response surface 

methodology (RSM) [9-11]. 

     The RSM is an empirical modeling approach 
which uses polynomials as local approximations to 

the true input or output relationship. The objective 

is to optimize the response (output variables) that is 
influenced by several independent variables (input 

variables). The advantage of the RSM is to avoid 

experiment repetitions for experiments with 
multiple factors [12,13]. 

     Zheng et al. [14] recently demonstrated 

statistically optimized culture conditions for 1,3-PD 
production using pure glycerol by a Klebsiella 

pneumoniae strain via central composite design 

(CCD). Accordingly, Baek-Rock et al. [11] applied 
RSM to optimize culture conditions for 1,3-PD 

using crude glycerol derived from the biodiesel 
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industry which the simultaneous effect of five 

independent variables including crude glycerol, 
(NH4)2SO4, pH, cultivation time, and temperature 

was investigated. 
     Among optimization methods, metaheuristic 

optimization algorithms have shown their 
capabilities for finding the near-optimal solution to 

the numerical real-valued test problems for which 

exact and analytical methods may not be able to 
produce within a reasonable computation time, 

especially when the global minimum is surrounded 

by many local minima [15,16].  
     These algorithms are usually devised by 

observing phenomena happening in nature, like 

genetic algorithms (GAs), simulated annealing 
(SA), particle swarm optimization (PSO), ant 

colony optimization (ACO), and so forth [17-19]. 
     This paper aims at extending the research on 
production of 1,3-PD (g/L) using metaheuristic 

algorithms and offer improved results. The 

remaining of this paper is organized as follows: in 
Section 2, the 1,3-PD from Crude Glycerol is 

introduced and the optimizations methods including 

DOE, GA, SA, PSO, and ICA are described. In 
Section 3, the results obtained from various 

optimization methods are compared and 

discussions are presented in details. Finally, 
conclusions are given in Section 4. 

 

2 Materials and Methods 

 

2.1. 1,3-Propanediol (1,3-PD) from Crude 

Glycerol 

 

2.1.1. Crude glycerol 
      Crude glycerol (purity 42%, w/w) was obtained 
from a biodiesel-producing company (Kaya 

Energy, Korea). All other chemicals used were 

commercially obtained and were of analytical grade 
[11]. 

2.1.2. Microorganism and Culture 

Conditions 
      K. Pneumoniae ATCC 700721, purchased from 

the American Type Culture Collection (ATCC, 
USA), was grown on preculture medium 

containing: 20 g/L glycerol, 3.4 g/L K2HPO4, 1.3 

g/L KH2PO4, 0.2 g/L MgSO4, 0.002 g/L CaCl2  
2H2O, 1 g/L yeast extract, 1 mL Fe solution [5 g/L 

FeSO4 7H2O and 4 mL HCl (37%, w/v)], and 1 mL 

trace element solution [70 mg/L ZnCl2, 100 mg/L 
MnCl2  4H2O, 60 mg/L H3BO3, 200 mg/L CoCl2  

4H2O, 20 mg/L CuCl2 2H2O, 25 mg/L NiCl2  6H2O, 

35 mg/L Na2MoO4  2H2O, 4 mL HCl (37%, w/v)].  

The seed cells for the fermentation were prepared 

in a 250 mL flask containing 50 mL preculture 
medium. The flasks were incubated at 37°C for 12 

hours and were subsequently inoculated into the 

fermentor at 2% (v/v) concentration. The batch 
cultivations were conducted in a 5 L stirred-vessel 

fermentor (Kobiotech Co., Ltd., Korea) containing 

2 L fermentation medium. The pH was controlled 
by automatic addition of 2 M HCl and NH4Cl. The 

agitation rate was adjusted to 200 rpm [11]. 

 
2.2. Design of Experiments 

Design of experiments (DOE) is a tool to 
optimize the planning of experimental research. 

The role of DOE is to estimate the effect of several 

variables separately, simultaneously or as 
combinations [20]. Box and Draper [21] claimed 

response surface methodology (RSM) is one of 

statistical methods for modeling and analyzing the 
relationships between several variables and 

response variables. 
The effects of culture condition parameters in the 

simulation of production 1,3-PD for obtaining 
maximum concentration of 1,3-PD have been 

studied using DOE method [11]. The DOE method 

selected was RSM coupled with the central 
composite design (CCD) using the Design-Expert 

software. The process parameters selected for this 

study were the value of pH (6-8), (NH4)2SO4 (2-10 
g/L), crude glycerol (10-50 g/L), cultivation time 

(6-14 h), and temperature (31̊ -43 ̊ ). 

Accordingly, the response parameter was 1,3-PD 
production (concentration) (g/L). Baek-Rock et al. 

[11] adopted RSM to construct the appropriate 

objective functions for 1,3-PD concentration (g/L). 
The quadratic model equation with coded factors 

(between -2 and 2) represents response for 1,3-PD 

concentration (g/L) which is given as follows [11]: 

 
2

1 2 3 4 5 1

2 2 2 2

2 3 4 5 1 2 1 3

1 4 1 5 2 3 2 4 2 5

3 4 3 5 4 5

12.06+0.69X +0.57X +1.49X +0.98X -0.08X -0.54X

    +0.03X -0.91X -0.36X -1.87X +0.18X X +0.19X X

    -0.23X X -0.12X X +0.30X X -0.25X X -0.07X X +

    0.05X X -0.02X X +0.12X X

Y 

 

(1) 

where X1, X2, X3, X4, and X5 are the value of pH, 
(NH4)2SO4, crude glycerol, cultivation time, and 

temperature, respectively. Y is the response which 

is concentration of 1,3-PD (g/L). 
 

2.3. Genetic Algorithms 

Genetic algorithms (GAs) are members of a 
collection of methodologies known as evolutionary 

computation. These techniques are based on the 
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principals of natural selection and evolution 

processes that are met in nature. The efficiency of 
the numerous evolutionary algorithms in 

comparison to other heuristic techniques has been 

tested in both generic [22-24] and engineering 
design [25] problems . 
Through these tests, the GAs are identified as 

robust heuristic tools capable of delivering efficient 

and robust solutions to diverse design problems. In 
general, a GA begins its search with a population of 

random individuals. Each member of the 

population possesses a chromosome which is 
comprised of genes. A gene may take on one of two 

allele values, either a 1 or a 0. All genes within a 

chromosome are assembled as a binary string of 
ones and zeros, often with distinct segments . 
The first step in creating an offspring population for 

GAs is to construct a mating pool. The mating pool 
contains N individuals which are copied from the 

parent population that will be utilized to create the 

finished offspring population. To create the mating 
pool, a crowded tournament selection operator may 

be utilized . 
To begin, two solutions from the parent population 

are selected at random to compete in a tournament 
in order to construct the mating pool. A copy of the 

winner of the tournament is kept in the mating pool. 

This process is repeated until each solution in the 
parent population has competed twice and the N 

spots in the mating pool have been filled. The 

resulting mating pool contains more copies of the 
more desirable solutions in the parent population 

and fewer copies of the less desirable solutions 

from the parent population . 
With the mating pool complete, the task of 

constructing the offspring population can 

commence. To generate two offspring solutions, 
one begins by selecting two individuals from the 

mating pool at random. Once selected, the two 

individuals undergo crossover and mutation 
operators to create two offspring solutions which 

are placed in the offspring population [26]. 

 
2.4. Particle swarm optimization  

Particle swarm optimization (PSO) is an 

evolutionary computation technique for solving 
global optimization problems developed by 

Kennedy and Eberhart [27]. It is a computation 

technique through individual improvement plus 
population cooperation and competition which is 

based on the simulation of simplified social models, 

such as bird flocking, fish schooling and the swarm 
theory. 

Researchers found that the synchrony of animal‟s 

behavior was through maintaining optimal 
distances between individual members and their 

neighbors. Thus, velocity plays the important role 

of adjusting each other for the optimal distances 
[28]. The PSO algorithm exhibits common 

evolutionary computation attributes including 

initialization with a population of random solutions 
and searching for optima by updating generations.  
Potential solutions, called „birds‟ or „particles‟, are 

then “flown” through the problem space by 
following the current optimum particles. Each 

particle keeps track of its coordinates in the 

problem space, which are associated with the best 
solution (fitness) it has achieved so far. This value 

is called „pBest‟. Another “best” value that is 

tracked by the global version of the particle swarm 
optimization is the overall best value and its 

location obtained so far by any particle in the 

population. This location is called „gBest .’ 
The particle swarm optimization concept consists 

of, at each step, changing the velocity (i.e. 

accelerating) of each particle toward its „pBest‟ and 
„gBest‟ locations. Acceleration is weighted by a 

random term with separate random numbers being 

generated for acceleration toward „pBest‟ and 
„gBest‟ locations. The basic swarm parameters 

position and velocity are updated using the 

following equations [27]: 
 

1 1 1 2 2( ) ( )i i i i i iV wV c r pBest X c r gBest X      (2)  

1 1i i iX X V                (3)  

 
where w is the inertia weight for velocities 

(previously set between 0 and 1), Xi is the current 

value particle i, Vi is the updated velocity of particle 
i, pBesti is the best solution found by particle i, 

gBesti is the best solution found by the swarm, r1 

and r2 are uniform random numbers in the [0,1] 
range, c1 means the cognitive component (self 

confidence of the particle), and c2 means the social 

component (swarm confidence) and they are 
constants that influence how each particle is 

directed towards good positions taking into account 

personal best and global best information, 
respectively . 
They usually are set as c1= c2= 1.5. The role of w is 

crucial for the PSO convergence. It is employed to 
control the impact of previous velocities on the 

current particle velocity. A general rule of thumb 

indicates to set a large value initially to make the 
algorithm explore the search space and then 
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gradually reduce it in order to get refined solutions 

[29,30]. 
 

2.5. Simulated annealing 

In 1953, Metropolis developed a method for 
solving optimization problems that mimics the way 

thermodynamic systems go from one energy level 

to another [31]. He thought of this after simulating 
a heat bath on certain chemicals. This method is 

called simulated annealing (SA). Kirkpatrick et al. 

[32] originally thought of using SA on a number of 
problems . 
The name and inspiration come from annealing in 

metallurgy, a technique involving heating and 

controlled cooling of a material to increase the size 
of its crystals and reduce their defects. The heat 

causes the atoms to become unstuck from their 
initial positions (a local minimum of the internal 

energy) and wander randomly through states of 

higher energy; the slow cooling gives them more 
chances of finding configurations with lower 

internal energy than the initial one . 
By analogy with this physical process, each step of 

the SA algorithm replaces the current solution by a 
random "nearby" solution, chosen with a 

probability that depends both on the difference 

between the corresponding function values and also 
on a global parameter T (temperature), that is 

gradually decreased during the process. The 

dependency is such that the current solution 
changes almost randomly when T is large, but 

increasingly "downhill" as T goes to zero . 
The allowance for "uphill" moves potentially saves 

the method from becoming stuck at local optima. 
Several parameters need to be included in an 

implementation of SA.  These are summarized by 

Davidson and Harel [33]: 
•The set of configurations, or states, of the system, 

including an initial configuration (which is often 

chosen at random). 
•A generation rule for new configurations, which is 

usually obtained by defining the neighborhood of 

each configuration and choosing the next 

configuration randomly from the neighborhood of 
the current one. 
•The target, or cost, function, to be minimized over 

the configuration space. (This is the analogue of the 

energy). 
•The cooling schedule of the control parameter, 

including initial values and rules for when and how 
to change it. (This is the analogue of the 

temperature and its decreases). 

•The termination condition, which is usually based 

on the time and the values of the cost function 

and/or the control parameter. 
 

2.6. Imperialist competitive algorithm 

Imperialist competitive algorithm (ICA) is inspired 
from the social-political process of imperialism and 

imperialistic competition. Similar to many 

optimization algorithms, ICA starts with an initial 
population. Each individual of the population is 

called a „country‟.  

Some of the best countries with the minimum cost 
are considered as the imperialist states and the rest 

will be the colonies of those imperialist states. All 

the colonies are distributed among the imperialist 
countries based on their power. 
To define the algorithm, first of all, initial countries 

of size NCountry are produced. Then, some of the best 

countries (with the size of Nimp) in the population 
are selected to be the imperialist states. Therefore, 

the rest with the size Ncol will form the colonies that 

belong to imperialists. 
Then, the colonies are divided among imperialists 

according to their power [34]. In such a way that 

the initial number of each empire‟s colonies has to 
be proportional to its power. So, the initial number 

of colonies of the n
th

 empire will be [35]: 

 

1

{ } , 1,2,...,
imp

n
n col impN

i

i

Cost
NC round N n N

Cost


  



(4) 

 

where NCn is the initial number of colonies of the 

nth empire and Ncol is the total number of initial 
colonies. To divide the colonies, NCn of the 

colonies are randomly chosen and given to the nth 

imperialist [35]. 
After dividing all colonies among imperialists and 

creating the initial empires, these colonies start 

moving toward their relevant imperialist country. 
This movement is a simple model of assimilation 

policy. Also, the total power of an empire is 

defined by the sum of the cost of the imperialist, 
and some percentage of the mean cost of its 

colonies as given [35]: 

 

n n nTC Cost (imperialist ) ξ {mean (Cost(colonies of empire ))} 

( 5)  

 

where TCn is the total power of the n
th
 empire and ξ 

is a positive small number. After computing the 

total power of empires, usually the weakest colony 
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(or colonies) of the weakest empire is chosen by 

other empires and the competition is started on 
possessing this colony. Each imperialist 

participating in this competition, according to its 

power, has a probable chance of possessing the 
cited colony. 
To start the competition, at first, the weakest 

empire is chosen and then the possession 

probability of each empire is estimated. The 
possession probability Pp is related to the total 

power of the empire (TC). In order to evaluate the 

normalized total cost of an empire (NTC), the 
following equation is used [35]: 

 

max{ } , 1,2,3,...,n i n imp
i

NTC TC TC n i N   (6)  

 

During the imperialistic competition, the weak 

empires will slowly lose their power and getting 
weak by the time. At the end of process, just one 

empire will remain that governs the whole colonies 

[35]. 
 

3 Results and discussions 
     The problem investigated here, is taken from ref. 

[11] where the results were obtained using the 

RSM. In the present paper, metaheuristic 
algorithms including GA, SA, PSO, and ICA were 

used as optimizers in design optimization of 1,3-PD 

from Crude Glycerol in terms of concentration of 
1,3-PD and the results were compared to the results 

obtained by the RSM . 
     The problem discussed here is maximization 

problem which the objective function is to find the 
maximum of 1,3-PD concentration (production, 

g/L). Hence, in order to convert it to minimization 

problem, -1 is multiplied to the objective function 
(Eq. (1)). 

     GA, SA, PSO, and ICA algorithms have shown 

great potentials for solving optimization problems 
as they conduct global stochastic search. The GA, 

PSO, SA, and ICA were implemented in MATLAB 

programming software and run on Pentium IV 2.53 
GHz CPU with 4 GB RAM.  

     The task of optimizing 1,3-PD production (g/L) 

was executed in 25 independent runs for all 
considered optimizers. The initial parameters for 

GA were; population size of 20 individuals, 

scattered crossover fraction of 0.8, stochastic 

uniform as a selection function and rank as a 
scaling function.  

     Accordingly, for PSO, the initial parameters 

were; population size of 20 individual, the inertia 
weight for velocities of 0.8 and cognitive and social 

components (c1 and c2) of 1.5. Similarly for SA, the 

initial parameters considered as initial temperature 
of 100, cooling ratio of 0.98, fast annealing process 

and re-annealing interval of 100 iterations. 

     Also, the initial parameters for ICA were chosen 
as number of country of 20, number of imperialist 

country of 3, revolution rate of 0.3. The number of 

function evaluations (NFEs) determines the speed 
(computational effort) and the robustness of the 

algorithm. Less NFEs, means less time to reach the 

global optimum. This feature returns back to the 
structure of the algorithm.  

     Best solution represents the accuracy of the 

method. The NFEs and best solution are dependent 
on each other. The ideal situation is the less NFEs 

and more accurate solution. 
     For comparison with other algorithms, a 

maximum NFEs of 2000 (NFEs = Number of 
iterations × Number of population) was imposed 

for all reported optimizers. The maximum number 

of iterations was 100 for GA, PSO, and ICA. 
Accordingly, for SA the maximum number of 

iterations of 2000 was chosen. 
     The statistical results obtained from various 
optimization algorithms include of worst, mean, 

best solutions, and standard deviation (SD) are 

shown in Table 1. By observing Table 1, in terms 
of statistical optimization results, ICA is superior to 

other methods in this paper except the best solution 

with SD equal to zero. However, PSO detected its 
best solution better than ICA, GA, and SA. 
 

Table1. Statistical results obtained from four metaheuristic algorithms  

for 1,3-PD concentration. “SD” stands for standard deviation. 

Methods Worst solution Mean solution Best solution SD 

GA 15.3468 15.3469 15.3470 6.45E-05 

PSO 14.6010 16.2161 15.3471 0.22 

SA 15.1238 15.2660 15.3440 0.06 

ICA 15.34709 15.34709 15.34709 0 

  Table 2 represents the comparison of optimization 
results using RSM, GA, PSO, SA, and ICA in 

terms of coded and real values, and response. As 
shown in Table 2, all considered metaheuristic 
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algorithms surpassed the RSM in terms of 

maximum of production (concentration, g/L).  
 

Table 2. Comparison of results using RSM, GA, PSO, SA, and ICA in terms of coded and actual values for 

1,3-PD. “Y” is the 1,3-PD concentration (g/L). “C” and “A” stand for coded and actual values, respectively 

Factors 
RSM GA PSO SA ICA 

C A C A C A C A C A 

X1 0.74 7.37 1.128 7.57 1.125 7.56 1.089 7.54 1.125 7.56 

X2 1.00 8 2 10 2 10 2 10 2 10 

X3 0.52 35.2 1.277 42.77 1.277 42.77 1.275 42.75 1.277 42.77 
X4 0.80 10.8 0.381 10.76 0.380 10.76 0.435 10.87 0.380 10.76 

X5 -0.04 36.88 -0.086 36.74 -0.089 36.73 -0.117 36.64 -0.089 36.73 

Y 13.74 15.3470 15.3471 15.3440 15.34709 

 

     Based on the optimization results, the actual 

optimum culture conditions for 1,3-PD production 
using Crude Glycerol are pH = 7.56, (NH4)2SO4 = 

10 g/L, crude glycerol = 42.75 g/L, cultivation time 

= 10.76 h, and temperature = 36.73 ̊ C. The model 
predicted that a maximum of 15.3471 g/L 1,3-PD 

can be obtained using the above optimum 

conditions. 
     Figures 1 to 4 demonstrate production (g/L) 

history versus the number of iterations (generations) 

for 1,3-PD using GA, PSO, SA, and ICA, 
respectively. As can be seen from Figures 1 to 4, 

ICA and PSO found their best solution faster than 

other reported algorithms at almost 24 iterations 
(480 function evaluations) in terms of convergence 

rate . 

 
Figure 1: Production (concentration) (g/L) history with respect 
to number of generations using GA 

 
Figure 2: Production (g/L) history with respect to number of 
iterations using PSO 

 
Figure 3: Production (g/L) history with respect to number of 
iterations using SA 

 
Figure 4: Production (g/L) history with respect to number of 

iterations using ICA 

 
     Figure 5 demonstrates the 1,3-PD production 

(g/L) versus the time using RSM [11] and PSO. In 

terms of optimum time, when the time passes the 
concentration of 1,3-PD is increased conditionally 

as shown in Figure 5.  

     However, this raise is not continued after almost 
11 hours. The value of optimum time for PSO is 

obtained 10.76 hours which gives us more 

concentration (15.3471 g/L) and also less elapsed 
time compared to the RSM (10.8 h).  
     As can be seen from Figure 5a, after almost 10.8 

hours the value of concentration of 1,3-PD is 
reduced. This behavior is similar for PSO after 

10.76 hours. The optimization of 1,3-PD for culture 

conditions offers less culture time and more 
production of 1,3-PD using metaheuristic 

algorithms. 



Ali Sadollah et al.: Optimum culture conditions for ….                                                                                                   7  

 
Figure 5: 1,3-PD production under the statistically optimized 
culture conditions with respect to the time using: (a) RSM with 
actual values [11], (b) PSO with coded values 
 

4 Conclusions 
     This paper extended some findings for 1,3-
Propanediol (1,3-PD) design in optimization of 

culture conditions with five independent factors 

including the value of pH (6-8), (NH4)2SO4 (2-10 
g/L), crude glycerol (10-50 g/L), cultivation time 

(6-14 h), and temperature (31̊ -43 ̊ ). The optimum 
conditions of 1,3-PD is expected to maximize the 

production of 1,3-PD.  

     The proposed mathematical model, which was 
offered by response surface methodology (RSM), 

was optimized using metaheuristic algorithms 

including genetic algorithms (GAs), simulated 
annealing (SA), particle swarm optimization (PSO), 

and imperialist competitive algorithm (ICA). The 

optimal culture conditions for maximum 1,3-PD 
production using metaheuristic algorithms were as 

follows: pH = 7.56, (NH4)2SO4 = 10 g/L, crude 

glycerol = 42.75 g/L, cultivation time = 10.76 h, 
and temperature = 36.73 °C.  

     The metaheuristic algorithms optimized the 

RSM model that a maximum of 15.3471 g/L 1,3-PD 
can be obtained using the above optimal conditions, 

while the RSM detected the maximum of 13.74 g/L 

1,3-PD. In terms of statistical results, ICA, except 

the PSO for the best solution, was superior to other 

considered optimizers.  
     Increasing the production of 1,3-PD is a 

promising research which  is a valuable chemical 

intermediate potentially used in the manufacture of 
polymers. 
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