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Abstract: In this work, all selfadjoint extensions of the minimal opeer generated by linear singular multipoint symmetriéedéntial
expressioth = (1_,11,...,In,14), 15 = i(—% +AL =i g—t + Ay, where the coefficient&-, A are selfadjoint operators in separable Hilbert
spaced—, Hy,k=1,...,n, n N respectively, are researched in the direct sum of Hilbextep of vector-functions

Lo(H-, (—,a)) & La(H1,(a1,b1)) &... & La(Hn, (an,bn)) & L2(H+, (b, +))
—o<a<a <b;<...<aph<by<b< +ow. Also, the structure of the spectrum of these extensionwestigated.

Keywords: Selfadjoint extension, multipoint differential operatpspectrum.

1 Introduction It is well-known that the selfadjoint extension theory
which is based on the GKN (Glazmann-Krein-Naimark)
Theory [L0] is already applied for any number of

The general theory of selfadjoint extensions of a linearintervals, finite or infinite and any order expressions

densely defined closed symmetric operator in a Hilbert(S€e ).

space with equal deficiency indices was led by J. von

Neuman in 1929-19301p]. Application of this theory to In this work in section 2, by the method of J.W. Calkin-

the two-point differential operators and survey of their M.L. Gorbachuk (seeZ, 6,13), all selfadjoint extensions

spectral theory have been studying even in these days @f the minimal operator generated by a singular multipoint

see B,6,10,13 17)). symmetric differential operator of first order are desatibe
in the direct sum of Hilbert space

Although the first studies of the theory multipoint
differential operators were performed at the beginning of-2(H-:(=e,)) &La(Hy,(ay,b1)) &... & La(Hn, (an; b))

twentieth century, most of them which are about the @®La(Hy, (b, +0)),

investigation of the theory and application to spectral .
problems, have been seen since 1950 749,11, 16]). F.  Where—w <a<a; <b; <... <@ <bh<b< +ein
Shou-Zhong analyzed the characterizations of alltérMs oOf boundary values. In section 3, the spectrum of
selfadjoint extensions in terms of the domain of adjoint SUCh extensions is examined.

differential operator for singular symmetric minimal

operator, which is generated by a differential expression

§ p(-)DK with singularity of coefficients in endpoints of 2 Description of selfadjoint extensions
K50

the finitely many subintervals of a finite interval in the
scalar casell]. Let H-, Hy, k= 1,...,n,n € N be separable Hilbert
spaces;o<a<a <b;<...<ay<by<b<+owand
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dimH_ = dimH; < 4. In the Hilbert space
L2:= Lo(H-,(—%,a)) & L2(H1, (a1,b1)) &
®L2(Hn7 (ana bn)) D L2(H+, (ba +°°))

of vector-functions we consider the linear multipoint
differential expression

v +Au, —eo<t<a
I(u) = ¢iup+Auk, a<t<b,k=1...n
iU, +ALur, b<t< oo,

whereu = (u_,us,...,un,us),As : D(As) C Hy — Hx,
A D(A) C Hk — Hy, k=1,...,nare linear selfadjoint
operators. In the linear manifold¥A+) C H-, D(Ax) C
Hk inner products can be introduced like that

(fiFvg:F):F7+1 = (As f:F’A¥ng)H¥ +

f+.0+ € D(Ag),
(i Ok 11 7= (Axi Ay, +

fi,Ok € D(AK), k=1,...,n

Each ofD(A+) andD(Ay), k=1,...,nis a Hilbert space
under the positive nor- [ ,; andH [l 41 With respect
to the Hilbert spacé and Hy. It is denoted byH- 11
andHy 1. DenoteH; _1 and Hy 1 Hilbert spaces with
the negative norm. It is clear that the operat@rsandAy
are continuous and that its adjoint operatdss: Hy —
Hr 1 andAy : Hg — Hy —1 is extensions of the operators
A andA respectively. On the other handl; : D(A;) =
Hy C Hy_1 — He _1 and A : D(Ak) He C Hg—1 —
Hy —1 are linear selfadjoint operators. In the direct sim
it is defined as

(I (uo), T (uy), ...

whereu = (U_,uy,...,un,uy) andiy(us) =
Ik(uk) = iu{(+Akuk, k=1,...,n

QEN YN

(fka gk)Hka

7|~n(un)7|~+(u+))’ 1)

iU+ Azus,

The minimalL_g (Lo andL,o) and maximalL_ (L
andL.) operators generated by differential expresdion
(Ik and 1) in Ly(H-,(—x,a)) (L2(Hk,(abk)) and
L2(H-, (b,+))) have been investigation iB].

The operatord g =L _o®L1o® ... 6 LnoE Lo and
L=L &L1&...4Ly®L: in the spacd., are called

example, becausimH_ = dimH, , there exists a unitary
operatoV : H_ — H, [18] and the differential expression
[(u) with the boundary conditionVu_(a) = u(b),
u(ax) = u(by), k=1,...,nis a selfadjoint operator ih.

All selfadjoint extensions of the minimal operatog
in L, in terms of the boundary values are described.

Note that space of boundary values has an important
role in the theory of selfadjoint extensions of linear
symmetric differential operator§,[13].

LetB:D(B) C .## — . be a closed densely defined
symmetric operator in the Hilbert spag€, having equal
finite or infinite deficiency indices. A triplet$, vi,2),
wheres$) is a Hilbert spacey; andys are linear mappings
of D(B*) into ), is called a space of boundary values for
the operatoB if for any f,g € D(B*),

= (u(),12(9)) 5

while for any F,G € 9,
f € D(B*), such that (f) =

—(1a(f),y1(9))

there exists an element
F andy(f) =

Now we give some notations for convenience as
follows

L2(17 0, 1) L= LZ(va (—oo7a)) P01D...40,
®La(Hy, (b, +))

L2(0,1,0): = 06 016... 6 Lo(Hk, (a
@Ol@rl@...@o, k=1

b))

n7

where Q- := Oy, and G := Oy, are zero vectors. Note
that any symmetric operator with equal deficiency indices
has at least one space of boundary val@gs [

Firstly, note that the following proposition which
validity of this claim can be easily proved.

Lemma 2.1.Let dimH. = dimH, < +o andV : H_ —
H. be a unitary operator such thdt =V H_. The triplet

(H+aV17V2)1 where
vi:D((LLo®01®...40h® L+O)*) —Hy,
1
(u) = —=(Vu-(a) +u(b)),

iv2

minimal and maximal (multipoint) operators generated by y, : D((L_¢®01®... 6 0,® Lyo)*) — Hy,

the differential expression (1), respectively. Note thnt t
operatorlg is symmetric andj = L in L. On the other

hand, it is clear thatm(L_g) = 0, n(Lx) = dimH,
m(L.o) = dimHy, n(L_g) = dimH_, m(Ly) = dimH,
n(Lio) =0, k=1,...,n

Since dimH. = dimI—LF < oo, then

m(Lo) = n(Lp) = dimH_ + 2 dimH, > 0. Hence, the

minimal operatolLy has a selfadjomt extensiod?]. For

Yolu) = \%(VU(a) UL (b)),
u=(U_,Us,...,Un,U;) ED((LoB01®...00®Lio)")

is a space of boundary values of the minimal operator

Lo®d01®...20,& Lo in the direct sum
L2(H7(—°°,a.))@01@@On@LZ(H+,(b,+°°))

Proof. For arbitrary u = (u_,us,...upu;s) and
Y% = (V_,V1,...,Vn,Vy) from
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D((L_o® 01 & ... ® 0@ Lio)*) the validity of the
equality
(Lu V)0 = (ULV) 1,00

= (V(W), 2V, = (Va(W), va (V)

can be easily verified. Now for any given elemeftg €
H., we will find the functionu = (u_,us,...,Uy,Uy) €
D(L.o®01®...40,®Lyo)*) such that

mwzd%ww@+mm»:fam
(W) = (VU ()~ Uy (b)) = @
that is,

Vu_(a) = (if +9)/v2 and uy(b)=(if —g)/V2

SinceV : H_ — H, is an isomorphism, so that we can
choose the functions_ (t), u, (t) in the following form

u_(t):/it sV (if +9)/vV2, with t<a
ug(t) = Ok,
w0 = [ & tasit —g)/v2

then it is clear that
(u_,ug,...,up,u) € D((L1p@ 01 ®...0n® Lyo)*) and
ya(u) = f, yo(u) = 9.0

Furthermore, using the result which is obtainedSh |
the next assertion is proved.

Lemma 2.2.The triplet(Hk, yfq, yék)) ,

with a<t<b,k=1...n;

with t>b

Vik), V§k> : D((Lko)*) — Hk,
V9 () = %(uaak) + ug(by)),

V9 () = = (@) — b)), U € D((Lio)")

V2

is a space of boundary values of the minimal operbggr
in the Hilbert spacé,(0,1,0), k=1,...,n.
The following result can be easily established.

Lemma 2.3. Every selfadjoint extension oky in L;

whereWp : H. — H, andW : Hy — H, k=1,...,nare
unitary operators. Moreover, the unitary operatgs\\
are determined uniquely by the extensidg i.e.
Li=Llw=Lw@&Llw ®... 8 Lw, W= Wo,W,.... W)
and vice versa.

3 The spectrum of the selfadjoint extensions

In this section the structure of the spectrum of the
selfadjoint extensiobyw in L, will be investigated. In this
case from Lemma 2.4 it is clear that

LW:L%®LW1@...@LM,

wherely, andLy, k= 1,...,n are selfadjoint extensions
of the minimal operators
Lo(1,0,1) Lo® 00 & ... 0y & Lo and
Lo(0,1,0) =0_001®... & LB Ok1®...® 04 in the
Hilbert spaces(1,0,1) andL,(0, 1k, 0), respectively.
First, we have to prove the following result.
Theorem 3.1. The point spectrum of any selfadjoint
extensionLy, in the Hilbert spacd_»(1,0,1) is empty;
ie.

Op(Lwp) = 0.

Proof. Let us consider the following problem for the
spectrum of the selfadjoint extensitg, of the minimal
operatoiLg(1,0,1) in the Hilbert spacé,(1,0,1),

LwpU=Au, u=(u_,0q,...,0n,u;s) € L>(1,0,1);

that is,
C(u) =it +A u =Au_,u_ely(H_ ,(—x,a)),
(up) =iu + A, = Auy,
Uy € La(Hy, (b, +)),A € R,
u(b) =Wou_(a).
The general solution of this problem is

U_(A;t) =dA-N-afr g

Uy (Ast) =B DED) g s
fr=Wof*, f*,eH_, fieH,.

Hilbert space is a direct sum of selfadjoint extensions of

the minimal operatorL_ o ® 01 & ... 0y & Ligp In
L2(1,0,1) and minimal operators
O @ 01 & ... & Lyg ® Oy1 @ ... & 04 in
L2(0,1,0), k=1,...,n.

Finally, using the method ing] the following result
can be deduced.

Theorem 2.4.1f L is a selfadjoint extension of the
minimal operator Ly in Ly, then it generates by
differential expression (1) and boundary conditions
u-(b) =Wou-(a),
Uk(bk) :\/\4<uk(ak), k= 1,...,[‘1

It is clear that for thef® # 0, f{ # O the functions
U_(A;.) ¢ Lo(H-,(~,2)),us(A;.) & La(H., (b, +<0)).
Therefore for every isometric isomorphisiy we have
Up(LWO) =0.0

Since residual spectrum of any selfadjoint operator in
any Hilbert space is empty, it is sufficient to investigate
the continuous spectrum of the selfadjoint extensiags
of the minimal operatoity(1,0,1) in the Hilbert space
L2(1,0,1).
Theorem 3.2.The continuous spectrum of any selfadjoint
extensionLy, of the minimal operatot(1,0,1) in the
Hilbert space_»(1,0,1) is o¢(Lw,) = R.
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Proof. Firstly, we search for the resolvent operator of the  and
exten5|onLWO generated by the differential expression

(I,,Ol, .,0n,14+) and the boundary condition

a . 2
[T AN s
u+(b) =Wou_ (a) HI/t e - (S)dS‘ Lo(H_,(~w.a))
. . . a a 2
in the Hilbert spacé(1,0,1); i.e. S/ </ ef‘i“‘s)|f_(s)||Hds) dt
|~_(u_):iu/_+/&_u_:)\u_+f_, / </ e/\t Sds> </ e/\t SHf ()HZdS)
u-, f_ € LZ(H_,(—OO,a)),
Mo(uy) =i, +ALu, =Au, + £, A/ /ef‘t 9)/f_ (s 2dsdt
U+, f+ S L2(H+,(b, +°°)),
AEC, A—Imt >0 o M VAR IRCTEVE
s (b) =Wou_(a) )
i(t—s 2
Now, we will show that the following function )\ / </ ¢ dt) It-(s)l"ds
U(A;t) = (U_(A;t),0q,...,0n,Us (A1), )\2/ If-(s)]|Pds= )\2||f 12, (o) <
where
) a . Furthermore,
U_(A:t) = @AM g / A9 (gds ,
t<a ‘ i [eA e s
t LZ(H+7(b7+°°))

/\t_|/e'A+Ats L(s)ds t>b, o / po 2
< [([ et oimas) o
b
f* =W (i / dAe-h) t—S><b—5>f+(s)o|s) t
b

g/ (/ ef‘i<‘—5>ds) (/ em<‘—3>|f+(s)||2ds> dt
is a solution of the boundary value proble) (n the

Hilbert spacd_»(1,0,1). Itis sufficient to show that _/ (/ -9 1, ( st) dt
Ai
U_(A;t) € La(H_, (—o,a)), L
030 € LofH (b, +) — 5 [ ([eesinopean) as
for A > 0. Indeed, in this case 1/ (/ e/\i(t—s)dt> £, (9)]2ds
Ai
. 2 1 e)\| (b—s) 2
Il = e s =52 ), -l o)Pds
b H., 1
o 2 < I I by < -
< ([ et oln.os) Azt o)
® ® Above calculations imply that
< ( / eZAi<b-S>ds) ( / |f+<s>||a+ds) U-(A:1) € Lo(H-,(~e0,a)), up(A;t) € Lp(H., (b, +09))
b b for A € C, Ai = ImA > 0. On the other hand, one can
_1 2 easily verify thatu(A;t) = (U_(A;t),01,...,0n,us(A;1))

f < oo, . .
2)i Iyt o) < is a solution of the boundary value proble®).(

When A € C, Aj = ImA < O is true solution of the

He' (A_—A)(t-a) £ H2 boundary value problem,

(~».a))
_ et 2 Lwpu=Au+f,u= (u-,01,...,0n,uy),
-° ~lILp(H (~w,)) f=(f_,01,...,0n, f;) €L2(1,0,2)
= [ e at U (b) = Wou_(a),
a L 1 whereW is a unitary operator fromi_ to H,, is in the
i(t— * 12 __ * (12
:/ SNt 1 = S lIFEllR <o formu(A;t) = (u—(A;t),01,...,0n,us (A1),
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|f e|A,7)\ )(t—s)

f_(s)ds t<a
—i AN 1 (5)ds

£ =W </éA"‘ a-9) ()ds)

First, we prove thati(A;t) € L»(1,0,1). In this case,

Ju- ()\ O, (o)
2
dt

_I/ e ()dS{H
[ esas) ([ o (s ds)at

I 1 (9)f dsat
(

(/ I (9)2 dt)ds
i (h9at) |1 (9)_ds
(1- @)1 (9]2_ds

IN

—00

Il
S

N
—
8 @

IA
>»‘ -

i [ f—|\52(H,7(_m,a)) <,

2

a | o~
1218, = | [ % a9t gas

<(f Zéi<as>|f_<s>||Hds)2
< ( [ e%<a—s>ds) RGECTERS

a) <%

H-

2|/\|Hf ||L2 —o0

||ei(A+*)‘)(t*b) f_T_ ||Ez(H+7(b7+°°))

RPYY 1
< i(t—b) 12 _ * 12
< [T iR = gl

1 2
< 4|)\| |2 || = |‘L2(H+,(b,+oo)) < ®

and

2

/ ANy (s)ds‘
2

9 (9, 0s) et

ef‘lt Sds) (/ef” 9t (93, ds)dt

A—liu—eﬂ ) ([t @1R, ds) a

/°° </ HPf( )|H+ds> dt
A

[t o lR o) os

L2(H+,(b,+°°))

1 =/ b
_ i(t=s) 2
_w/b (/Sef\ dt>|f+(s)||H+ds
1

2
= ) G o) < -

The above simple calculations show that
U-(A;") € La(H_, (~,)), us(A;") € Lo(Hy, (b, +));
i.e. u()\ ; ) = (u* ()\ ; ')7017 s 70n7 U+(/\ ’ )) € L2(17 07 1)
in caseA € C, Aj =ImA < 0. On the other hand it can be
verified that the functioru(A;-) satisfies the equation
LwpU=Au(A;-) + f anduy(b) =Wou_(a).

Hence, the following result has been proved that for
the resolvent sgb(Lwy,)

p(Lwy) D {A € C:ImA #0}.
Now, we will study continuous spectrum(Ly,) of the

extensionLy,. For A € C, A = ImA > 0, norm of the
resolvent operatdr, (Lw,) of theLy, is of the form

IRy (Lwo) F (DI, 1.01)

5 . 2
_ [|dE -ra-age _|_i/aei(A——)\)(t—S) f_(s)dg{
t LZ(H*v(_w7a))
- 2
+ H|/ gAr—A)t-9) f+(s)ds‘ ,
t L2(H+,(b,+°°))
f= (f7,01, cee 70n7 er) € L2(1707 1)
Then, it is clear that for any = (f_,01,...,0n,f1) €
L2(1,0,1) the following inequality is true.
2

IRa(Lag) (O > [i [R5t (gas

LZ(H+ *(b*+°°)) .

The vector functionsf*(A;t) which is of the form
f*(At) = (0_,0q,...,0n,dA2F) A € C,
Ai=ImA >0, f e HL belong toL2(1,0,1). Indeed,
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Proof. The general solution of the following problem to
w - spectrum of the selfadjoint extensiohy, for any
I AR, = [ 1AM, o k=1,....n,

:/me*”itdt|\f+||ﬁ _1 24,2 < co. lic(U) = iU+ A = At + fie, U, fic € La(Hi, (ax, b))
b b ' u(b) = Whtk(a), A €R

is of the form

ug(t) = d(AA)(t-a) fi + /t dAA)(t-9) f(s)ds
ay

For such functiong*(A;-), we have

HR)\ (LWO) f*()‘ ;t)HEZ(H+!(b!+m>>

e s e 2 a, <t < by,
> ,/t e'(A+)\>(tS)e'(A+)\)Sf+ds‘

(@A O-a) _\yrdAx(bz-az)) g

LZ(H+ *(b*+°°))
2

00

) by . -~
_ / . i)‘tGZ)‘iSeiA+tf+dS‘ :V\/ljem(bk—ak)/akkem/*k—/\)(bk—s) f(s)ds
t

LZ(H+7(b7+°°))

e 2 This implies that € a(Lw,) if and only if A is a solution
= e_'“e'A*t/t e‘”ishd% of the equaton e€Aba) — L where
) La(Hy(b42)) p € o(W; g3y We obtain that
—iA —2A;
— e [ e PSZ oy 1, . - )
1 e 1 A= argu -+ . mMeZ, ueoaWeAbPad)
= oz [ el = ose PR Peac T b
422 Jo 82 "
0
From this we get Theorem 3.4. Spectrum o(Ly) of any selfadjoint
oAb extensiorLy = Ly, © Lwy @ ... © Lw, coincides withR.
Ry (L) £ (A5 ) I, > WH filln Proof. Validity of this assertion is a simple result of the
VA following claim. If S,k =1,....m,m € N are linear
- i” (A5l closed operators in any Hilbert spacgg by using [L9]
we have

i.e.forA; =ImA > 0andf, #0 m m
Op <@&> = |J op(S0),
IR (L) (A3 )l o 1 k=1 k1

A, — 2 m m ¢ o c
o (Dsc) = (Uons ) n{ Uor(s)
k= k=1

is valid. On the other, hand it is clear that 1 k=1
m
IRy (o) T* (A3l . (U . (&))
R, (L > , f 0. ¢ :
H )\( VVO)H— ||f*(/\u)HL2 +7é 1

c { h Thus,the proof is completed by using last equalities,
onsequently, we have Theorem 3.2 and Theorem 3[3.

HR,\(LWO)HE% for AeC, Aj=ImA >0.
|
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